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Abstract
This paper describes a Quantization Regression (QR) algorithm which generates a nonlinear estimate of an autoregressive
time series from quantized measurements. Its purpose is to retrieve the underlying information from quantized signals
such as those from the analogue to digital converter of a plant instrument. The reconstructed signals have uses in
data-centric applications such as controller performance assessment and system identification. The algorithm based upon
Ziskand and Hertz is a combination of the ‘Gaussian Fit’ scheme of Curry with expectation-maximization (EM) algorithm
of Dempster et al. The performance of Quantization Regression algorithm is compared with two other methods in fitting
of an autoregressive time series for the reconstruction of a quantized signal.
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Introduction

A great deal of engineering data occurs in the form of
time series where observations are dependent and where
the nature of this dependence is of interest. For exam-
ple, Desborough and Harris (1992) used routine closed
loop process data to estimate the normalized control loop
performance index. In that case, an AR model was im-
plemented. Thornhill et al. (1999) observed that quan-
tization of the measurements influenced the normalized
performance index and thus motivated the need for an
algorithm to accurately recover a signal from a quantized
time series. Quantization is often observed in the out-
puts of process instruments even though 10 bit A/D con-
version provides 1024 quantization levels because a mea-
surement controlled to a steady value is likely to sample
just a few of the available quantizer levels.

Ziskand and Hertz (1993) proposed an algorithm to es-
timate coefficients of a quantized autoregressive (qAR)
process. Their implementation and examples illustrated
the case of one-bit (two level) quantization. The al-
gorithm was based on the following two developments:
Dempster et al. (1977) presented a method for computing
maximum likelihood estimates from “incomplete” data,
i.e. data having a many-to-one mapping in the measure-
ment function. Quantized process data are incomplete
because many values of the underlying signal map to
each quantizer level. The algorithm comprised two steps:
the first expectation, the second maximization, and was
called the EM algorithm. Shumway and Stoffer (1982)
proposed an approach to smoothing and forecasting for
time series with incomplete observations. The EM algo-
rithm was used in conjunction with Kalman smoothed
estimators to derive a recursive procedure for estimating
the qAR parameters by maximum likelihood. The algo-
rithm is a general technique for finding maximum likeli-
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hood estimates from incomplete data (Little and Rubin,
1986).

Expectation calculations for the maximum likelihood
step are provided by the Gaussian Fit algorithm. The
method was proposed by Curry (1970) for a discrete-time
nonlinear filter that recursively fits a Gaussian distribu-
tion to the first two moments of the conditional distri-
bution of a system state vector. The Gaussian Fit algo-
rithm is easy to compute and can handle non-stationary
data and its operation is independent of the quantiza-
tion scheme used. However, it requires more compu-
tation than a linear filter and can be applied only to
Gauss-Markov processes. It is applicable to quantized
process data because such data can be expressed as a
Gauss-Markov process in state-space form.

The algorithm presented by Ziskand and Hertz (1993)
estimated the coefficients of several superimposed qAR
signals of known model order using a two-level quantizer.
The signals represented sinusoids at different frequencies.
The contribution of this paper is the extension of quan-
tized regression to multiple quantizer levels and to qAR
signals of order 2 and higher. The Akaike Information
Criterion was used to determine the order of the AR
model. Further, the QR algorithm was compared with
two other methods to illustrate why it can recover the
underlying signal better. Simulations and experimental
data support the studies. The conclusion is that the QR
algorithm can optimally estimate the model parameters
and recover the underlying signal at the same time.

Methods

Problem Description

Quantized autoregressive (AR) time series are the sub-
ject of the work. The process may be written as follows:

S(n) = φ · S(n − 1) + w(n)
x(n) = h · S(n) + v(n)
z(n) = g(x(n))
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where S(n) = (s(n−m+1), . . . , s(n))T is a state vector,
{x(n)}N

n=1 the N samples from an autoregressive process
of order m and {z(n)}N

n=1 the quantized measurements
of the process. w(n) and v(n) are white noise samples
with mean zero and variances σ2

w and σ2
0 respectively and

independent from each other. The state transition ma-
trix, φ, has the autoregressive coefficients a1, a2, . . . , am

in the last row:

φ =


0 1

0 1

. . .
. . .

0 1
am · · · · · · a2 a1



The observation vector h = (0, 0, . . . , 0, 1) is of length
m, and g is the non-linear quantizer function whose input
is the AR signal plus noise. The algorithm is suitable for
both uniform and non-uniform quantizers, although in
this paper uniform quantization intervals were used. The
quantization interval is the distance between quantizer
levels. The problem is to determine the model order,
m, to estimate the AR coefficients a1, a2, . . . , am and to
recover the underlying signal {s(n)}N

n=1.

Implementation of QR Algorithm

The Quantization Regression (QR) algorithm is iterative
and includes two main conceptual steps:

Step 1: A modified Kalman smoothing algorithm finds
smoothed estimates and their covariances. At step n the
key calculations are:

Sn
n = Sn−1

n + Kn

(
(E(x(n))|zn) − hSn−1

n

)
Pn

n = Pn−1
n − KnhPn−1

n + Kncov (x(n)|zn) KT
n

where Sn−1
n and Pn−1

n are one step ahead predictions
of the state vector and its variance, zn the sequence of
quantized measurements and Kn is the Kalman gain. A
conventional Kalman filter would use the quantized mea-
surement zn directly, but the modified algorithm calcu-
lates the expected value of xn given that the quantized
measurement falls within the observed quantization in-
terval. The expectation is computed using the Gaussian
Fit approximation (Curry, 1970). The last term in the
calculation for Pn

n captures the inflation in the variance
of the estimate caused by quantization.

Step 2: The likelihood function is maximised by itera-
tive adjustment of the AR coefficients a1, a2, . . . , am, the
estimated signal and σ2

w and σ2
0 .

Typing errors found in Ziskand and Hertz were cor-
rected as follows where the underline indicates the al-
tered terms,

Kn = Pn−1
n hT (σ2

x)−1

PN
n−1 = Pn−1

n−1 + Jn−1

(
PN

n − Pn−1
n

)
JT

n−1

PN
n−1,n−2 = Pn−1

n−1 JT
n−2 + Jn−1

(
PN

n,n−1 − φ(r)Pn−1
n−1

)
JT

n−2

and the loop in the lag-one covariance calculation was
for n = N,N − 1, . . . , 2.

The following improvements were made: (1) σ2
0 was

updated during the iteration rather than being taken as
known; (2) the innovative form of the log liklihood func-
tion (Shumway and Stoffer, 1982) was used as a stopping
criterion.

∆(log L) = −1
2

N∑
n=1

log(σ2
x)

− 1
2σ2

x

N∑
n=1

(
z(n) − hSn−1

n

)T (
z(n) − hSn−1

n

)
Iterations stopped when the innovation became small;

(3) the initial variance in the iteration was fixed and the
state vector was initialised thus: S0

0(r + 1) = SN
0 (r).

Determination of Model Order and Quality of Fit

Ziskand and Hertz assumed the model order m was
known. Where the model order is unknown one approach
to determining m is to fit AR process of progressively
high order, to calculate the sum of squared errors (SSE)
for each value of m and to plot SSE against m (Chatfield,
1989). One chooses the value of m where the addition
of extra parameters gives little improvement in fit. The
method does not work here since the aim is to recover the
underlying signal not the quantized observation. An ap-
proach suited to maximum likelihood estimation is to use
Akaike Information criterion (AIC) to determine model
order. The required complete-data log likelihood func-
tion (log L) is presented in Ziskand and Hertz (1993), and
Shumway and Stoffer (1982). AIC can be calculated from
log L and the model order m as AIC = −2 log L + 2m.
The model order is the value of m where the largest de-
crease occurs.

The multiple coefficient of determination R2 (Scheaffer
and McClave, 1995) was used to determine the quality
of the reconstruction:

R2 = 1 −

N∑
n=1

(y(n) − ŷ(n))2

N∑
n=1

(y(n) − ȳ)2

where ŷ(n) is the reconstruction of a true underlying
signal y(n) and ȳ is its mean. R2 = 0 implies the variance
of the reconstruction error is as large as the variance of
the measurements, and thus that there is a complete
lack of fit of the model, while R2 = 1 implies a perfect
reconstruction.

Other Methods for Comparison

Two other methods for estimation of the AR coefficients
were implemented for comparison.
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One method was a one-step linear least squares esti-
mate (LLS) of the AR coefficients. The quantized data
{z(n)}N

n=1 themselves were modelled as an AR series:


z(n)

z(n − 1)

.

.

.
z(m + 1)

 =


z(n − 1) · · · z(n − m)
z(n − 2) · · · z(n − m − 1)

.

.

.
.
.
.

z(m) · · · z(1)




a1
a2

.

.

.
am

 +


e(n)

e(n − 1)

.

.

.
e(m + 1)

 (1)

The above matrix equation can be written as:

Y = X · a + e

and least squares estimates of the AR parameters deter-
mined from:

â =
(
XT X

)−1
XT Y

The above calculation coincides with the linear regres-
sion approach in Desborough and Harris (1992) using a
one-step prediction. It was also used in Thornhill et al.
(1999) where the adverse influence of quantization was
noted.

The other method, termed Kalman smoothing, used
the same formulation as the QR algorithm but without
the Gaussian Fit step. The Kalman smoother equations
became:

Sn
n = Sn−1

n + Kn

(
z(n) − hSn−1

n

)
Pn

n = Pn−1
n − KnhPn−1

n

Results

Simulation Examples

A unit amplitude sinusoid wave was used as the quan-
tizer input with quantization interval 0.5. Therefore the
signal used just five quantizer levels and was coarsely
quantized. The sine wave had a period of 51.2 sam-
ples, the value being selected so that 10 cycles used 512
samples (a power of 2). Using the method of backward
differencing the sine wave sin(2πt/51.2) can be expressed
as a two term AR series:

y(n) = 1.990y(n − 1) − 0.998y(n − 2)

Therefore we require the QR algorithm to give a model
with m = 2 and coefficients a1 = 1.990 and a2 = −0.998.
The AIC indicated that the optimum model order for the
qAR time series was indeed m = 2. The QR algorithm
was used to reconstruct an AR model with two terms
and the results were compared with the reconstruction
of m = 2 AR models using Kalman smoothing alone
and the one-step linear least squares estimate. The re-
covering ability is compared in the left hand panel of

Figure 1, where it can be seen visually that the QR algo-
rithm provided the best reconstruction of the underlying
sine wave. The results with the LLS method were the
least satisfactory.

The estimated AR coefficients and R2 values were:

QR: a1 = 1.977, a2 = −0.993, R2 = 0.998
Kalman: a1 = 1.276, a2 = −0.304, R2 = 0.996
LLS: a1 = 0.982, a2 = −0.018, R2 = 0.968

The QR algorithm recovered both coefficients with less
than 1% error from the true values, while the LLS coef-
ficients had large errors and could only achieve a model
that said the next sample would be almost the same as
the previous sample. Kalman smoothing without the
Gaussian Fit step gave an intermediate result with the
model coefficients in error by 36% and 70%. It is con-
cluded that the major benefit of the QR algorithm with
coarsely quantized data is the expectation step using the
Gaussian Fit approximation.

A noisy sine wave with a signal to noise ratio of 1:1 was
used as a second test signal into the quantizer input. Ap-
plication of AIC indicated a model order of 5 or 6 for the
QR algorithm and 6 for Kalman smoothing. The recov-
ering ability of the three methods for m = 6 AR models
is compared in the right hand panel of Figure 1. The
QR algorithm and Kalman smoothing provided good re-
construction of the underlying sine wave and both were
superior to the LLS reconstruction which provided less
filtering of the noise. The R2 values were:

QR: R2 = 0.981
Kalman: R2 = 0.978
LLS: R2 = 0.764

Influence of Quantization Interval

Figure 2 compares the R2 measure across a range of
quantization intervals. The left panel shows the re-
sults for the quantized sine wave signal using AR mod-
els with model order m = 2. The uppermost trend is
for the QR algorithm, the lowest is the LLS algorithm
and the Kalman smoothing algorithm is in-between. As
was suggested by Figure 1, the Gaussian Fit element
of the QR algorithm gave benefits over and above its
Kalman smoothing component. The benefit increased as
the quantization interval increased.

The right hand panel of Figure 2 shows the recon-
struction performance of the quantized noisy sine wave
using AR models with m = 6. The R2 values for Kalman
smoothing and QR were almost identical in this case, and
both gave improvements over the LLS method. Thus
when the unquantized signal included white noise, no
matter what the quantization interval was, the recovery
was contributed by Kalman smoothing. It is concluded
that the benefit of the Gaussian Fit to the QR algorithm
reduces as the influence of quantization reduces relative
to the noise.
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Figure 1: Reconstruction of a sine wave from quantized samples (left) and noisy quantized samples (right). (a): the sine
wave signal; (b) quantized signal; (c) reconstructed with QR; (d) reconstructed with Kalman smoothing; (e) reconstructed
with LLS.
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Figure 2: Reconstruction performance for a sine wave from quantized samples (left) and noisy quantized samples (right).
QR: squares; Kalman smoothing: circles; LLS: diamonds.

Ensemble a1 a2 R2

Length
N = 1440 1.977 -0.993 0.9981
N = 1280 1.979 -0.994 0.9981
N = 1024 1.977 -0.992 0.9980
N = 768 1.974 -0.989 0.9979
N = 512 1.968 -0.984 0.9977
N = 256 1.952 -0.968 0.9976

Table 1: The influence of ensemble length.

Influence of Ensemble Length

Table 1 shows the influence of data ensemble length,
which was examined using the sine wave signal with

quantization interval of 0.5.
The table shows that the values of the AR coefficients

recovered by the QR algorithm diverged from the correct
values as the data ensemble length became smaller. In
this example a data ensemble length of 800 gave errors
compared to the true values of about 1% in each of the
AR coefficients, therefore it is recommended that the
data ensemble length be at least 800 samples.

Performance with Plant Data

Figure 3 shows the behaviour of the QR, Kalman
smoothing and LLS algorithms with pilot plant mea-
surements. The measurements were from the transient
response of the pH control in a buffered fed-batch yeast
fermentation process. They were quantized by the A/D
converter of the pH probe. The aim of the analysis was
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Figure 3: Reconstruction of quantized plant data.
(a) quantized trend from plant; (b) reconstructed us-
ing QR; (c) using Kalman smoothing; (d) using LLS.

to recover the underlying smooth transient response of
the fermenter pH. The closed loop under proportional-
plus-integral control of the process has dominant under-
damped complex conjugate poles and therefore the AR
time series should have m = 2. The s-plane poles are
s = −0.025 ± 0.108j corresponding to damped oscilla-
tions with a period of 58 samples and an exponential
time constant of 40 samples. These s-plane poles map
to z-plane poles at z = 0.969 ± 0.105j.

Application of AIC to the QR algorithm indicated
that the model order should indeed be m = 2. The
reconstructions of m = 2 AR models using QR, Kalman
smoothing and the LLS methods are shown in Figure 3.
It was not possible to determine the R2 values because
the true underlying signal was not known. A quantita-
tive comparison of the z-plane poles shows the QR al-
gorithm has achieved the correct reconstruction because
the AR model was:

y(n) = 1.914y(n − 1) − 0.934y(n − 2)

which has z-plane poles at z = 0.957 ± 0.090j. These
poles are near those of the closed loop process and it is
concluded that the AR coefficients determined by the QR
algorithm captured the under-damped oscillatory behav-
ior of the pH response. The other models were:

Kalman: y(n) = 1.210y(n − 1) − 0.231y(n − 2)
LLS: y(n) = 0.972y(n − 1) + 8 · 10−3y(n − 2)

both of whose z-plane poles are real. These recovered
AR time series have no oscillatory behavior of their own
and the reconstructions appear oscillatory only because
they are driven by the experimental data.

Conclusion

For coarsely quantized signals, the QR (quantized re-
gression) algorithm can recover the underlying signal
from quantized observations better than the LLS (lin-
ear least squares) algorithm, as measured by the R2 val-
ues. The fundamental reason behind the phenomenon is
that QR algorithm based on the Gaussian Fit algorithm
and Kalman smoothing can recover some nonlinear parts
from the quantized observation, while the LLS algorithm
assumes the quantizer has a fixed input-output relation-
ship.

Kalman smoothing was also used without the Gaus-
sian Fit scheme. Its performance was also superior to
that of the LLS method. When the effects of quantiza-
tion were dominant the performance of the QR algorithm
was significantly better than that of Kalman smoothing
alone. When the underlying signal was noisy, however,
the performances of the QR and Kalman smoothing al-
gorithms were similar. Therefore it is concluded that
the Gaussian Fit scheme offers the most improvement
when quantization is severe, but that when noise is pre-
dominant the majority of the benefit is due to Kalman
smoothing.

QR reconstruction of a transient response signal from
experimental plant data gave an AR series of the cor-
rect order and with z-plane poles close to the true val-
ues. It can be concluded that QR reconstruction has the
capacity to be useful in the accurate reconstruction of
autoregressive time series from quantized process data.
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