
A Computationally Efficient Formulation
of Robust Model Predictive Control

using Linear Matrix Inequalities

Zhaoyang Wan∗ and Mayuresh V. Kothare†

Department of Chemical Engineering
Lehigh University

Bethlehem, PA 18015, U.S.A.

Abstract
In this paper, we present an off-line approach for robust constrained MPC synthesis that gives an explicit control law using
Linear Matrix Inequalities (LMIs). This off-line approach can address a broad class of model uncertainty descriptions
with guaranteed robust stability of the closed-loop system and substantial reduction of the on-line MPC computation.
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Introduction

The practicality of Model Predictive Control (MPC) is
partially limited by its ability to solve optimization prob-
lems in real time. Moreover, when MPC incorporates ex-
plicit plant-model uncertainty, the additional constraints
imposed to guarantee robust stability result in significant
growth of the on-line MPC computation. Researchers
have begun to study methods for fast computation of
an optimal or suboptimal solution to the quadratic pro-
gramming problem associated with nominal MPC (Be-
mporad et al., 1999; Zheng, 1999; Van Antwerp and
Braatz, 2000). For systems with polytopic model un-
certainty and input constraints, receding horizon dual-
mode paradigm can be used to reduce the computational
complexity in MPC (Lee and Kouvaritakis, 2000). In
this paper, we present an off-line approach for robust
constrained MPC synthesis for both polytopic uncertain
systems and norm bounded uncertain systems.

Background

Models for Uncertain Systems

Consider a linear time varying (LTV) system

x(k + 1) = A(k)x(k) + B(k)u(k)
y(k) = Cx(k)

(1)

[
A(k) B(k)

]
∈ Ω

where u(k) ∈ Rnu is the control input, x(k) ∈ Rnx is the
state of the plant and y(k) ∈ Rny is the plant output.

For polytopic uncertainty, Ω is the polytope
Co {[A1 B1] , ..., [AL BL]}, where Co denotes the
convex hull, [Ai Bi] are vertices of the convex hull.
Any [A B] within the convex set Ω is a linear combi-
nation of the vertices A =

∑L
j=1 αjAj , B =

∑L
j=1 αjBj

with
∑L

j=1 αj = 1, 0 ≤ αj ≤ 1.
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For norm bounded uncertainty, the LTV system is ex-
pressed as a LTI system with uncertainties or perturba-
tions appearing in a feedback loop:

x(k + 1) = Ax(k) + Bu(k) + Bpp(k)
y(k) = Cx(k)
q(k) = Cqx(k) + Dquu(k)
p(k) = (∆q)(k)

(2)

where the operator ∆ = diag(∆1, ...,∆l) with ∆i :
Rni −→ Rni , i = 1, ..., l. ∆ can represent either a memo-
ryless time varying matrix with ‖∆i(k)‖2 ≡ σ̄(∆i(k)) ≤
1, k ≥ 0, or a convolution operator (for, e.g., a sta-
ble LTI dynamical system), with the operator norm
induced by the truncated l2 -norm less than 1, i.e.,∑k

j=0 pi(j)T pi(j) ≤
∑k

j=0 qi(j)T qi(j), i = 1, ..., l, ∀k ≥
0.

On-line Robust Constrained MPC Using LMIs

Consider the following problem, which minimizes the ro-
bust or worst case infinite horizon quadratic objective
function:

min
u(k+i|k)=F (k)x(k+i|k)

max
[A(k+i) B(k+i)]∈Ω, i≥0

J∞(k) (3)

subject to

|ur(k + i|k)| ≤ ur,max, i ≥ 0, r = 1, 2, ..., nu (4)
|yr(k + i|k)| ≤ yr,max, i ≥ 1, r = 1, 2, ..., ny (5)

where J∞(k) =
∑∞

i=0[x(k + i|k)T Q1x(k + i|k) + u(k +
i|k)T Ru(k+i|k)] with Q1 > 0, R > 0. In (3), we assume
that at each sampling time k, a constant state feedback
law u(k + i|k) = F (k)x(k + i|k) is used to minimize the
worst case value of J∞(k). Following an approach given
in (Kothare et al., 1996), it is easy to derive an upper
bound on J∞(k). First, at sampling time k, define a
quadratic function V (x) = xT P (k)x, P (k) > 0. For any
[A(k+ i) B(k+ i)] ∈ Ω, i ≥ 0, suppose V (x) satisfies the
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following robust stability constraint:

V (x(k + i + 1|k))− V (x(k + i|k))

≤ −
[
x(k + i|k)T Q1x(k + i|k)

+u(k + i|k)T Ru(k + i|k)
]

(6)

Summing (6) from i = 0 to i = ∞ and requiring
x(∞|k) = 0 or V (x(∞|k)) = 0, it follows that

max
[A(k+i) B(k+i)]∈Ω, i≥0

J∞(k) ≤ V (x(k|k)) ≤ γ (7)

(6) and (7) give an upper bound on J∞(k). The condi-
tion V (x(k|k)) ≤ γ in (7) can be expressed equivalently
as the LMI [

1 x(k|k)T

x(k|k) Q

]
≥ 0, (8)

where Q = γP (k)−1.
The robust stability constraint (6) for the system (1)

is satisfied if for each vertex of Ω
Q QAT

j + Y T BT
j QQ

1/2
1 Y T R1/2

AjQ + BjY Q 0 0
Q

1/2
1 Q 0 γI 0

R1/2Y 0 0 γI


≥ 0, j = 1, ..., L (9)

where, Q = γP (k)−1 and F (k) is parameterized by
Y Q−1. This set of conditions is convex in Ω. So if (9) is
satisfied, then for any [A(k + i) B(k + i)] ∈ Ω, i ≥ 0, (6)
is satisfied. For the system (2), the stability constraint
(6) is satisfied if

Q QAT + Y T BT QCT
q + Y T DT

qu

AQ + BY Q−BpΛBT
p 0

CqQ + DquY 0 Λ
Q

1/2
1 Q 0 0

R1/2Y 0 0

QQ
1/2
1 Y T R1/2

0 0
0 0
γI 0
0 γI

 ≥ 0 (10)

where Λ = diag(λ1In1 , ..., λlInl
) > 0. The input con-

straints (4) are satisfied if there exists a symmetric ma-
trix X such that [

X Y
Y T Q

]
≥ 0 (11)

with Xrr ≤ u2
r,max, r = 1, 2, ..., nu. Similarly, the out-

put constraints (5) for the system (1) are satisfied if there
exists a symmetric matrix Z such that for each vertex of
Ω, [

Z C (AjQ + BjY )
(AjQ + BjY )T

CT Q

]
≥ 0

j = 1, ..., L

(12)

with Zrr ≤ y2
r,max, r = 1, 2, ..., ny. The output con-

straints (5) for the system (2) are satisfied if for each
row of C

 y2
r,maxQ (CqQ + DquY )T

CqQ + DquY Tr

C<r>(AQ + BY ) 0

(AQ + BY )T C<r>T

0
I − C<r>BpTrB

T
p C<r>T

 ≥ 0 (13)

where C<r> is the rth row of C, Tr =
diag(tr,1In1 , ..., tr,lInl

) > 0, r = 1, 2, ..., ny

Theorem 1 (On-line robust constrained MPC)
(Kothare et al., 1996). For the system (1) or (2),
at sampling time k, let x(k) = x(k|k) be the state.
Then the state feedback matrix F (k) in the control law
u(k + i|k) = F (k)x(k + i|k), i ≥ 0, which minimizes the
upper bound γ on the worst case robust MPC objective
function J∞(k), is given by F (k) = Y Q−1 where Q > 0
and Y are obtained from the solution (if it exists) of one
of the following linear objective minimization problems:
(a) for system (1), min

γ,Q,X,Y,Z
γ subject to (8), (9), (11)

and (12).
(b) for system (2), min

γ,Q,X,Y,Λ,T1,...,Tny

γ subject to (8),

(10), (11) and (13).
Furthermore, the time varying state feedback matrix

F (k) robustly asymptotically stabilizes the closed-loop
system.

Off-line Robust Constrained MPC

In this section, we present an off-line approach based on
the concept of the asymptotically stable invariant ellip-
soid. Without loss of generality, we use the algorithm
for polytopic uncertain systems (Theorem 1 (a)) to il-
lustrate the following lemmas, corollaries and theorem.
Similar results can be obtained for Theorem 1 (b).

Asymptotically Stable Invariant Ellipsoid

Definition 1 (Asymptotically stable invariant el-
lipsoid). Given a discrete dynamical system
x(k+1) = f(x(k)), a subset E = {x ∈ Rnx |xT Q−1x ≤ 1}
of the state space Rnx is said to be an asymptotically
stable invariant ellipsoid, if it has the property that,
whenever x(k1) ∈ E at k1 ≥ 0, then x(k) ∈ E for all
times k ≥ k1 and x(k) −→ 0 as k −→∞ .

Lemma 1 Consider a closed-loop system composed of
a plant (1) and a static state feedback controller u =
Y Q−1x, where Y and Q−1 are obtained by apply-
ing the robust constrained MPC defined in Theorem 1
(a) to a system state x0. Then, the subset E = {x ∈
Rnx |xT Q−1x ≤ 1} of the state space Rnx is an asymp-
totically stable invariant ellipsoid.
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Proof. When the robust constrained MPC defined in
Theorem 1 (a) is applied to a state x0 of a plant (1), the
only LMI in Theorem 1 (a) that depends on the system
state is (8) which is automatically satisfied for all states
within the ellipsoid E. So the minimizer γ, Q, X, Y and
Z at the state x0 is also feasible (though not necessarily
optimal) for any other state in E, which means we can
apply the state feedback law u = Y Q−1x to all the states
in E with the satisfation of (9), (11) and (12).

Consider the closed-loop system composed of the plant
(1) and the static state feedback controller u = Y Q−1x,
where Y and Q−1 are obtained by applying the robust
constrained MPC defined in Theorem 1 (a) to a system
state x0. Then, for any state x̃(k) ∈ E, the satisfaction of
(9) ensures that in real time x̃(k+i+1)T Q−1x̃(k+i+1) <
x̃(k+i)T Q−1x̃(k+i) ≤ 1, i ≥ 0. Thus, x̃(k+i) ∈ E, i ≥ 0
and x̃(k + i) −→ 0 as i −→∞, which establish that E is
an asymptotically stable invariant ellipsoid.

Remark 1 From Lemma 1, we know that for system
(1), an asymptotically stable invariant ellipsoid can be
constructed by applying Theorem 1 (a) to an arbitrary
feasible state x0. The minimization at x0 gives a state
feedback law u = Y Q−1x. Once a state enters into the
ellipsoid, the static state feedback controller u = Y Q−1x
can keep it within the ellipsoid and converge it to the ori-
gin. The following corollaries state the dependence of the
ellipsoidal weighting matrix Q−1 and the state feedback
matrix Y Q−1 on the state x0.

Corollary 1 For a nominal and unconstrained system,
the ellipsoid weighting matrix Q−1 and the feedback ma-
trix Y Q−1 obtained by applying Theorem 1 (a) without
(11) and (12) to an arbitrary state x0 are 1

xT
0 Pare x0

Pare

and −(R+BT PareB)−1BT PareA respectively, where Pare

is the solution of the Algebraic Riccati Equation Pare −
AT PareA + AT PareB(R + BT PB)−1BT PareA−Q1 = 0.

Corollary 2 For an uncertain and unconstrained sys-
tem (1), the ellipsoid weighting matrix Q−1 and the
feedback matrix Y Q−1 obtained by applying Theorem
1 (a) without (11) and (12) to an arbitrary state x0

are 1
xT
0 P x0

P and F , where P and F are constant
along an arbitrary one-dimensional subspace S ={x ∈
Rnx |αx0, α ∈ R} of the state space Rnx .

Proof. Along the one-dimensional subspace S, let
γopt, Qopt and Yopt be the minimizers at x0. It is easy to
verify that α2γopt, α2Qopt and α2Yopt is the minimizers
at αx0. Therefore, at αx0, F = α2Yopt

1
α2 Q−1

opt = Fopt

and P = α2γopt
1

α2 Q−1
opt = Popt.

Remark 2 From Corollary (1) and (2), we can see that
when we apply Theorem 1 (a) without (11) and (12) to
an arbitrary state x0, for a nominal system, the state
feedback matrix is independent of the state, while for an

uncertain system (1), the state feedback matrix is inde-
pendent of the state along a one dimensional subspace,
but may change according to different orientations of the
one dimensional subspace.

Off-line Robust Constrained MPC

For a constrained system, we know that the nearer the
state is to the origin, the less restrictions on the choice
of the feedback matrix. To provide the state space with
a sense of distance, we define the norm of any vec-
tor within the asymptotically stable invariant ellipsoid
E = {x ∈ Rnx |xT Q−1x ≤ 1} as ‖x‖Q−1 ,

√
xT Q−1x.

The distance between the state and the origin is the
norm of the state. On-line MPC in Theorem 1 has the
advantage of determining the control law based on the
norm of the state (see the derivation of (11) and (12) in
(Kothare et al., 1996)). Off-line we can still achieve this.
When we apply Theorem 1 to a state far from the origin,
the resulting asymptotically stable invariant ellipsoid has
a more restrictive feedback matrix. It is not necessary
to keep this feedback matrix constant while the state is
converging to the origin. We can construct inside the el-
lipsoid another asymptotically stable invariant ellipsoid
based on a state nearer to the origin, which can have a
less restrictive feedback matrix. By adding asymptot-
ically stable invariant ellipsoids one inside another, we
have more freedom to adopt suitable feedback matrices
based on the distance between the state and the origin.

Lemma 2 (Existence) Consider the minimization de-
fined in Theorem 1 (a). If there exists a minimizer
γ, Q, X, Y and Z at x, then, at an arbitrary x̃ satisfy-
ing ‖x̃‖2Q−1 < 1 there exists a minimizer γ̃, Q̃, X̃, Ỹ and
Z̃ for the minimization defined in Theorem 1 (a) with an
additional constraint Q > Q̃.

Proof. Consider the minimization defined in Theorem
1 (a) at x. The minimizer defines an ellipsoid E = {x ∈
Rnx |xT Q−1x ≤ 1}. An arbitrary x̃ satisfying ‖x̃‖2Q−1 < 1
means that the state x̃ is inside E. So ∃α > 1, ‖αx̃‖2Q−1 =
1 and 1

α2 γ, 1
α2 Q, 1

α2 X, 1
α2 Y, 1

α2 Z is a feasible solution
for the minimization defined in Theorem 1 (a) with the
additional constraint Q > 1

α2 Q satisfied.

Algorithm 1 (Off-line robust constrained MPC) Off-
line, given an initial feasible state x1, generate a sequence
of minimizers γi, Qi, Xi, Yi and Zi (i = 1, ...N) as fol-
lows.

1. compute the minimizer γi, Qi, Xi, Yi and Zi at xi by
using Theorem 1 with an additional constraint Qi−1 >
Qi (ignored at i = 1), store Q−1

i and Fi(= YiQ
−1
i ) in a

look-up table;
2. if i < N , choose a state xi+1 satisfying

‖xi+1‖2Q−1
i

< 1. Go to 1.
On-line, given a dynamical system (1) and an initial

state x(0) satisfying ‖x(0)‖2Q−1
1
≤ 1, let the state be x(k)
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at time k. Perform a bisection search over Q−1
i in the

lookup table until a Q−1
i is found satisfying ‖x(k)‖2Q−1

i
≤

1 and ‖x(k)‖2Q−1
i+1

> 1 (i = 1, ..., N−1), or ‖x(k)‖2Q−1
i
≤ 1

(i = N). Apply the control law u(k) = Fix(k).

Theorem 2 Given a dynamical system (1) and an ini-
tial state x(0) satisfying ‖x(0)‖2Q−1

1
≤ 1, the off-line ro-

bust constrained MPC algorithm 1 robustly asymptoti-
cally stabilizes the closed-loop system.

Proof. For the minimization at xi, i = 2, ..., N, the ad-
ditional constraint Qi−1 > Qi is equivalent to Qi−1

−1 <
Q−1

i . This implies that the constructed asymptotically
stable invariant ellipsoid Ei= {x ∈ Rnx |xT Q−1

i x ≤ 1}
is inside Ei−1, i.e., Ei ⊂ Ei−1. So for a fixed x, ‖x‖2Q−1

i

is monotonic with respect to the index i, which ensures
the on-line bisection search over the lookup table finds a
unique Q−1

i .
Given a dynamical system (1) and an initial state x(0)

satisfying ‖x(0)‖2Q−1
1

≤ 1, the closed–loop system be-
comes

x(k+1) =


(A(k) + B(k)Fi)x(k)

‖x(k)‖2Q−1
i
≤ 1

∩ ‖x(k)‖2Q−1
i+1

> 1
(i = 1, ..., N − 1)

(A(k) + B(k)FN ) x(k) ‖x(k)‖2Q−1
N
≤ 1

When x(k) satisfies ‖x(k)‖2Q−1
i
≤ 1 and ‖x(k)‖2Q−1

i+1
> 1,

i = 1, ..., N − 1, the control law u(k) = Fix(k) corre-
sponding to the ellipsoid Ei is guaranteed to keep the
state within Ei and converge it into the ellipsoid Ei+1,
and so on. Lastly, the smallest ellipsoid EN is guaran-
teed to keep the state within EN and converge it to the
origin.

Remark 3 Algorithm 1 is a general approach to con-
struct a Lyapunov function for uncertain and constrained
systems. The Lyapunov function is

V (x) =


xT Q−1

i x
‖x(k)‖2Q−1

i
≤ 1 ∩ ‖x(k)‖2Q−1

i+1
> 1

(i = 1, ..., N − 1)

xT Q−1
N x ‖x(k)‖2Q−1

N
≤ 1

Note that this Lyapunov function is not continuous on
the boundary of ellipsoids. Due to the special charac-
teristics of the robust asymptotically stable invariant el-
lipsoid, it is enough to have V (x) be monotonically de-
creasing within the smallest ellipsoid and within each
ring region between two adjacent ellipsoids to stabilize
the closed-loop system.

From algorithm 1, we can see that the choice of the
state xi+1 satisfying ‖xi+1‖2Q−1

i
< 1 is arbitrary. From

the point of view of easy implementation, we provide
the following suggestions. We can choose an arbitrary
one dimensional subspace S ={x ∈ Rnx |αx0, α ∈ R},
and discretize it and construct a set of discrete points,
Sd={x ∈ Rnx |αix

max, 1 ≥ α1 > ... > αN > 0}. Be-
cause the asymptotically stable invariant ellipsoid con-
structed for each discrete point actually passes through
that point, ‖αi+1x

max‖2Q−1
i

< ‖αix
max‖2Q−1

i
= 1 is sat-

isfied. And in order to obtain a look-up table that can
cover a very large portion of the state space with a lim-
ited number of discrete points, we suggest a discretiza-
tion of the one dimensional subspace using a logarithmic
scale.

Complexity Analysis

The on-line computation mainly comes from the bi-
section search in a lookup table. Because a sequence
of N stored Q−1

i (N generally less than 20) requires
log2 N searches and the matrix-vector multiplication in
one search has quadratic growth O(n2

s) in the number
of flops with ns the number of state variables, the to-
tal number of flops required to calculate an input move
is O(n2

s log2 N). On the other hand, the fastest interior
point algorithms are cubic growth in the number of flops
as a function of problem size, which is O((n2

s

2 + nsnc)3)
for the robust algorithm in Theorem 1 (a) with nc the
number of manipulated variables. So we can conclude
that this off-line approach can substantially reduce the
on-line computation.

Example

Consider the linearized model derived for a single, non-
isothermal CSTR (Marlin, 1995), which is discretized us-
ing a sampling time of 0.15 min and given in terms of
perturbation variables as follows:

x(k + 1) =

[
0.85− 0.1α(k) −0.001α(k)

α(k)β(k) 0.05 + 0.01α(k)β(k)

]
x(k)

+

[
0.15 0
0 −0.9

]
u(k)

y(k) = x(k)

where x is a vector of the reactor concentration and tem-
perature, and u is a vector of the feed concentration
and the coolant flow, 1 ≤ α(k) = k0/109 ≤ 10 and
1 ≤ β(k) = −∆Hrxn/107 ≤ 10. The polytopic uncer-
tain set has four vertices. The robust performance ob-
jective function is defined as (3) subject to |u1(k + i|k)|
≤ 0.5 kmole/m3 and |u2(k + i|k)| ≤ 1m3/min, i ≥ 0,
with Q1 = [ 1 0

0 1 ] and R = 0.2. We choose the x1 axis
as the one dimensional subspace, and discretize it in ten
points. Figure 1 shows the ellipsoids defined by Q−1

i for
all ten discrete points.

Given an initially perturbed state x(0) = [ 0.1
2 ] , Fig-

ure 2 shows the closed-loop responses of the system cor-
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Figure 1: The ellipsoids defined by Q−1
i for all ten
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Figure 2: Closed-loop responses: solid lines, on-line
MPC algorithm in Theorem 1; dashed lines with (+),
off-line MPC in Algorithm 1.

responding to α(k) ≡ 1.1 and β(k) ≡ 1.1. The off-line
approach gives nearly the same performance as the on-
line robust constrained MPC algorithm (Kothare et al.,
1996). The average time for the off-line MPC to get a
feedback gain is 6.6 × 10−4 sec, while the average time
required for the on-line MPC is 0.6 sec. The calculation
of this off-line approach is 900 times faster than that
required for on-line MPC.

Conclusions

In this paper, based on the concept of asymptotically
stable invariant ellipsoid and by using LMIs, we devel-
oped an off-line robust constrained MPC algorithm with
guaranteed robust stability of the closed-loop system and
substantial reduction of on-line MPC computation.

References

Bemporad, A., M. Morari, V. Dua, and E. N. Pistikopoulos, The
explicit linear quadratic regulator for constrained systems, Tech-
nical Report AUT 99-16, Automatic Control Laboratory, Swiss
Federal Institute of Technology (ETH), Zürich (1999).
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