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Abstract
Experience with infinite-horizon state-space model predictive control confirms that the algorithm offers several advantages
over the more conventional finite-horizon step-response based model predictive control algorithms, particularly in the
specification of sample time and handling a wide range of process time constants. Examples illustrate our use of state
space based model predictive control and its integration with conventional control techniques.
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Introduction

The Advanced Controls Technology Group at Eastman
Chemical Company has nine years of experience apply-
ing predictive control on industrial processes. The first
five of those years, we applied our own variation of Dy-
namic Matrix Control (DMC). Our DMC is similar to the
conventional finite-horizon, step-response-model based
predictive control technology commonly applied in the
chemical process industries (Cutler and Ramaker, 1980;
Richalet et al., 1978). Four years ago, we began applying
infinite-horizon state-space model predictive control, de-
noted here as MPC. We now have 35 installations of this
technology. The state space formulation offers several
advantages over the convolution model approach. As a
result, all of our new applications use MPC. The DMC
applications are still in service and, so far, we have not
converted any of them to MPC. While the MPC algo-
rithm offers several advantages, it still has some features
which make it challenging to implement. In this paper,
we briefly describe the strengths and weaknesses we have
found in our experience with the MPC algorithm. We
also discuss control strategy design with MPC and give
two example problems.

MPC Implementation

The state-space predictive controller implemented at
Eastman follows that documented by Muske and Rawl-
ings (1993). Our implementation uses a fixed gain
Kalman filter for the observer and a quadratic program
formulation to determine the steady state targets. The
regulator portion of the algorithm uses input parame-
terization as described by Muske (1995). This technique
assumes that the inputs follow a u = −Kx path from the
end of the move horizon onward. The feasibility of out-
put constraints is achieved by softening the constraints as
presented by Ricker et al. (1988) and Zheng and Morari
(1995). Although there can be significant performance
limitations with this approach for non-minimum phase
systems as discussed by Scokaert and Rawlings (1999),
we have not observed the problems they discuss. The
steady-state and dynamic optimization problems result-

ing from the state-space control algorithm are solved
using a quadratic programming algorithm described by
Powell (1985) and Schmid and Biegler (1994).

Strengths and Weaknesses of State-Space
MPC

Process Dynamics

One of the strengths of state-space MPC is the rela-
tive independence of controller sample time and process
time constants. Because the algorithm does not use a
step-response model, the sample time can be very small
relative to the process time constants. Also, the range
of process time constants can be very wide. This ca-
pability is important when the MPC strategy includes
variables that can respond quickly, such as distillation
column differential pressure, and variables that can re-
spond much more slowly, such as column product com-
position. The variables that respond quickly require a
short sample time. The ability to have small sample
times relative to process time constants makes state-
space MPC applicable on a broader range of problems
and provides more flexibility in its implementation, com-
pared to step-response based algorithms. Additionally,
the sample time is much easier to select with state-space
MPC, because of the independence from the process time
constants.

Dead time can still present a problem for state-space
MPC. Because every sample time of dead time creates
an additional state, small sample times relative to the
dead time lead to a large number of states. While we
have not encountered any implementation problems as-
sociated with the number of dead time states, our expe-
rience in this area is limited. So far, our largest number
of dead time states for a single input/output pair has
been 11.

Tuning

The state-space MPC algorithm has three major parts:
the state observer, the steady-state target calculation,
and the dynamic regulator. The calculations for each of
these parts are performed each control interval. Each
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of these parts must be tuned for the specific application.
The final steady-state is affected only by the steady-state
tuning. The dynamic performance of the controller is
affected by the tuning of both the state observer and the
regulator.

The separation of the steady-state performance and
the dynamic performance within state-space MPC is a
good feature. The steady-state weighting/tuning param-
eters have proven relatively easy to set to achieve the de-
sired final steady-state. However, the dynamic weight-
ing/tuning parameters in both the state observer and the
regulator are more difficult to set to achieve the desired
dynamic response. Further, the dynamic response can
be adjusted by changing parameters in either the state
observer or in the dynamic regulator. The best method
for dynamic tuning is not fully clear.

State-space MPC offers the option of modeling distur-
bances on either the process input or output. Our algo-
rithm includes both options. We have experimented with
each option on some applications, but the best choice for
that decision is seldom clear. We normally assume un-
measured disturbances enter at the process input unless
process understanding dictates otherwise. Our applica-
tions have not required the identification of disturbance
models other than the common step disturbance. In a
proportional-integral controller sense, we view the reg-
ulator as providing the proportional part and the ob-
server providing the integral mode. Unmeasured distur-
bances are picked up by the observer via the disturbance
model and require reset action. Tuning of the distur-
bance model has become similar to tuning resets on con-
ventional controllers.

State-space MPC has many tuning parameters. They
require adjustment based on observed performance. For
most problems, our experience has been that MPC tun-
ing needs to be done off-line with a simulation.

Control Strategy Design

While the previous section discussed aspects of the state-
space MPC algorithm itself, we have found that the con-
trol strategy design with MPC has a far bigger impact on
the success of a project than the performance of the MPC
algorithm itself. By control strategy design, we mean
definition of the control objectives, selection of control
technology (MPC or traditional SISO structures), and
the selection of controlled, manipulated, and constraint
variables for MPC.

To illustrate our use of MPC, two examples are given
below. A common control problem at Eastman is the dis-
tribution of load between parallel unit operations. The
ability to handle non-square systems makes model pre-
dictive controllers an attractive control technology for
this problem. In the first example, the capability to char-
acterize the process control objective and to prioritize
competing objectives is illustrated along with the capa-
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Figure 1: Distilation columns in parallel.

bility to specify widely different closed-loop time con-
stants within the same controller. In the second exam-
ple, the capability to cascade multiple MPC layers and
to integrate MPC with conventional control is shown to
further enhance the strength of this technology.

Example 1—Distillation Columns in Parallel

Figure 1 shows four distillation columns in parallel ser-
vice. The columns already have an excellent regulatory
SISO strategy in place to control top and bottom com-
positions. The control problem is to distribute the total
throughput subject to the hydraulic limits of the columns
as indicated by their maximum differential pressures.
Therefore, this problem has one controlled variable (total
throughput), four manipulated variables (column feed
rate set points), and four constraint variables (column
differential pressures).

The control strategy objectives are summarized below
in order of priority with the first item being the most
important.
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Objective Speed

1. Satisfy manipulated variable
constraints (hard
constraints).

Instantaneous

2. Satisfy differential pressure
constraints (soft constraints).

Fast

3. Satisfy total throughput
target or maximize total
throughput subject to
constraints.

Slow

4. Distribute feed so all columns
are equally loaded as
measured by the distance
from their differential
pressure constraints.

Very slow

The specification of the control objectives is a ma-
jor step in an advanced control application and typically
goes through several iterations. Often, the best way to
operate the equipment is discovered through experimen-
tation with different objectives. In this case, the objec-
tives are given above and the next step is to decide on the
control technology and configuration required to meet
the objectives. There are several possibilities including
an exclusively SISO strategy, an exclusively MPC strat-
egy, or a hybrid. The best choice depends not only on
which technology will best meet the objectives, but also
on several other factors: the size of the MPC problem
(number of controlled and manipulated variables), main-
tenance of the algorithm, maintenance schedules for the
physical units, reliability of the measurement and com-
munication links, and understandablity.

For this particular application, we chose to use MPC,
but with four additional controlled variables. In order to
distribute the feed so all columns are an equal distance
from their differential pressure constraints, we included
for each column the difference between the high differen-
tial pressure limit and the current differential pressure.
Those four controlled variables have a set point of zero.
With a high steady-state weight in state-space MPC,
we specify that the total throughput should be at set
point. The four “constraint distance” controlled vari-
ables have a low steady-state weight. Since there are
five controlled variables and four manipulated variables,
all the set points cannot be reached. The total through-
put goes to its set point and state-space MPC distributes
the set point error equally for the four constraint distance
variables.

The four column differential pressures are still needed
as high constraint variables in MPC for speed of response
reasons. The tuning is such that the distribution of
the feed happens very slowly, but if something happens
which drives a differential pressure to the constraint, the
associated feed rate is moved quickly to compensate.

Figure 2: Total production rate for distillation
columns in parallel.

Figure 3: Differential pressures and feed rates for dis-
tiallation columns in parallel.

Figures 2 and 3 demonstrate the response for a pro-
duction rate target increase beyond what is achievable.
Figure 2 shows that prior to the change, the total rate
is at target. After the target change, the total flow does
not reach the target, but is maximized subject to the
constraints. Figure 3 shows the column differential pres-
sures all at approximately the same distance from the
high limit prior to the target change. After the target
change, the differential pressures are running at the high
limits. Also, note that prior to the target change, the
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Figure 4: Cracking furnace.

column feed rates move relatively slowly. However, the
column feed rates move more aggressively after the target
change when the columns are running on their differen-
tial pressure constraints.

Example 2—Cracking Furnaces in Parallel

A process gas is cracked in a natural gas fired furnace.
Figure 4 shows a process diagram of a furnace. The pro-
cess gas flows through four separate coils in the furnace.
Each coil has its own inlet feed flow controller, inlet pres-
sure measurement (downstream of the feed valve), and
outlet temperature measurement. The combustion air
flow is ratioed to the natural gas flow. There are 5 ma-
nipulated variables for controlling the furnace: each of
the 4 inlet feed flow controller set points and the fuel
flow controller set point.

The furnace production rate (sum of all 4 coil flows)
is set by product demand (sometimes to be maximized).
Coil outlet temperature is indicative of conversion and
needs to be controlled on each coil. Coil inlet pressure
can float but must not exceed a high limit because exces-
sive coil inlet pressure causes a relief valve to open. The
maximum fuel rate limit is determined by the furnace
emission permit.

Changing a coil flow not only affects its own outlet
temperature, but it also affects the outlet temperatures
of the other 3 coils as well. As a result, most process
changes or disturbances require adjustment to all 5 ma-
nipulated variables. Thus, it is a true multivariable con-
trol problem.

MPC is an excellent control technology for this prob-
lem because it is multivariable and because of the pro-
cess constraints. For this application we used state-space
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Figure 5: Cracking furnaces in parallel.

MPC with 5 controlled variables (total rate and 4 outlet
temperatures), 5 manipulated variables (fuel flow and 4
inlet feeds), and 4 constraint variables (4 coil inlet pres-
sures).

In our application, there are 8 of these furnaces in par-
allel supplying a common user. Figure 5 shows a diagram
of the system. The control objectives for this system are
very similar to those for the distillation column system
and are summarized below in order of priority with the
first item being the most important.

Objective Speed

1. Satisfy manipulated variable
constraints (hard
constraints).

Instantaneous

2. Satisfy coil inlet pressure
constraints (soft constraints).

Fast

3. Control coil outlet
temperatures at their target.

Medium

4. If a furnace becomes
constrained or if a furnace is
shut down or started up,
redistribute load to maintain
total rate.

Medium

5. Control the downstream
inventory at target or
maximize throughput subject
to constraints.

Slow

6. Distribute feed so all furnaces
are at equal total rate to
maximize run length.

Very slow

Again, MPC is attractive for this load distribution ap-
plication. However, it is a significantly bigger problem
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Figure 6: MPC control strategy for cracking furnaces
in parallel.

than the distillation example above: 33 controlled vari-
ables (1 level, 32 temperatures), 40 manipulated vari-
ables (32 process feeds, 8 fuel rates), and 32 constraint
variables (32 coil inlet pressures). Because of the size
of the problem, several MPC control strategy options
should be considered. One option is to do this problem
with one big MPC. A second option is to control each
furnace with an MPC and layer a master load distribu-
tion MPC on top of the 8 slave MPCs.

The solution we implemented is a variation of the lat-
ter choice and is shown in Figure 6. We chose this con-
figuration for several reasons:

1. The top MPC layer can easily be turned off and
furnace MPCs operated individually.

2. A PID controller was used for level controller be-
cause it was easier to tune and it met the need.

3. The smaller MPCs are less of a computational load.
4. The system could be built in steps. Successive fur-

nace MPCs could be built and brought on-line with-
out disturbing ones commissioned earlier.

5. The system is easier to maintain. Any
code/configuration maintenance can be done
while a furnace is down without disturbing running
furnaces.

Except for very small problems, such as the distillation
example, we normally choose to layer a master MPC on
top of slave MPCs that manage parallel unit operations.

Conclusions

While state-space MPC offers several advantages over
step response based algorithms, implementation still re-
quires a great deal of expertise simply to use and tune the
algorithm. The control strategy design when incorporat-
ing MPC has a far bigger impact on success of a project

than the performance of the MPC algorithm itself. The
examples illustrated the flexibility of state-space MPC
to achieve a variety of control objectives, both in im-
portance and speed of response. The state-space MPC
technology has become an important tool for Eastman
Chemical Company when solving control problems that
have complex control objectives and widely different time
frames.
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