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Abstract
This paper discusses an algorithm for efficiently calculating the control moves for constrained nonlinear model predictive
control. The approach focuses on real-time optimization strategies that maintain feasibility with respect to the model
and constraints at each iteration, yielding a stable technique suitable for suboptimal model predictive control of nonlinear
process. We present a simulation to illustrate the performance of our method.
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Introduction

Model predictive control (MPC) has become a well-
established tool for advanced control applications, now
one of the most prominent industrial control strategies.
For many applications, linear MPC has proven to be a
sufficient control tool. However, many processes exist
that possess such a high degree of nonlinearity that lin-
earized MPC produces inadequate results. For these pro-
cesses, nonlinear model predictive control (NMPC) has
been proposed. Some of the major challenges of NMPC
are the solution of a global optimization problem in real-
time and the appropriate handling of process constraints.
In this paper, we present a method for real-time applica-
tion of constrained NMPC with the possibility of running
suboptimally, if required by a short sampling time.

Recent Advances in NMPC

In NMPC, stability is guaranteed for the finite hori-
zon problem by applying a terminal constraint. Origi-
nally, the terminal state was required to be at the ori-
gin (Keerthi and Gilbert, 1988; Mayne and Michalska,
1990). The historical trend in the research that followed
had the common theme of relaxing the constraints for
an easier optimization formulation. Termination in a
neighborhood around the origin with a terminal penalty
is becoming a more popular formulation (Michalska and
Mayne, 1993; Parisini and Zoppoli, 1995; Nicolao et al.,
1998; Chen and Allgöwer, 1998a).

Less stringent criteria for stability were developed
by Scokaert et al. (1999) and Chen and Allgöwer
(1998b), who require only a decrease in the cost func-
tion at every time for stability, resulting in a suboptimal
control law. The alternative formulation is that any con-
troller that yields a closed-loop trajectory that ends in
the terminal region is stable.

After the advances in NMPC theory, the next chal-
lenges came from the desire to calculate the control
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moves on-line in real-time. Significant effort has been
made in reducing the computational burden of integrat-
ing the model over time; Bock et al. (1999) have inves-
tigated the use of simultaneous direct multiple shooting
methods in which the solution to an ODE is determined
at all points simultaneously. This method has been
demonstrated to be faster than the traditional method
of integration in series (Nagy et al., 2000).

Significant research also has been performed on the
optimization approach utilized by the regulator. Some
investigators have focused on global optimization, specif-
ically genetic algorithms (Staus et al., 1996; Onnen et al.,
1997; Rauch and Herremoës, 1999). However, this ap-
proach tends to be slow, and thus not implementable in
real-time unless the time constants for the process are
large.

Others have chosen to increase the speed of local op-
timization methods by tailoring them to take advantage
of the specific structure of the MPC formulation. The
approach uses an interior point method to solve a sequen-
tial quadratic programming problem (SQP) that, due to
causal structure of the model, has a banded or almost
block diagonal structure (Rao et al., 1998; Albuquerque
et al., 1999). This method has been successful in easing
the computational burden of optimizing large systems,
and has recently come into favor with researchers.

This article describes the desired qualities of a real-
time NMPC algorithm that can be run suboptimally, if
required. We then discuss the method for achieving the
desired objectives. Finally, we demonstrate our method
on a nonlinear example.

Algorithm Requirements

We employ a typical ordinary differential equation model
throughout this discussion. The process model has the
form

dx

dt
= f(x, u) (1)

that, when integrated, becomes the discrete model

xi+1 = F (xi, ui) = xi +
∫ ti+1

ti

f(x(τ), ui)dτ (2)
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in which i represents the sampling time and a zero-order
hold is assumed for the inputs.

One of the strengths of model predictive control is its
ability to handle constraints in the regulator. The finite
horizon regulator problem we consider is

min
ui

Φ(ui, x0) =
N∑

i=0

L(xi, ui) + h(xN )

subject to: xN ∈ Wα

xi+1 = F (xi, ui)
x ∈ X, u ∈ U

(3)

Here, a terminal penalty is added to approximate the
cost of the infinite horizon problem from the end of the
trajectory in the terminal region. The approximation is
valid because the terminal region is constructed in such a
way that the nonlinear plant is not significantly different
from the linear approximation in that neighborhood of
the steady-state target. The problem is also constrained
in the states and inputs. We assume the existence of a se-
quence of control moves that steers the state to setpoint
asymptotically.

It is not necessary, however, to find the global op-
timum of Equation 3. Instead, asymptotic stability is
guaranteed provided that the trajectory of states termi-
nates in the region Wα (Scokaert et al., 1999). Therefore,
the horizon length N need only be long enough to sat-
isfy this restriction and the cost function does not need
to be minimized for the control technique to reach the
set-point. This concept eases the computation since a
suboptimal set of control moves provides a stable con-
troller. Therefore, the optimizer can stop early if the
sampling time is small, and the process can still be con-
trolled.

Algorithm Description

In the last section, we developed the requirements for
regulating a nonlinear system with finite horizon MPC.
Now, we must address the issue of solving the optimiza-
tion problem according to our requirements. For this op-
timization, a sequential quadratic programming (SQP)
technique is used. We exploit the structure of the prob-
lem to speed up the computation to run in real-time.

First, we present the fundamentals of the SQP
method. Suppose we wish to solve the following problem:

min
w

h(w)

subject to: c(w) = 0
d(w) ≥ 0

(4)

The method reduces the problem in Equation 4 to a
series of quadratic programs. Quadratic programs are
well-studied and quickly solved with available methods,

making SQP methods a suitable choice for nonlinear
problems.

We present two methods for performing the quadratic
programming approximation; the first does not have
quadratic convergence properties, but may be easier to
set up, depending on the structure of h(w). The second
has quadratic convergence properties for points near the
solution, but the set-up may be computationally inten-
sive.

Straightforward Formulation. First, define the
superscript j to represent an iteration of the SQP
method. In this formulation, we approximate h(w) as
a quadratic function around the current iterate wj . We
then compute a linear approximation to the constraints
c(w) and d(w) around wj . Defining p = w−wj , we solve

min
p

1
2
pT∇2h(wj)p +∇h(wj)T p

subject to: ∇c(wj)T p + c(wj) = 0

∇d(wj)T p + d(wj) ≥ 0

(5)

No knowledge of the Lagrange multipliers by the user
is required to form Equation 5. However, no spe-
cial local convergence properties exist for this problem.
It converges, but not quadratically near the solution.
Quadratic convergence is important only when the ini-
tial guess is good enough that the minimizer is known to
be close to the open loop prediction.

Quadratic Convergence Formulation. In order
to obtain quadratic local convergence properties, the La-
grangian is first defined:

L(w, λ) = h(w)− λT [c(w) d(w)] (6)

The Hessian of the Lagrangian with respect to the vari-
ables is denoted by

H(w, λ) = ∇2
wwL(w, λ) (7)

By the first-order KKT conditions, Equation 5 is equiv-
alent to

min
w

1
2
pT H(wj , λj)p +∇h(wj)T p

subject to: ∇c(wj)T p + c(wj) = 0

∇d(wj)T p + d(wj) ≥ 0

(8)

The solution to this problem is equal to a step of
Newton’s method (Nocedal and Wright, 1999), which
is quadratically convergent in the region near the solu-
tion. This method requires an estimate of the Lagrange
multipliers, which may not be estimated well until a few
iterations have been performed. Also, a second order ap-
proximation of the constraints are required, which may
be computationally intensive. We now relate the method
of solution to the nonlinear MPC problem structure.
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Dense Hessian SQP

In this näıve approach, we substitute Equation 2 into
Equation 3 and solve it using an SQP method. We need
first to define wj = uj . The equality constraints c(w)
are eliminated. The function that must be minimized,
h(w), is a complex nonlinear function. To form the
quadratic approximation of h(w), the value of ∇2h(wj)
is required. It can be seen that each xi relies on all the
ui−k, k = 1, 2, . . . , i. In fact, the last term relies on all of
the ui. The implications of this fact are that the Hessian
of h(w) is dense, making it difficult to take advantage of
the specific architecture of the MPC problem in this for-
mulation. To handle the MPC problem more efficiently,
we propose a different approach.

Banded Hessian SQP

The banded Hessian SQP approach for MPC is described
by Rao, Wright, and Rawlings (Rao et al., 1998) for the
case of linear MPC. However, we can naturally extend it
to the nonlinear case with a few modifications.

The key difference in the banded Hessian approach is
not to plug the model equation into the Equation 3. In-
stead, it is left as an explicit equality constraint. Note
that the constraint matrix is highly structured due to
the causality of only the past state and input on the cur-
rent state. In the quadratically convergent method, we
require the Hessian of c(w) as well. The differentiation
could be performed by finite differences, which is slow
and innaccurate, or an approximate Hessian could be
calculated. However, popular Hessian update strategies,
such as the BFGS update, destroy the banded structure
of the Hessian, yielding instead a dense matrix. Until a
more sophisticated update strategy is employed, it may
be more suitable to solve Equation 8 for real-time appli-
cations.

The terminal region may be calculated offline (Tenny,
2000). However, we exclude the terminal region con-
straint in the quadratic program. This is done for a
number of reasons:

1. If the horizon length N is chosen to be too short,
the problem is infeasible.

2. If the horizon length is nominally long enough to
reach the terminal region, the closed-loop solution
may differ appreciably from the open-loop predic-
tion.

3. Ellipsoidal constraints in quadratic programs are
not exact; the constraint would be approximated.

A banded QP solver is then used for the structured
optimization. The method of solution is an interior point
method (Rao et al., 1998) that has been geared for the
MPC structure. The cost of this approach is linear with
respect to horizon length N , compared to cubic growth
for the dense Hessian approach.

A solution to the approximate problem is then cal-
culated. Instead of solving the nonlinear problem, the
solution to the quadratic program points in a direction
of objective function decrease. The next iterate is found
using a trust region constraint.

Feasibility

One of the desired properties of the optimization al-
gorithm is feasibility at all times with respect to the
constraints. State inequalities are handled as soft con-
straints; they may be violated, but a term is added to
the cost function to penalize the violation of such a con-
straint. The integration of the model can be accom-
plished using multiple shooting methods (Bock et al.,
1999). We now describe how we maintain feasibility
with respect to the input constraints and the equality
constraints at all times so that we may terminate the
optimization at any point to run the regulator subopti-
mally.

To guarantee feasibility of the initial guess w0, we gen-
erate each u0

i as follows:

• In the case of small or no disturbances, the result
from the previous open-loop prediction is feasible
and becomes the initial guess for the current regu-
lator problem.

• For startup or large disturbances, u0
i is determined

based on the feedback law u0
i = Kx0

i in which K is
the linear quadratic regulator feedback gain of the
system linearized about the origin. If Mu0

i > m,
we simply take those elements of u0

i that violate the
constraint and clip them such that they meet the
constraint. We maintain an initial guess of a feed-
back law in case large unmeasured disturbances are
present and previous iterates are no longer valid.
Alternatively, a local constrained linear MPC prob-
lem can be solved and one can use its solution as an
initial guess for the regulator problem.

• Each x0
i is generated by substituting u0

i−1, x
0
i−1 into

Equation 2.

We now have a w0 that satisfies the input and equality
constraints.

The linearized system of constraints is formed and a
quadratic program is solved. The state variables x̄ from
the result w̄, are discarded and replaced with the states
resulting from injecting the inputs ū into the nonlinear
model. If the cost function increases, we refine the trust
region or line search method and regenerate the state
predictions via the nonlinear model. However, if the
cost function decreases, the method yields a new iter-
ate w1 that is feasible with respect to both the input
and equality constraints and has a lower cost function.
We now repeat the process using w1 as the new initial
guess. The algorithm repeats this process until the next
sampling time is reached (suboptimal MPC) or until the
iterates converge (‖wj − wj−1‖ ≤ δ).
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Grade

Polymer
production

rate
(kg/min)

MMA Mole
fraction in
copolymer

Copolymer
viscosity

(10−6m3/kg)

A 0.3 0.60 35000
B 0.25 0.75 36725

Table 1: Product grades for MMA-VA copolymeriza-
tion.

Once the iterates converge, the resulting vector wfinal

is the minimizer of the cost function without a terminal
region constraint. Now, the final state in the wfinal vector
is xfinal

N . We check to see if xfinal
N ∈ Wα. If it is, then the

algorithm terminates. If not, then the horizon length N
is not long enough. Therefore, N is increased (Rao et al.,
1998) and the initial guess is the solution wfinal with new
inputs generated by Kxfinal

N , etc. The initial guess is
still feasible, and it takes advantage of the work of the
previous optimization. We ignore the case of degenerate
terminal regions for the purposes of this discussion.

An Example Process

We investigate the process of MMA-VA copolymeriza-
tion as described by Bindlish (1999), which consists of a
well-mixed reactor followed by a product separator. Sev-
eral grades of polymer, characterized by the mole frac-
tion of monomer A (MMA) in the copolymer product
and the intrinsic viscosity of the copolymer product, are
manufactured using this process. Depending on the de-
mands of the market, the desired copolymer viscosity and
composition are varied during operation. The feed to the
reactor consists of the monomers (MMA and VA), initia-
tor (AIBN), transfer agent (acetaldehyde) and inhibitor
(m-dinitrobenzene) dissolved in a solvent (benzene). To
remove heat released by the polymerization reaction, a
coolant is employed. The polymer product is then sepa-
rated from the unreacted hydrocarbons in a downstream
separator. The reactor and separator are represented by
a physical model based on first principles. The model
has 15 states, 3 inputs, and 7 output variables, of which
only three have set-points. The sampling time for this
process is 5 minutes and the prediction horizon is 20
time steps (100 minutes). We wish to switch from prod-
uct grade A to grade B, with output set-points as shown
in Table 1. Figure 1 shows the output variables during
the simulation for both the proposed nonlinear controller
and nominal linear model predictive control based on a
linearization of the nonlinear model at Grade B. In the
case of the linear model predictive controller, the system
becomes unstable. We note that the nonlinear model
predictive controller returns a local optimal solution in
this scenario because the computation time is smaller
than the sampling time for this example.
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Figure 1: Output of transition from Grade A to B.

Conclusion

In this paper, we have devised and demonstrated a proto-
type algorithm for NMPC that can run suboptimally, if
required. The method is capable of stabilizing nonlinear
systems and obtaining optimal performance in real-time.
Future directions for this research include real-time non-
linear state estimation.
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