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Abstract
This paper provides a tutorial introduction to the role of the time-delay or the interactor matrix in multivariate minimum
variance control. Minimum variance control gives the lowest achievable output variance and thus serves as a useful
benchmark for performance assessment. One of the major drawbacks of the multivariate minimum variance benchmark is
the need for a priori knowledge of the multivariate time-delay matrix. A graphical method of multivariate performance
assessment known as the Normalized Multivariate Impulse Response (NMIR), that does not require knowledge of the
interactor, is proposed in this paper. The use of NMIR as a performance assessment tool is illustrated by application
to two multivariate controllers. Two additional performance benchmarks are introduced as alternatives to the minimum
variance benchmark, and their application is illustrated by a simulated example. A detailed performance evaluation of
an industrial MPC controller is presented. The diagnosis steps in identifying the cause of poor performance, e.g. as due
to model-plant mismatch, are illustrated on the same industrial case study.

Keywords
Multivariate minimum variance control, Time delay, Normalized multivariate impulse response, Model predictive control,
Model-plant mismatch

Introduction

The area of performance assessment is concerned with
the analysis of existing controllers. Performance assess-
ment aims at evaluating controller performance from
routine data. The field of controller performance as-
sessment stems from the need for optimal operation of
process units and from the need of getting value from
immense volumes of archived process data. The field
has matured to the point where several commercial al-
gorithms and/or vendor services are available for process
performance auditing or monitoring.

Conventionally the performance estimation procedure
involves comparison of the existing controller with a the-
oretical benchmark such as the minimum variance con-
troller (MVC). Harris (1989) and co-workers (1992; 1993)
laid the theoretical foundations for performance assess-
ment of single loop controllers from routine operating
data. Time series analysis of the output error was used
to determine the minimum variance control for the pro-
cess. A comparison of the output variance term with
the minimum achievable variance reveals how well the
controller is doing currently. Subsequently Huang et al.
(1996; 1997) and Harris et al. (1996) extended this idea
to the multivariate case. In contrast to the minimum
variance benchmark, Kozub and Garcia (1993), Kozub
(1997) and Swanda and Seborg (1999) have proposed
user defined benchmarks based on settling times, rise
times, etc. Their work presents a more practical method
of assessing controller performance. A suitable reference
settling time or rise time for a process can often be cho-
sen based on process knowledge.
∗sirish.shah@ualberta.ca
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The increasing acceptance of the idea of process and
performance monitoring has also grown from the aware-
ness that control software, and therefore the applica-
tions that arise from it, should be treated as capital
assets and thus maintained, monitored and revisited rou-
tinely. Routine monitoring of controller performance en-
sures optimal operation of regulatory control layers and
the higher level advanced process control (APC) appli-
cations. Model predictive control (MPC) is currently
the main vehicle for implementing the higher level APC
layer. The APC algorithms include a class of model
based controllers which compute future control actions
by minimizing a performance objective function over a fi-
nite prediction horizon. This family of controllers is truly
multivariate in nature and has the ability to run the pro-
cess close to its limits. It is for the above reasons that
MPC has been widely accepted by the process indus-
try. Various commercial versions of MPC have become
the norm in industry for processes where interactions
are of foremost importance and constraints have to be
taken into account. Most commercial MPC controllers
also include a linear programming stage that deals with
steady-state optimization and constraint management.
A schematic of a mature and advanced process control
platform is shown in Figure 1. It is important to note
that the bottom regulatory layer consisting mainly of
PID loops forms the typical foundation of such a plat-
form followed by the MPC layer. If the bottom layer
does not perform and is not maintained regularly then
it is futile to implement advanced control. In the same
vein, if the MPC layer does not perform then the benefits
of the higher level optimization layer, that may include
real-time optimization, will not accrue.

The main contribution of this paper is in its general-
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Figure 1: The control hierarchy.

ization of the univariate impulse response (between the
process output and the whitened disturbance variable)
plot to the multivariate case as the ‘Normalized Mul-
tivariate Impulse Response’ plot. A particular form of
this plot, that does not require knowledge of the pro-
cess time-delay matrix, is proposed here. Such a plot
provides a graphical measure of the multivariate con-
troller performance in terms of settling time, decay rates
etc. Simple time and frequency domain measures such
as multivariate autocorrelation and spectral plots are
used to illustrate the interactions arising in multivari-
able control systems. Two relatively new multivariate
performance evaluation ideas are also explored in de-
tail: (1) the use of LQG as a benchmark based on the
knowledge of the open loop process and noise models
for the soft-constrained performance assessment problem
(Huang and Shah, 1999) and (2) the use of the design
performance as a benchmark (Patwardhan, 1999; Pat-
wardhan et al., 2001). Both of these benchmarks can be
applied to any type of controller. The LQG benchmark
applies to all class of linear controllers, irrespective of the
controller objective function, and is of use when input
and/or output variance is of concern. The LQG bench-
mark represents the ‘limits of performance’ for a linear
system, is more general and has the minimum variance
as a special case. However, it needs a model of the linear
process. The design objective function based approach
can be applied to constrained MPC type controllers and
is therefore a practical measure. However, it does not
tell you how close the performance is relative to the low-
est achievable limits. Issues related to the diagnosis of
poor performance are discussed in the context of MPC
controllers. Performance assessment of the general MPC
is as yet an unresolved issue and presents a challenging
research problem. A constrained MPC type controller
is essentially a nonlinear controller, especially when op-
erating at the constraints. Conventional MVC or lin-
ear controller benchmarking is infeasible and alternative

techniques have to be developed. The development of
new MPC performance monitoring tools thus represents
an area of future challenges. The challenges associated
with MPC performance evaluation are illustrated by con-
sidering an industrial case study of a 7 × 6 problem.

This paper is organized as follows. The next section
provides a tutorial introduction to the concept of the
time-delay matrix or the interactor. This is an impor-
tant entity, particularly if one wants to evaluate MPC
performance using multivariate minimum variance as a
benchmark. The following two sections, respectively, dis-
cuss the tools required in the analysis of multivariate
control loops such as the normalized multivariate im-
pulse response, and alternative benchmarks for multi-
variate performance assessment. Applications are used
to demonstrate the proposed techniques in each section.
A discussion on the challenges in performance analysis
and diagnosis and issues in MPC performance evalua-
tion are outlined in the penultimate section, followed by
a detailed industrial case study of an industrial MPC
evaluation.

The Role of Delays for Univariate and
Multivariate Processes

Time delays play a crucial role in performance assess-
ment particularly when the minimum variance bench-
mark is used. The concept of the multivariate delay is
explained below in a tutorial manner by first defining the
univariate delay term and then generalizing this notion
to the multivariate case.

Definition of a Delay Term for a Univariate Pro-
cess:

The time-delay element in a univariate case is character-
ized by several different properties. For example, it rep-
resents the order of the first, non-zero (or non-singular)
impulse response coefficient (also characterized by the
number of infinite zeros of the numerator portion of the
transfer function). It is important to fully understand
the definition of a delay term for the univariate case in
order to generalize the notion to a multivariate system.
From a system theoretic point, the delay for a univariate
system is characterized by the properties listed below.
Consider a plant with the discrete transfer function or
an impulse response model given by:

G(q−1) =
q−dB(q−1)

A(q−1)

= 0q−1 + 0q−1 + · · · + 0q−d+1

+ hdq
−d + hd+1q

−d−1 + hd+2q
−d−2

+ · · ·

The delay term for such a univariate system is defined
by:
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• the minimum integer r such that

lim
q−1→0

qr

(
q−dB(q−1)

A(q−1)

)
= k 6= 0

(i.e. a non-singular coefficient) which in the case
considered above, for r = d gives:

lim
q−1→0

qr

(
q−dB(q−1)

A(q−1)

)
= hd 6= 0

Note that for the univariate case, the number of
infinite zeros of the process as obtained by setting
the numerator of the process transfer function to
zero, i.e. q−dB(q−1) = 0, also yields d infinite zeros
and n finite zeros given by the roots of B(q−1) = 0.

• the static or steady-state value of the delay term
should be equal to 1, i.e. at steady-state (when
q−1 = 1), q−d = 1.

Definition of a Delay Matrix for a Multivariate
Process:

Analogous to the univariate case, it is possible to factor-
ize the open-loop transfer matrix into two elements: the
delay matrix, D(q−1)−1 containing all the infinite zeros
of the system, and the ‘delay-free’ transfer-function ma-
trix, T ∗(q−1), containing all the finite zeros and poles.

T (q−1) = D(q−1)−1 · T ∗(q−1)

= H1q
−1 + H2q

−2 + · · ·
+ Hdq

−d + Hd+1q
−d−1 + · · ·

where Hi are the impulse response or Markov matrices
of the system parallel to the definition of the univariate
delay, the multivariate delay matrix is defined by:

• Fewest number of linear combinations of the impulse
response matrices that give a nonsingular matrix,
i.e. (a finite and nonsingular matrix)

lim
q−1→0

D(q−1)(D(q−1)−1 · T ∗(q−1)) = K

(a finite and nonsingular matrix)

Unlike the univariate case, a nonzero Hi may not
necessarily indicate the delay order. Instead, for the
multivariate case, it is the fewest linear combination
of such non-zero Hi to give a non-singluar K that
defines the delay matrix, D(q−1)−1. Applying this
idea to the univariate case will reveal that K = hd,
which is the first or leading non-zero coefficient of
the impulse response or the Markov parameter of
the scalar system. Such an interpretation makes the
choice of D(q−1)−1, as a multivariate generalization
of the univariate delay term, a very meaningful one.
Note that det(D(q)) = cqm, where m is the number
of infinite zeros of the system and c is a constant.

For the multivariate case the number of infinite zeros
may not be related to the order d of the time-delay
matrix.

• DT (q−1)D(q) = I (As compared to the univariate
case where q−dq = 1). This is known as the uni-
tary interactor matrix. This unitary property pre-
serves the spectrum of the signal, which leads us
to the result that the variance of the actual out-
put and the interactor filtered outputs are the same,
i.e. E(Y T

t Yt) = E(Ỹ T
t Ỹt), where Ỹt = q−dDYt (see

Huang and Shah, 1999).

Example. Consider the following transfer function
matrix and its impulse response or Markov parameter
model:

T (q−1) =


q−2

1 − q−1

q−3

1 − 2q−1

q−2

1 − 3q−1

q−3

1 − 4q−1


=
[

0 0
0 0

]
q−1 +

[
1 0
1 0

]
q−2

+
[

1 1
.33 1

]
q−3 +

[
1 0.5

0.109 0.25

]
q−4

+ · · ·

Note that even though H2 6= 0, a linear combination of
H1 and H2 does not yield a nonsingular matrix. In this
example, at least three impulse response matrices are
required to define the delay matrix for this system. The
delay matrix that satisfies the properties listed above, is
given by:

D(q−1)−1 =
[
−0.707q−2 −0.707q−3

−0.707q−2 0.707q−3

]
The order of the delay is 3, i.e. a linear combination of
at least 3 impulse response matrices is required to have
a non-singular K.

Remark 1. The interactor matrix D(q) can be one
of the three forms as described in the sequel. If D(q) is
of the form: D(q) = qdI, then the process is regarded
as having a simple interactor matrix. If D(q) is a di-
agonal matrix, i.e., D(q) = diag(qd1 , qd2 , . . . , qdn), then
the process is regarded as having a diagonal interactor
matrix. Otherwise the process is considered to have a
general interactor matrix.

To factor the general interactor matrix, one needs to
have a complete knowledge of the process transfer func-
tion or at least the first few Markov matrices of the mul-
tivariate system. This is currently the main drawback in
using this procedure. Huang et al. (1997) have provided
a closed loop identification algorithm to estimate the first
few Markov parameters of the multivariate system and
thus compute the unitary interactor matrix. However,
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this rank determination procedure is prone to errors as
it requires one to check if a linear combination of ma-
trices is of full rank or not. Ko and Edgar (2000) have
also proposed the use of the first few Markov matrices
for multivariate performance assessment based on the
minimum variance benchmark. The factorization of the
diagonal interactor matrix requires only time delays be-
tween each pair of the input and output variables. A
diagonal interactor matrix by no means implies that the
process has a diagonal transfer function matrix or that
the process has no interaction. But the converse is true,
i.e. a diagonal process transfer function matrix or a sys-
tem with weakly interacting multivariate loops (a diago-
nally dominant system) does have a diagonal interactor
matrix. In fact, experience has shown that many ac-
tual multivariable processes have the structure of the di-
agonal interactor, provided the input-output structuring
has been done with proper engineering insight. This fact
greatly simplifies performance assessment of the multi-
variate system.

The Multivariate Minimum Variance
Benchmark

In a univariate system, the first d impulse response coef-
ficients of the closed loop transfer function between the
control error and the white noise disturbance term deter-
mine the minimum variance or the lowest achievable per-
formance. In the same way, the first d impulse response
matrices of the closed loop multivariate system are use-
ful in determining the multivariate minimum variance
benchmark, where d denotes the order of the interactor.

Performance assessment of univariate control loops is
carried out, by comparing the actual output variance
with the minimum achievable variance. The latter term
is estimated by simple time series analysis of routine
closed-loop operating data and knowledge of the pro-
cess time delay. The estimation of the univariate min-
imum variance benchmark requires filtering and corre-
lation analysis. This idea has been extended to mul-
tivariate control loop performance assessment and the
multivariate filtering and correlation (FCOR) analysis
algorithm has been developed as a natural extension of
the univariate case (Huang et al., 1996, 1997; Huang and
Shah, 1999). Harris et al. (1996) have also proposed a
multivariate extension to their univariate performance
assessment algorithm. Their extension requires a spec-
tral factorization routine to compute the delay free part
of the multivariate process and thus estimate the multi-
variate minimum variance or the lowest achievable vari-
ance for the process. The FCOR algortihm of Huang
et al. (1996), on the other hand, is a term for term gen-
eralization of the univariate case to the multivariate case
and also requires the knowledge of the multivariate time-
delay or interactor matrix. Figure 2 summarizes the
steps required in computing the mutivariate performance

index. A quadratic measure of multivariate control loop
performance is defined as:

J = E(Yt − Y sp
t )T (Yt − Y sp

t )

(where Yt represnts an n dimensional output vector).The
lower bound or the quadratic measure of the multivariate
control performance under minimum variance control is
defined as

Jmin = E(Yt − Y sp
t )T (Yt − Y sp

t )|mv

It has been shown by Huang et al. (1997) that the
lower bound of the performance measure Jmincan be es-
timated from routine operating data. In Huang et al.
(1997), the multivariate performance index is defined as

η =
Jmin

J

and is bounded by 0 ≤ η ≤ 1. In practice, one may
also be interested in knowing how each individual out-
put (loop) of the multivariate system performs relative
to multivariate minimum variance control. Performance
indices of each individual output are defined as ηY1

...
ηYn

 =

 min(σ2
y1

)/σ2
y1

...
min(σ2

yn
)/σ2

yn

 = diag(Σ̃mvΣ̃−1
Y )

where Σ̃mv = diag(Σmv) and Σ̃Y = diag(ΣY ); ΣY is the
variance matrix of the output Yt and Σmv = min(ΣY )
is the covariance matrix of the output Yt under multi-
variate minimum variance control. It has been shown by
Huang et al. (1997) that Σmv can also be estimated using
routine operating data, and knowledge of the interactor
matrix.

To summarize, a multivariate performance index is a
single scalar measure of multivariate control loop perfor-
mance relative to multivariate minimum variance con-
trol. Individual output performance indices indicate per-
formance of each output relative to the loop’s perfor-
mance under multivariate minimum variance control. If
a particular output index is smaller than other output
indices, then some of the other loops may have to be
de-tuned in order to improve this poorly tuned loop.

Alternative Methods for Performance
Analysis of Multivariate Control Systems

Autocorrelation Function:

The autocorrelation function (ACF) plots may be used to
analyze individual process variable performance. A typi-
cal example of the ACF plots for the two output variables
of the simulated Wood-Berry (Wood and Berry, 1973)
column control system is shown in Figure 3. A decen-
tralized control system comprising two PI controllers was
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Figure 2: Schematic diagram of the multivariate FCOR algorithm.

used on the Wood-Berry column. The diagonal plots are
autocorrelations of each output variable, while the off-
diagonal plots are cross-correlation plots. The diagonal
plots typically indicate how well each loop is tuned. For
example, a slowly decaying autocorrelation function im-
plies an under-tuned loop, and an oscillatory ACF typi-
cally implies an over-tuned loop. Off-diagonal plots can
be used to trace the source of disturbance or the inter-
action between each process variables. Figure 3 clearly
indicates that the first loop has relatively poor perfor-
mance while the second loop has very fast decay dy-
namics and thus good performance. Interaction between
the two loops can also be observed from the off-diagonal
subplots. Note that the autocorrelation plot of the mul-
tivariate system is not necessarily symmetric.

Spectral Analysis:

Frequency domain plots provide alternative indicators of
control loop performance. They may be used to assess
individual output dynamic behavior, interactions and ef-
fects of disturbances. For example, peaks in the diagonal
plots typically imply oscillation of the variables due to
an over-tuned controller or presence of oscillatory distur-
bances. Frequency domain plots also provide informa-
tion on the frequency ranges over which the oscillations
occur and the amplitude of the oscillations. Like time
domain analysis, off-diagonal plots provide one with in-
formation on the correlation or interaction between the
loops. Figure 4 is the power spectrum and the cross-
power spectrum plot of the simulated Wood-Berry col-
umn. The first diagonal plot indicates that there is a
clear mid-frequency harmonic in the 1st output. This
could be due to an overtuned controller. Off-diagonal
plots show a peak in the cross-spectrum at the same fre-
quency. The poor performance of loop 1 can then be
attributed to significant interaction effects from loop 2
to loop 1. In other words, the satisfactory or good perfor-
mance of loop 2 could be at the expense of transmitting
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Figure 3: Autocorrelation function of multivariate
process.

disturbances or upsets to loop 1 via the interaction term..
The power spectrum plots of a multivariate system are
symmetric.

Normalized Multivariate Impulse Response
(NMIR) Curve as an Alternative Measure of
Performance:

As shown in Figure 2, the evaluation of the multivari-
ate controller performance has to be undertaken on the
interactor filtered output and not on the actual output.
The reason for this is that the interactor filtered output
vector, Ỹt = q−dDYt, is a special linear combination of
the actual output, lagged or otherwise, and this fictitious
output preserves the spectral property of the system and
facilitates simpler analysis of the multivariate minimum
variance benchmark.

This new output ensures, as in the univariate case,
that the closed loop output can be easily factored into
two terms, a controller or feedback-invariant term and
a second term that depends on the controller parame-
ters. In the ensuing discussion, we consider an alter-
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Figure 4: Frequencey response of multivariate pro-
cess.

native graphical measure of multivariate performance as
obtained from the interactor filtered output. So unless
specified otherwise, the reader should assume that the
operations elucidated below are on the interactor filtered
output, Yt.

An impulse response curve represents dynamic rela-
tionship between the whitened disturbance and the pro-
cess output. This curve typically reflects how well the
controller regulates stochastic disturbances. In the uni-
variate case, the first d impulse response coefficients are
feedback controller invariant, where d is the process time-
delay. Therefore, if the loop is under minimum vari-
ance control, the impulse response coefficients should be
zero after d − 1 lags. The Normalized Multivariate Im-
pulse Response (NMIR) curve reflects this idea. The
first d NMIR coefficients are feedback controller invari-
ant, where d is the order of the time-delay matrix or the
interactor. If the loop is under multivariate minimum
variance control, then the NMIR coefficients should de-
cay to zero after d − 1 lags. The sum of squares under
the NMIR curve is equivalent to the trace of the covari-
ance matrix of the data. In fact the NMIR is a graphical
representation of the quadratic measure of the output
variance as given by:

E(Y T
t Yt) = E(Ỹ T

t Ỹt)

= tr(F0ΣaFT
0 ) + tr(F1ΣaFT

1 ) + · · ·

where

Ỹt = F0at + F1at−1 + · · · + Fd−1at−d+1 + Fdat−d + · · ·

is an infinite series impulse response model of the inter-
actor filtered output with respect to the whitened distur-
bance and matrices Fi represent the estimated Markov
matrices of the closed loop multivariate system. In the
new measure, the first NMIR coefficient is given by√

tr(F0ΣaFT
0 ), the second NMIR coefficient is given by

√
tr(F1ΣaFT

1 ), and so on. The multivariate performance
index is then equal to the ratio of the sum of the squares
of the first d NMIR coefficients to the sum of squares of
all NMIR coefficients (see top plot in Figure 5). Care has
to be taken when interpreting the normalized impulse re-
sponse curve. The NMIR represents a compressed scalar
metric for a multi-dimensional system. It is a graphi-
cal representation of the weighted 2-norm multivariate
impulse response matrix and provides a graphical inter-
pretation of the multivariate performance index in much
the same way as the univariate impulse response gives
an indication of the level of damping afforded to a unit
impulse disturbance.

The NMIR as outlined above and first described by
Huang and Shah (1999) requires a priori knowledge of
the interactor matrix. Since this NMIR curve is suitable
for obtaining a graphical measure of the overall closed-
loop response, we suggest an alternative measure that
does not require knowledge of the interactor. We propose
to use a similar normalized multivariate impulse curve
without interactor filtering to serve a similar purpose.
The NMIR without interactor filtering is calculated as
before by computing the correlation coefficients between
the pre-whitened disturbance and the actual output with
lags 0, 1, 2, . . . , d − 1, d, d + 1, . . ..

E(Y T
t Yt) = tr(E0ΣaET

0 ) + tr(E1ΣaET
1 ) + · · ·

where

Yt = E0at + E1at−1 + · · · + Ed−1at−d+1 + Edat−d + · · ·

Note that unlike the original NMIR measure as pro-
posed by Huang and Shah (1999), the new measure pro-
posed here does not require interactor filtering of the
output, i.e. an explicit knowledge of the interactor is
not required in computing the new graphical and quali-
tative measure. From here onwards this new measure is
denoted as NMIRwof .

In the new measure, the first NMIRwof coefficient is
given by

√
tr(E0ΣaET

0 ), the second NMIRwof coefficient
is given by

√
tr(E1ΣaET

1 ), and so on. Note that the
NMIRwof measure (without interactor filtering) is sim-
ilar to NMIR with interactor filtering in the sense that
both represent the closed-loop infinite series impulse re-
sponse model of the output with respect to the whitened
disturbance, one for the actual output and the other one
for the interactor filtered output respectively. The newly
proposed NMIRwof is physically interpretable, but does
not have the property that the first d coefficients are
feedback control-invariant. The main rationale for using
the newly proposed NMIRwof is that the following two
terms are asymptotically equal:

lim
n→∞

{
tr(E0ΣaET

0 ) + tr(E1ΣaET
1 ) + · · · + tr(EnΣaET

n )
}

={
tr(F0ΣaF T

0 ) + tr(F1ΣaF T
1 ) + · · · + tr(FnΣaF T

n )
}
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This follows from the equality: E(Y T
t Yt) = E(Ỹ T

t Ỹt)
(Huang and Shah, 1999). It is then clear that the NMIR
curves with and without filtering will coincide with each
other for n sufficiently large. Alternately, the cumulative
sum of the square of the impulse response coefficients can
also be plotted and as per the above asymptotic equality,
one would expect that the two terms will coincide for a
sufficiently large n. These curves are reproduced here for
the illustrative Wood-Berry column example. The ordi-
nate in the bottom plot in Figure 5 gives the actual out-
put variance when the curves converge for a sufficiently
large n. Note that, unlike the NMIR curve with interac-
tor filtering (solid line in Figure 5), the NMIRwof curve
(dashed line in Figure 5) can not be used to calculate
a numerical value of the performance index. However,
it has the following important properties that are useful
for assessment of multivariate processes:

1. The new NMIRwof represents the normalized im-
pulse response from the white noise to the true out-
put.

2. The new NMIRwof curve reflects the predictability
of the disturbance in the original output. If the
impulse response decays slowly, then this is clear in-
dication of a highly predictable disturbance (e.g. an
integrated white noise type disturbance) and rela-
tively poor control. On the other hand a fast decay-
ing impulse response is a clear graphical indication
of a well-tuned multivariate system (Thornhill et al.,
1999).

3. The new NMIRwof also provides a graphical mea-
sure of the overall multivariate system performance
with information regarding settling time, oscillation,
speed of response etc.

NMIRs with and without interactor filtering are calcu-
lated for the simulated Wood-Berry distillation column
with two multiloop PI controllers. With sampling period
0.5 second, the interactor matrix of the process is found
to have a diagonal structure and is given by

D(q) =
[

q3 0
0 q7

]
Since the order of the interactor is 7 sample units, the
first 7 NMIR coefficients are feedback control invariant
and depend solely on the disturbance dynamics and the
interactor matrix. The sum of squares of these 7 coef-
ficients is the variance achieved under multivariate min-
imum variance control. In fact as shown in Figure 6,
the scalar multivariate measure of performance is equal
to the sum of squares of the first 7 NMIR coefficients
divided by the total sum of squares. Notice that for suf-
ficiently large n or prediction horizon, the two curves,
as expected, coincide with each other. In this simula-
tion example, observe that the NMIR and the NMIRwof

curves decay to zero relatively quickly after 7 sample
units, indicating relatively good control performance.

Industrial MIMO Case study 1: Capacitance
Drum Control Loops at Syncrude Canada Ltd.
Capacitance drum control loops of Plant AB in Syn-
crude Canada Ltd. were analyzed for this study. The
primary objective of Plant AB is to further reduce the
water in the (Plant A) diluted bitumen product prior
to it reaching the next plant (Plant B) storage tanks.
As the grade of the feed entering plant A reduces, the
water required to process the oilsands increases propor-
tionately. A large portion of this excess water ends up
in the Plant A froth feed tank and ultimately increases
the % volume of water in the Plant A product. Aside
from degrading the quality of the product, the increased
volume of water means reduction in the amount of bi-
tumen that can be piped to the diluted bitumen tanks.
In addition, the higher water content means more of the
chloride compound present in the oilsands is dissolved
and finds its way to the diluted bitumen tanks and even-
tually to plant B. The higher chloride concentration in-
creases the corrosion rate of equipment in the Upgrading
units. Plant AB was developed as a means of reducing
the water content, and ultimately, the chlorides sent to
Upgrading. This reduction is achieved by centrifuging
the Plant A Product.

All product from plant A is directed to the Plant AB
feed storage tank. The IPS portion of the product is
routed through 5 Cuno Filters prior to entering the Plant
AB feed storage tank. Feed from the feed storage tank is
then pumped through the feed pumps to the Alfa Laval
centrifuges. The Alfa Laval centrifuges remove water and
a small amount of solids from the feed. Each centrifuge
has its own capacitance drum and product back pressure
valve. This arrangement allows for individual centrifuge
“E-Line” control and a greatly improved product quality.
Heavy phase water from plant A is used as Process Water
in plant AB.

The cap drum pressure controller controls the capaci-
tance drum pressure by adjusting the nitrogen flow into
the drum. The Cap Drum Primary level controller main-
tains the cap drum water level by adjusting water ad-
dition into the drum. Control of these two variables
is essential to maintain the E-Line in the centrifuges.
Currently these two loops are controlled by multiloop
PID controllers. The two process variables, pressure and
level, are highly interacting. The objective of the perfor-
mance assessment is to evaluate the existing multiloop
PID controllers’ performance, and to identify opportuni-
ties, if any, to improve performance by implementing a
multivariate controller

Discussion of Performance Analysis. Process data
with a 5-second sampling interval are shown in Figure 7 .
These are typical (representative) process data encoun-
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tered in this process. By assuming that both pressure
and level loops have no time delay except for the delay
induced by the zero-order-hold device, a scalar multi-
variate performance index was calculated as 0.022 and
individual output indices are shown in Figure 8 . Based
on these indices, one may conclude that controller per-
formance is poor and may be improved significantly by
re-tuning the existing controllers or re-designing a multi-
variate controller. However, since the exact time delays
for these loops are unknown, further analysis of perfor-
mance in both time domain and frequency domain is
necessary. For example, the NMIRwof response shown
in Figure 9 does indicate that the disturbance persists
for about 50 samples before it is compensated by the
feedback controllers. Overall the decay in the NMIRwof

curve is rather slow indicating a predictable disturbance
and generally ineffective regulatory control in dealing
with such disturbances. This is equivalent to a settling
time of 4 minutes for the overall system. To check which
loop causes such long settling time, one can look at the
auto- and cross-correlation plots.

The individual loop behavior can be observed from the
auto and cross correlation plots shown in Figure 10 . It
is observed that the pressure response does not settle
down even after 40 samples. This is clearly unaccept-
able for a pressure loop. In addition some oscillatory re-
sponse is observed in the level response as evident from
the spectrum plot shown in Figure 11. Notice that the
peak (oscillation) appears in both the pressure and level
responses as well as in the cross spectrum plot. This in-
dicates that both loops interact and oscillate at the same
frequency. Thus, this analysis indicates that 1) the exist-
ing multiloop controller has relatively poor performance
primarily due to the long settling time and oscillatory
behavior or presence of oscillatory disturbances; 2) the
two loops are strongly interacting and a multivariate con-
troller may be able to improve performance significantly.

The final recommendation for this system was that
performance of the two loops individually as well as a
multivariate system is relatively poor. For predictable
disturbances, there is insufficient integral action in the
pressure loop resulting in a slowly decaying ACF plot as
noticeable in the top left hand plot in Figure 10 . The
performance is poor mainly due to interaction between
the two loops. Because of the interaction, the multiloop
retuning exercise may be futile. If however only a simple
control solution is desired then the level loop can be de-
tuned and the pressure loop can have larger gains with
smaller integral action to reduce oscillations. If the sys-
tem warrants, then a multivariate control loop could be
designed.

As would be evident from the above discussion and
case study, there remains much to be desired in obtaining
practically meaningful measures of multivariate control
performance. The minimum variance control is a useful
benchmark as it requires little a priori information about
the process. If however, more detailed performance mea-
sures are desired then, as would be expected, more pro-
cess information is needed. For example, it would be de-
sirable to include the control ‘cost’ or effort in the perfor-
mance evaluation of a controller or answers to questions
such as the following may be required: What is the best
available control subject to soft constraints on the con-
troller output variance. Two relatively new benchmarks
are presented next as alternative measures of practical
multivariate controller performance.

LQG Benchmarking

Preliminary results on the LQG benchmark as an alter-
native to the minimum variance benchmark were pro-
posed in Huang and Shah (1999). These results are re-
viewed here and a new benchmark that takes the control
cost into account is proposed. The main advantage of
the minimum variance benchmark is that other than the
time-delay, it requires little process information. On the
other hand if one requires more information on controller
performance such as how much can the output variance
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Figure 7: Pressure and level data with sampling in-
terval 5 seconds.

be reduced without significantly affecting the controller
output variance then one needs more information on the
process. In short it is useful to have a benchmark that
explicitly takes the control cost into account. The LQG
cost function is one such benchmark. This benchmark
does not require that an LQG controller be implemented
for the given process. Rather the benchmark provides
the ‘limit of performance’ for any linear controller in
terms of the input and output variance. As remarked
earlier, it is a general benchmark with the minimum vari-
ance as a special case. The only disadvantage is that the
computation of the performance limit curve as shown in
Figure 12 requires knowledge of the process model. For
MPC type controllers these models may be readily avail-
able. Furthermore the benchmark cannot handle hard
constraints, but it can be used to compare the perfor-
mance of unconstrained and constrained controllers (see
Figure 13).

In general, tighter quality specifications lead to smaller
variations in the process output, but typically require
more control effort. Consequently one may be interested
in knowing how far away the control performance is from
the “best” achievable performance with the same effort,
i.e., in mathematical form the resolution of the following
problem may be of interest:

Given that E(u2) ≤ α, what is the lowest
achievable E(y2)?

The solution is given by a tradeoff curve as shown in
Figure 12. This curve can be obtained by solving the
LQG problem (Kwakernaak and Sivan, 1972), where the
LQG objective function is defined by:

J(λ) = E(y2) + λE(u2)

By varying λ, various optimal solutions of E(y2) and
E(u2) can be calculated. Thus a curve with the optimal
output variance as ordinate, and the incremental manip-
ulative variable variance as the abscissa can be plotted
from these calculations. Boyd and Barratt (1991) have
shown that any linear controller can only operate in the
region above this curve. In this respect this curve de-
fines the limit of performance of all linear controllers, as
applied to a linear time-invariant process, including the
minimum variance control law. If the process is modelled
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as an ARIMAX process then the resulting LQG bench-
mark curve due to the optimal controller will have an
integrator built into it to asymptotically track and reject
step type setpoints and disturbances respectively. Five
optimal controllers may be identified from the tradeoff
curve shown in Figure 12. They are explained as follows:

• Minimum cost control: This is an optimal controller
identified at the left end of the tradeoff curve. The
minimum cost controller is optimal in the sense that
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put.

it offers an offset-free control performance with the
minimum possible control effort. It is worthwhile
pointing out that this controller is different from
the open-loop mode since an integral action is guar-
anteed to exist in this controller.

• Least cost control: This optimal controller offers
the same output error as the current or existing
controller but with the least control effort. So if
the output variance is acceptable but actuator vari-
ance has to be reduced then this represents the low-
est achievable manipulative action variance for the
given output variance.

• Least error control: This optimal controller offers
least output error for the same control effort as the
existing controller. If the input variance is accept-
able but the output variance has to be reduced then
this represents the lowest achievable output variance
for the given input variance.

• Tradeoff controller: This optimal controller can be
identified by drawing the shortest line to the tradeoff
curve from the existing controller; the intersection is
the tradeoff control. Clearly, this tradeoff controller
has performance between the least cost control and
the least error control. It offers a tradeoff between
reductions of the output error and the control effort.

• Minimum error (variance) control: This is an op-
timal controller identified at the right end of the
tradeoff curve. The minimum error controller is op-
timal in the sense that it offers the minimum pos-
sible error. Note that this controller may be dif-
ferent from the traditional minimum variance con-
troller due to the existence of integral action.

The challenges with respect to the LQG benchmark
lie in the estimation of a reasonably accurate process
model. The uncertainty in the estimated model then
has to be ‘mapped’ onto the LQG curve, in which case
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Figure 12: The LQG tradeoff curve with several op-
timal controllers.

it would become a fuzzy trade-off curve. Alternately the
uncertainty region can be mapped into a region around
the current performance of the controller relative to the
LQG curve (see Patwardhan et al., 2000).

An Alternative Method for Multivariate Perfor-
mance Assessment Using the Design Case as a
Benchmark

An alternative approach is to evaluate the controller per-
formance using a criterion commensurate with the actual
design objective(s) of the controller and then compare
the achieved performance. This idea is analogous to the
method of Kammer et al. (1996), which was based on
frequency domain comparison of the achieved and design
objective functions for LQG. For a MPC controller with
a quadratic objective function, the design requirements
are quantified by:

Ĵ(k) =

p∑
i=1

(ysp(k + i|k) − ŷ(k + i|k))T

Γk,i(ysp(k + i|k) − ŷ(k + i|k))

+

M−1∑
i=1

∆u(k + i − 1)T Λ∆u(k + i − 1)

where

ŷ(k+i|k) is the i-step ahead predictor of the outputs
based on the process model
ysp(k + i|k) is the setpoint trajectory
∆u(k + i − 1) are the future moves of the inputs
Γk,i are the output weightings that, in general, can
depend upon the current time and the prediction
horizon

Details of the model predictive control calculations can
be found in any standard references (Garcia et al., 1989;
Mayne et al., 2000; Qin and Badgwell, 1996). Here we re-
strict ourselves to the performance assessment aspects.
The model predictive controller calculates the optimal
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control moves by minimizing this objective function over
the feasible control moves. If we denote the optimal con-
trol moves by ∆u∗(k), the optimal value of the design
objective function is given by

Ĵ∗(k) = Ĵ(∆u∗(k))

The actual output may differ significantly from the
predicted output due to inadequacy of the model struc-
ture, nonlinearities, modeling uncertainty etc. Thus the
achieved objective function is given by:

Ĵ(k) =
p∑

i=1

(ysp(k + i|k) − y(k + i|k))T

Γk,i(ysp(k + i|k) − y(k + i|k))

+
M−1∑
i=1

∆u(k + i − 1)T Λ∆u(k + i − 1)

where y(k) and ∆u(k) denote the measured values of the
outputs and inputs at corresponding sampling instants
appropriately vectorized. The inputs will differ from the
design value in part due to the receding horizon nature
of the MPC control law. The value of the achieved objec-
tive function cannot be known a priori, but only p sam-
pling instants later. A simple measure of performance
can then be obtained by taking a ratio of the design and
the achieved objective functions as:

η(k) =
Ĵ∗(k)
J(k)

This performance index will be equal to one when
the achieved performance meets the design requirements.
The advantage of using the design criterion for the pur-
pose of performance assessment is that it is a measure of
the deviation of the controller performance from the ex-
pected or design performance. Thus a low performance
index truly indicates changes in the process or the pres-
ence of disturbances, resulting in sub-optimal control.
The estimation of such an index does not involve any
time series analysis or identification. The design ob-
jective is calculated by the controller at every instant
and only the measured input and output data is needed
to find the achieved performance. The above perfor-
mance measure represents an instantaneous measure of
performance and can be driven by the unmeasured dis-
turbances. In order to get a better overall picture the
following measure is recommended:

αk =

k∑
i=1

Ĵ∗(i)

k∑
i=1

J(k)

α(k) is the ratio of the average design performance to
the average achieved performance up to the current sam-
pling instant. Thus α(k) = 1 implies that the design
performance is being achieved on an average. α(k) < 1
means that the achieved performance is worse than the
design. This alternative metric of multivariate controller
performance has been applied towards the evaluation of
a QDMC and another MPC controller. Further details
on the evaluation of this algorithm can be found in (Pat-
wardhan, 1999).

The motivation for a lumped performance index is that
the MPC controllers in the dynamic sense, attempt to
minimize a lumped performance objective. The lumped
objective function and subsequently the performance in-
dex, therefore does reflect the true intentions of the con-
troller. The motivation for this idea was to have a per-
formance statistic for MPC that is commensurate with
its constrained and time-varying nature. The idea of
comparing design with achieved performance has been
common place in the area of control relevant identifica-
tion (also known as iterative identification and control,
identification for control)—see the survey by Van den
Hof and Schrama (1995). Performance degradation is
measured as a deviation from design performance and
becomes the motivation for re-design/re-identification.

Simulation Example: A Mixing Process. The
above approach was applied to a simulation example.
The system under consideration is a 2×2 mixing process.
The controlled variables are temperature (y1) and water
level (y2) and the manipulated inputs are inlet hot water
(u1) and inlet cold water (u2) flow rates. The following
model is available in discrete form,

P (z−1) =

 0.025z−1

1 − 0.8607z−1

−0.1602z−1

1 − 0.8607z−1

0.2043z−1

1 − 0.9827z−1

0.2839z−1

1 − 0.9827z−1


A MPC controller was used to control this process in
the presence of unmeasured disturbances. The controller
design parameters were:

p = 10, , m = 2, , λ = diag([1, 4]), Γ = diag([1, 2])

White noise sequences at the input and output with co-
variance equal to 0.1I served as the unmeasured distur-
bances. First the LQG benchmark was found, and the
performance of a constrained and unconstrained MPC
was evaluated against this benchmark (see Figure 13).
Constraints on input moves were artificially imposed in
order to activate the constraints frequently. The uncon-
strained controller showed better performance, compared
to the constrained controller, with respect to the LQG
benchmark.

A plot of the LQG objective function compared to the
achieved objective function is shown in Figure 14. A per-
formance measure of Jlq/Jach = 0.467/0.71 = 0.6579 was
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LQG α(k)
Unconstrained 0.6579 0.8426
Constrained 0.4708 1.00

Table 1: Effect of constraints on MPC performance.

obtained for the unconstrained controller. Performance
assessment of the same controller using the design case
benchmarking approach yields contrasting results (Table
1). For the unconstrained controller a performance in-
dex 0.8426 revealed satisfactory performance while the
imposition of constraints led to a performance index of
1. The constrained controller showed improvement ac-
cording to one benchmark and deterioration with respect
to the LQG benchmark. The design case approach in-
dicates that the controller is doing its best under the
given constraints while the LQG approach which is based
on comparison with an unconstrained controller shows a
degradation in performance.

-0.02
-0.01 0 0.01 0.02
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Figure 15: The input moves for the constrained con-
troller during the regulatory run.

Figure 15 shows the input moves during the regula-
tory run for the constrained controller. The constraints
are active for a large portion of the run and are limiting
the performance of the controller in an absolute sense
(LQG). On the other hand the controller cannot do any
better due to design constraints as indicated by the de-
sign case benchmark.

Challenges in Performance Analysis and
Diagnosis: General Comments and Issues
in MPC Performance Evaluation

A single index or metric by itself may not provide all
the information required to diagnose the cause of poor
performance. Considerable insight can be obtained by
carefully interpreting all the performance indices. For
example, in addition to the minimum variance bench-
mark performance index, one should also look at the
cross-correlation plots, normalized multivariate impulse
response plots, spectrum analysis, etc., to determine
causes of poor performance. As an example, if the pro-
cess data is ‘white’ then the performance index will al-
ways be close to 1 irrespective of how large the variance
is. On the other hand, if the data is highly correlated
(highly predictable), then the performance index will be
low irrespective of how small the output variance is. In
this respect the performance index plus the impulse re-
sponse or the auto-correlation plot would provide a com-
plete picture of the root cause of the problem. (The
auto-correlation plot would have yielded information on
the predictability of the disturbance). In summary then,
each index has its merits and its limitations. Therefore,
one should not just rely on any one specific index. It
would be more appropriate to check all relevant indices
that reflect performance measures from different aspects.

As mentioned earlier, the multivariate extension of
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the minimum variance benchmark requires a knowledge
of the time-delay or the interactor matrix. This re-
quirement of a priori information on the interactor has
been regarded by many as impractical. However, from
our experience this benchmark, when applied with care,
can yield meaningful measures of controller performance.
Yet, many outstanding issues remain open before one
can confidently apply MIMO assessment techniques for a
wide-class of MIMO systems. Some of the issues related
to the evaluation of multivariate controllers are listed
below:

1. To calculate a general interactor matrix, one needs
to have more a priori information than just the time
delays. However, experience has shown us that a
significant number of MIMO processes do have the
diagonal interactor structure. In fact, a properly de-
signed MIMO control structure will most likely have
a diagonal interactor structure (Huang and Shah,
1999). A diagonal interactor depends only on the
time delays between the paired input and output
variables.

2. Since models are available for all MPC based con-
trollers, a priori knowledge of the time delay matrix
is surely not an issue at all.

3. A more important issue in the analysis and diag-
nosis of control loops is the accuracy of the mod-
els and their variability over time. How does the
model uncertainty affect the calculation of perfor-
mance index? This question has not been answered
so far. It is a common problem in both MIMO and
SISO performance assessment. Therefore, one of the
many outstanding issues remaining is the robustness
of performance assessment, i.e. how to transfer the
model uncertainty onto the uncertainty in the cal-
culation of the performance index? This issue has
been addressed to some extent in Patwardhan (1999;
2001), where SISO and MIMO examples, relating
modeling uncertainty to uncertainty in performance
measures, are given.

Industrial MPC is a combination of a dynamic part
and a steady state part, which often comprises a linear
programming (LP) step. The dynamic component con-
sists of unconstrained minimization of a dynamic cost
function, comprising of the predicted tracking errors and
future input moves, familiar to academia. The steady
state part focuses on obtaining economically optimal tar-
gets, which are then sent to the dynamic part for tracking
as illustrated in Figure 16. This combination of the dy-
namic and steady state parts and constraint handling via
the linear programming or the LP step renders the MPC
system as a nonlinear multivariate system. Patward-
han et al. (1998) have illustrated the difficulties caused
by the LP step on an industrial case study involving a
demethanzier MPC (see Figure 17). In that particular
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Figure 16: Schematic of a typical commercial MPC
with a blended linear programming module that sets
targets for the controlled and manipulative variables.

application as in a number of other MPC applications,
when the LP stage is activated fairly routinely, signifi-
cant correlation exists between the LP targets and the
measurements that the LP relies upon. In such instances
when the LP stage is activated at the same frequencies
as the control frequencies, the controller structure is no
longer linear. Situations such as these preclude the use of
conventional performance assessment methods such the
LQ or the minimum variance benchmark. We believe
that the variable structure nature of industrial MPC can
be captured by the objective function method since it
takes into account the time varying nature of the MPC
objective. Patwardhan (1999) has applied this method
successfully on an industrial QDMC application. Even
though one may argue that QDMC is devoid of the LP
step, it is a variable structure MIMO controller that al-
lows different inputs and outputs to swap into active and
inactive states relative to the active constraint set. In
this respect, the lumped objective function and subse-
quently the performance index proposed here does ‘mea-
sure’ the true intentions of the controller relative to the
design case. It thus provides a useful performance met-
ric. The only limitation being that the access to the
actual design control objective has to be available in the
MPC vendor software.

Establishing the root causes of performance degrada-
tion in industrial MPCs is indeed a challenging task. Po-
tential factors include models, inadequately designed LP
in that the LP operates at the control frequencies, in-
appropriate choice of weightings, ill-posed constraints,
steady-state bias updates etc. In practice, these factors
combine in varying degrees to give poor performance.
Thus the issues and challenges related to the diagno-
sis aspects of MPC performance assessment are many.
Some of these issues are listed below and one ‘quan-
tifiable’ diagnosis issue related to model-plant mismatch
is discussed. The diagnosis stage for poor performance
involves a trial and error approach (Kesavan and Lee,
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Figure 17: An example of the interaction between
the steady state optimization and the dynamic layer
in industrial MPC. Note that setpoints have higher
variation compared to controlled variables!

1997). For example, the diagnosis or the decision support
system has to investigate the cause of poor performance
as being due to:

• Poor or incorrect tuning.

• Incorrect controller configuration, e.g. choice of
MVs may not be correct.

• Large disturbances, in which case the sources of
measured disturbances have to be identified and po-
tential feedforward control benefits should be inves-
tigated.

• Engineering redesign , e.g. is it possible to reduce
process time delays?

• Model-plant mismatch in the case of MPC con-
trollers and how does model uncertainity affect the
calculation of the performance index (e.g. if the
index has been obtained from an uncertain interac-
tor).

• Poor choice of constraint variables and constrained
values.

Some of the above referenced issues have been already
dealt with in the literature, e.g. (ANOVA analysis to
investigate the need for feedforward control by Desbor-
ough and Harris (1993), Vishnubhotla et al. (1997), and
Stanfelj et al. (1993); others are open problems. The
diagnosis issues related to the model-plant mismatch is
briefly discussed below in a theoretical framework and
illustrated on an industrial MPC evaluation case study
that follows. A discussion of the poor performance diag-
nosis steps leading to guidelines for tuning and controller
design issues is beyond the scope of this paper.

Model-Plant Mismatch

MPC controllers rely heavily on process models. In par-
ticular an accurate model is required if the process is

Controller Plant

Model

d
ysp

e

-

-

Σ Σ

Σ

Figure 18: Schematic of a closed loop system in
which the prediction error is monitored.

to be regulated very tightly. On the other hand perfor-
mance can be detuned in favour of robustness if an accu-
rate model is not available or should the process change
over a period of time. The extent of MPM can not be
easily discerned by simply examining the closed loop pre-
diction error. As shown in Figure 18, the prediction error
under closed loop conditions is a function of the MPM,
setpoint changes and measured and unmeasured distur-
bances. Thus the cause of large prediction errors may
not necessarily be attributed to a large MPM. Consider
Figure 18, where the prediction error is denoted as e.

Under open loop conditions, the prediction errors is:
e = (P − P̂ )u + d. Under closed loop control the predic-
tion error expression is:

e =

(
(P − P̂ )C
1 + CP

)
ysp +

(
1 + CP̂

1 + CP

)
d

It is clear from the above expression that a large
prediction error signal could be due to a large MPM
term, or a large disturbance term or setpoint changes.
Thus the question of attributing a large prediction er-
ror as being due to model-plant-mismatch needs careful
scrutiny. Huang (2000) has studied the problem of de-
tecting significant model plant mismatch or process pa-
rameter changes in the presence of disturbances.

Industrial MIMO Case study 2: Analysis
of Cracking Furnace Under MPC Control

This section documents the results of the controller per-
formance analysis carried out on an ethane cracking fur-
nace. The control systems comprises of (1) a regulatory
layer and (2) an advanced MPC control layer. The first
pass of performance assessment revealed some poorly
performing loops. Further analysis revealed that these
loops were in fact well tuned but were being affected by
high frequency disturbances and setpoint changes. The
furnace MPC application considered here, however, is
unlike conventional MPC applications. The steady state
limits were set in such a way that the setpoints for the
controlled variables were held constant, i.e. the focus of
the evaluation was on the models and the tuning of the
dynamic part.

The MPC layer displays satisfactory performance lev-
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els when there are no rate changes. During rate changes,
the MPC model over predicts thus causing poor perfor-
mance. Re-identification of the model gains was found
to be necessary to improve MPC performance.

Control Strategy Overview

The purpose of the Furnace MPC controllers is to main-
tain smooth operation, maximize throughput and mini-
mize energy consumption to the furnaces while simulta-
neously honoring all constraints. There is one MPC con-
troller per furnace. The conversions, the total dry feed,
the wet feed bias, the steam/feed ratio and the oxygen to
fuel ratio is controlled by MPC. These variables are ma-
nipulated by moving the north and south fuel gas duty
setpoints, the north and south wet feed flow setpoints,
the steam pressure setpoint, the fan speed controller set-
point and the induced fan draft. Thus there are 6 pri-
mary controlled variables and 7 manipulated variables.
There are a number of secondary controlled variables,
which MPC is required to maintain within a constraint
region. These secondary CVs include valve constraints,
constraints on critical variables such as the coil average
temperatures (COTS). Considering the degrees of free-
dom (MVs) available, it may not always be possible to
satisfy all the constraints. In such cases, a ranking mech-
anism decides what constraints are least important and
could be let go.

A critical component of the MPC controllers is the
model describing the relationships between the MVs and
the CVs—primary as well as secondary. These mod-
els are developed on the basis of open loop tests. Step
response curves are used to parameterize the models.
These models are used by MPC to predict the future
process response. A portion of the step response model
matrix is shown in Figure 19.

Performance analysis of the furnace control loops was
conducted in two stages. Phase one loop analysis was
performed on the lower regulatory layer. With the ex-
ception of a few loops, the first pass of performance
assessment revealed satisfactory performance of most
loops. The higher level MPC performance assessment
commenced next.

Multivariable Performance Assessment for MPC. Ta-
ble 2 summarizes the performance statistics. A diagonal
interactor was used, based on the knowledge of the pro-
cess models.

The performance metrics indicated satisfactory perfor-
mance on all the variables except for tags 4 and 6. The
closed loop settling time is approximately the same as
the open loop settling time, which indicates a conserva-
tively tuned application. Part of the reason for the slow
response in control of tags 4 and 6 could be the presence
of a measurement delay. During January 2000, the ser-
vice factor for MPC was low due to some communication
issues, which have been since resolved. This meant that
there was an opportunity to compare the furnace per-

Description PI

Closed-
Loop

Settling
Time (min) Status

Tag 1 0.95 8
Tag 2 0.94 1
Tag 3 0.76 15
Tag 4 0.44 15 LOW
Tag 5 0.71 15
Tag 6 0.49 15 LOW
Tag 7 0.88 10
Multivariable PI 0.71

Table 2: Summary of MPC performance.

formance with and without MPC. Based on data from
Jan 14-16 when MPC was shut off for part of the time,
performance metrics were obtained to compare the two
control systems—MPC and conventional PID controls.
The statistics indicate that the overall control is only
slightly better with MPC turned on.

MPC Diagnostics

Is MPC doing its best? Can we improve the current
performance levels of the furnace MPC controller? These
questions lead us to two issues that are closely related to
each other:

1. How good are the models used for predicting the
process response?

2. How well tuned is the multivariable controller?
“Tuning” includes a whole range of different of
parameters—weightings, horizons, constraints,
rankings . . .

We will try to illustrate a case where the model pre-
dictions can mislead the controller and hence cause poor
performance. This Furnace was showing poor MPC per-
formance, especially during rate changes. This moti-
vated us to look more closely at the model prediction
accuracy.

Before evaluating the current predictions, we establish
a baseline when the open loop tests were conducted. Fig-
ures 21–23 compare the conversion predictions for the
open loop case as conducted before commissioning the
MPC. The model accuracy is reasonable. The average
prediction error, for this data set was 3.18.

Average
Prediction

Error
=

1
N

N∑
k=1

Ny∑
i=1

{yi(k + 1) − ŷi(k + 1|k)}2

The predictions for other variables—COTs, Feed Flow
and Bias, S/F ratio also fared well. The remaining vari-
ables are not shown for the sake of brevity.
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Figure 19: A portion of the step response models used by MPC.

The model accuracy can then be compared with the
current predictions. There were two rate changes during
this period, due to furnace decokes.

An average prediction error of 175.7 was observed dur-
ing this period. The tags 3 to 6 predictions were much
worse than the rest. Taking a closer look at the tags 3-6
predictions revealed that the models were over predicting
by a factor of 2. Based on a combination of statistical
analysis and process knowledge it was decided that the
model gains were incorrect.

Improving MPC Performance

The main stumbling block to improving MPC perfor-
mance was its model accuracy. The models causing the
large mismatch were identified. One of the reasons for
the model plant mismatch is the fact that open loop tests
were carried out in a operating region which is quite
different from the current operating conditions (higher
rates, conversions, duties). Fairly routine plant test,
were used to identify the suspected changes in steady
state gains. These tests were conducted under closed

0

0.2

0.4

0.6

0.8

1

1.2

Tag 1 Tag 2 Tag 3
.

Tag 4 Tag 5 Tag 6 Tag 7

MPC ON

MPC OFF

Figure 20: Comparison of performance, with and
without MPC.

loop conditions and the gain mismatch has now been
fixed with satisfactory MPC performance. The newly
identified gains were indeed found to be significantly dif-
ferent from the earlier gains.

To illustrate the effect of the MPM on cracking effi-
ciency, conversion control on the 3 furnaces was com-
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Figure 21: The predictions (green) and the North
conversion measurements (blue) are shown in the top
graph. The bottom graph shows the changes in fuel
duty during this period.

Figure 22: The scaled conversion predictions for Feb
11-15.

pared and is shown in Figure 24. Furnace 3 with the
older models takes almost 45 minutes more to settle out,
compared to furnaces 1 and 2, which have the updated
models. The overshoot for Furnace 3 is 2.5%, as opposed
to 1.5% on Furnace 1 and 2 (a significant 40% decrease).
Thus the performance and subsequent diagnosis analysis
of this MPC application illustrates the value in routine
monitoring and maintenance of MPC applications.

Concluding Remarks

In summary, industrial control systems are designed and
implemented or upgraded with a particular objective in
mind. We hope that the new controller loop performance
assessment methodology proposed in the literature and
illustrated here, will eventually lead to automated and
repeated monitoring of the design, tuning and upgrading

Figure 23: The scaled conversion predictions—
apparent gain mismatch.

Figure 24: Comparison of Furnace control with up-
dated models.

of the control loops. Poor design, tuning or upgrading
of the control loops will be detected, and repeated per-
formance monitoring will indicate which loops should be
re-tuned or which loops have not been effectively up-
graded when changes in the disturbances, in the process
or in the controller itself occur. Obviously better design,
tuning and upgrading will mean that the process will op-
erate at a point closer to the economic optimum, leading
to energy savings, improved safety, efficient utilization
of raw materials, higher product yields, and more con-
sistent product qualities. Results from industrial appli-
cations have demonstrated the applicability of the multi-
variate performance assessment techniques in improving
industrial process performance.

Several different measures of multivariate controller
performance have been introduced in this paper and
their applications and utility have been illustrated by
simulation examples and industrial case studies. The
multivariate minimum variance benchmark allows one to
compare the actual output performance with the mini-
mum achievable variance. However it requires knowledge
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of the process time-delay matrix or the interactor. On
the other hand the newly proposed NMIRwof measure of
performance provides a graphical ‘metric’ that requires
little or no a priori information about the process and
gives a graphical measure of mutivariate performance in
terms of settling time, rate of decay etc.. The challenges
related to MPC performance evaluation are illustrated
by an industrial case study of an ethylene cracker. It is
shown how routine monitoring of MPC applications can
ensure good or ‘optimal’ control. The lumped objective
function based method of monitoring MPC performance
is shown to work well on the industrial case study. The
study illustrates how controllers, whether in hardware
or software form, should be treated like ‘capital assets’;
how there should be routine monitoring to ensure that
they perform close to the economic optimum and that
the benefits of good regulatory control will be achieved
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B. Carnahan, editors, Chemical Process Control—V, pages 156–
164. CACHE (1997).

Kwakernaak, H. and R. Sivan, Linear Optimal Control Systems.
John Wiley and Sons, New York (1972).

Mayne, D. Q., J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert,
“Constrained Model Predictive Control: Stability and Optimal-
ity,” Automatica, 36(6), 789–814 (2000).

Patwardhan, R. S. and S. L. Shah, Issues in Performance Diag-
nostics of Model-based Controllers, Accepted for publication, J.
Proc. Control (2001).

Patwardhan, R. S., G. Emoto, and S. L. Shah, Model-based Pre-
dictive Controllers: An Industrial Case Study, AIChE Annual
Meeting, Miami (1998).

Patwardhan, R., S. L. Shah, and K. Qi, Techniques for Assess-
ment of Model Predictive Controllers, Submitted for publication
(2000).

Patwardhan, R., S. L. Shah, and G. Emoto, Experiences in Per-
formance Annalysis of Industrial Model Predictive Controllers,
Submitted for publication (2001).

Patwardhan, R. S., Studies in the Synthesis and Analysis of Model
Predictive Controllers, PhD thesis, University of Alberta (1999).

Qin, S. J. and T. A. Badgwell, An Overview of Industrial Model
Predictive Control Technology, In Kantor, J. C., C. E. Garcia,
and B. Carnahan, editors, Fifth International Conference on
Chemical Process Control—CPC V, pages 232–256. American
Institute of Chemical Engineers (1996).

Stanfelj, N., T. E. Marlin, and J. F. MacGregor, “Monitoring
and Diagnosing Process Control Performance: The Single-Loop
Case,” Ind. Eng. Chem. Res., 32, 301–314 (1993).

Swanda, A. P. and D. E. Seborg, Controller Performance Assess-
ment Based on Setpoint Response Data, In Proceedings of the
American Control Conference, pages 3863–3867, San Diego,
California (1999).

Thornhill, N. F., M. Oettinger, and P. Fedenczuk, “Refinery-wide
control loop performance assessment,” J. Proc. Cont., 9, 109–
124 (1999).

Van den Hof, P. M. J. and R. J. P. Schrama, “Identification and
control—closed-loop issues,” Automatica, 31(12), 1751–1770
(1995).

Vishnubhotla, A., S. L. Shah, and B. Huang, Feedback and Feed-
forward Performance Analysis of the Shell Industrial Closed
Loop Data Set, In Proc. IFAC Adchem 97, pages 295–300,
Banff, AB (1997).

Wood, R. K. and M. W. Berry, “Terminal Composition Control of
a Binary Distillation Column,” Chem. Eng. Sci., 28, 1707–1717
(1973).


