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Introduction

The purpose of the present paper is to point out oppor-
tunities for systems and process engineering approaches
that appear to be arising as a consequence of the ex-
plosion of genomic data. In particular we consider our
own and other’s work in approaching biological systems
with modeling and simulation studies as a guide to the
contemporary landscape of such opportunities.

It has been impossible to miss the hoopla as the Hu-
man Genome Project has moved rapidly forward over
the past year. The genome—i.e. the full set of human
genes—is the code that guides the development and op-
eration of the human organism. The excitement over
the Human Genome Project is certainly justified, but
gene sequences are only a first step towards understand-
ing gene function (Schena, 1996). Genes function in
highly interconnected, hierarchical, and nonlinear net-
works. Organismic states and characteristics are often
not the result of the expression of single genes but rather
the result of interactions of multiple genes, as in the case
of some human cancers (Szallasi and Liang, 1998), as
well as the past and present intracellular and extracellu-
lar environments.

A surprising result of the genome projects has been the
similarity of genomes across species, even between man
and yeast. This has led many to conclude that the genes
alone can not account for species complexity and differ-
ences. Regulation of specific gene activities is crucial for
creating the complexity of higher organisms. Consider
DNA as a huge, flexible macromolecule containing genes
and a large number of binding sites. The DNA molecule
organizes simultaneous and interacting chemical binding
with very large numbers of other molecules at these sites.
These sites bind transcription factors that control gene
activity with resulting control of gene and protein expres-
sion, regulating cell phenotype. The control is the result
of inputs from the environment through receptors which
trigger signals that guide gene activity. Cell states are
dynamic, being constantly influenced by environmental
and intercellular signals.

The control engineering approach to biosystems mod-
eling and analysis offers an integrative perspective and

brings unique insights and tools. The motivation for
such an approach is provided by the richly interconnected
feedback layers that underlie much of biological regula-
tion. Integrative analyses across spatial and temporal
orders of magnitude are essential for understanding and
interpreting the underlying behavior.

Tools from control engineering are also relevant in light
of emerging high throughput quantitative techniques,
such as DNA microarrays and proteomic methods. These
allow the measurement of thousands of intracellular fac-
tors, such as messenger RNA transcripts (that are in-
dicative of gene activity) and proteins, in parallel and
over time. The data from these methods present signif-
icant challenges and opportunities. The challenges are
due to the enormity of the systems and their complex-
ity. They present opportunities because never before has
it been possible to so sensitively measure the conditions
within cells.

Unfortunately it is still a common view that biological
systems are beyond the scope of engineering approaches.
It is true that there are huge gaps in knowledge and the
systems are immensely complex. However, it is instruc-
tive to look at the results to date from modeling and
simulation studies of biological systems because there
are substantial positive results. Two of the most influen-
tial, Nobel Prize-winning pieces of biological work, how-
ever, are purely theoretical: the Hodgkin-Huxley formal-
ism (Hodgkin and Huxley, 1952) and the Watson-Crick
double helix model for DNA (Watson and Crick, 1953).
To further illustrate the usefulness of computational ap-
proaches for complex biological processes, our successes
in computational neuroscience are discussed next. This
is followed by a detailed discussion of the opportunities
and challenges in high throughput methods, particularly
DNA microarrays, that are relevant to control engineer-
ing.

Computational Neuroscience

The greatest success for theoretical and modeling ap-
proaches in biology has been in Computational Neuro-
science. Our own early work in this domain was with
a focus on biological control systems. At that time the

75



76 James S. Schwaber, Francis J. Doyle III and Daniel E. Zak

Figure 1: Hodgkin Huxley formalism.

Hodgkin-Huxley (HH) formalism was used in modeling
studies of channel kinetics, one channel type at a time.
Neuron models were sum and squash, non-spiking vari-
ety. We conceived of creating neuron models built up of
multiple species of channel types using HH. The prob-
lem was computationally intractable, however, and the
interaction within an extremely complex set of nonlin-
ear, dynamical systems, including feedback, was certain
to be extremely complex. We had excellent success, how-
ever, in creating complex, spiking neurons that were ro-
bust, occupying large, continuous and high-dimensional
parameter spaces (Schwaber et al., 1993; Foster et al.,
1993). We took these results to indicate that this class
of biological system has evolved to be extremely robust,
since its performance was not sensitive to parameter val-
ues. Parameter value variations are expected to result
from varying environmental conditions in a real system.

We also were encouraged by the success at crossing
levels of analysis, in this case from channel kinetics to
whole cell behavior. We decided to extrapolate this work
to additional levels, using several types of our HH neu-
ron models to create neuronal networks with synaptic,
chemical communication. We extended these network
models to closed system models controlling peripheral
organs. We were able to study the impact of manip-
ulating cellular properties on system behavior in these
models (Rybak et al., 1997a,b,c).

We have also been successful in connecting organism-
level function (in this case, blood pressure regulatory
behavior) with intracellular processing (second messen-
ger pathways: Cheng et al., 1999, 1997; Hardwick et al.,
1995; Parsons et al., 1987; Schwaber et al., 1993). Fig-
ure 2 shows the proposed reflex circuitry for short-term
regulation of cardiovascular system. The local reflex ar-
chitecture in Figure 2 is consistent with the experimental
results in Cheng et al. (1997).

We have constructed a computer simulation model for
the local cardiac reflex based on the anatomical exper-

imental results and physiological data in the literature.
Simulation results indicate that the local cardiac reflex
could be effecting attenuation of the nonlinearity of the
relationship between cardiac vagal drive and the arterial
blood pressure. We have explored the hypothesis that
the functional role of dynamic neuromodulation by SIF
cells is an input-output “linearizing” effect on the actu-
ator (heart) dynamics (Vadigepalli et al., 2001). We em-
ployed coherence analysis to characterize the nonlinear-
ity between the frequency of vagus nerve pulsatile input
and the mean arterial pressure. We also investigated the
role of modulatory synaptic transmitters in this function.

We also have driven the levels of analysis question to
more molecular and chemical processes, including recep-
tors and signaling cascades through which environmen-
tal signals affect system behavior (Brown et al., 1999;
Kholodenko et al., 1999; Kholodenko, 2000; Vadigepalli
et al., 2001). This latter work has raised the question of
connecting from the biochemical level to the gene level.

The cell and system regulation we are studying must,
in life, interact with the regulation occurring at the gene
level. The question that arises next is, “What would
be needed to create an equally successful Computational
Genomics?”

Computational Genomics

New analytical techniques have been developed that
allow the quantification of many intracellular factors
(Gombert and Nielsen, 2000). These include DNA mi-
croarray technology (Schena et al., 1995), which allows
the relative transcription levels of thousands of genes to
be measured in parallel, and gel electrophoresis and mass
spectrometry, which allow levels of hundreds of proteins
to be quantified (Gygi et al., 2000). Many groups have
applied these methods as well as information from the
genome sequencing projects to explore gene function on
a genomic scale (Fodor et al., 1993; Schena et al., 1995;
Ross-Macdonald et al., 1999; Winzeler et al., 1999; Uetz
et al., 2000). DNA chips which allow for genome-wide
measurements of mRNA levels (Schena, 1996; De Saizieu
et al., 1998; Eisen et al., 1998; Marshall and Hodgson,
1998; McKenzie et al., 1998; Ramsay, 1998; Spellman
et al., 1998; Brown and Botstein, 1999; Jia et al., 2000).

It is known that the data obtained with these meth-
ods have limitations. For example, it has been observed
that mRNA and protein levels in do not correlate well
enough for relative mRNA transcription levels to be pre-
dictive of protein expression levels (Gygi et al., 1999).
The value of microarray data, however, should not be
understated. It is of great value for generating hypothe-
ses and it is widely accepted that, “The mRNA levels
sensitively reflect the state of the cell, perhaps uniquely
defining cell types, stages, and responses. To decipher
the logic of gene regulation, we should aim to be able to
monitor the expression level of all genes simultaneously”
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Figure 2: Schematic of local cardiac reflex control. The local cardiac reflex consists mainly of three components. (i) SIF
cells receive sensory inputs from the atrial receptors and project to the principal neurons (PNs); (ii) PNs also receive input
from vagal efferents from dorsal motor nucleus of the vagus; and (iii) PN activity has a phase-dependent effect on the SA
node pacemaker and hence on the heart-beat cycle.

(Lander, 1996).
One motivation behind our group’s interest in DNA

microarrays and other high throughput quantitative
techniques is their ability to provide insight into the ge-
netic networks that dictate cellular responses to intercel-
lular and enviromental stimuli. A simple example of a
genetic network is the genetic switch modeled and syn-
thesized by Gardner et al. (2000), shown below in Fig-
ure 3. Here, the product of one gene represses the tran-
scription of the other gene, causing the system to have
two stable steady states. A review of some of the com-
plex behavior that can be observed for similar systems
is given by Smolen et al. (2000). Gene networks in even
the simplest organisms are expected to be complex. The
bacteria E. Coli, for example, has approximately 2000
genes, with connectivities between the genes averaging
between two and three (Thieffry et al., 1998).

Several factors make the determination of gene net-
works from DNA microarray data a challenge. These
are related to the design of the experiments, interpreting
the data and incorporating biological information, and
determining model structures for gene networks. These
are discussed below.

Figure 3: Schematic of the bistable genetic switch
(Gardner et al., 2000).

Experimental Approach

The microarray experiments we perform in our lab in-
volve the collection of transcript profiles over time while
the organism is undergoing a systemic perturbation
(chronic ethanol exposure, sleep deprivation, or chronic
hypertension). By collecting array data over time, we
expect to gain insights into the genetic basis for the or-
ganism’s response to the perturbation. Our approach in
designing these experiments is to apply the methods of
system identification from systems engineering that fol-
low a formal procedure of: (i) variable definition (i.e.,
which variables can be perturbed for maximum informa-
tion), (ii) input sequence design (i.e., size and frequency
of changes in the input variables), (iii) execution of input
sequence, (iv) data cleaning (outlier detection, noise fil-
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Figure 4: Architecture for analysis of genomic data
using intelligent agents.

tering), (v) model building (using, e.g., correlation anal-
ysis or other statistical methods), and finally, and most
importantly, (vi) validation of the model. Critical ele-
ments in this protocol for the biological problem at hand
are the definition of suitable perturbation sources, the
character of the perturbation signal, and the processing
of the noisy data. A “rich” perturbation sequence will be
designed to maximize the information content in the re-
sulting signals. Richness in this context will be assessed
by both the dynamic character of the forcing signal, as
well as the nonlinear character of the forcing signal. The
latter is especially important for the identification of non-
linear models, using such techniques as Laguerre kernel
expansions (e.g., Marmarelis, 1993). A simple binary se-
quence (on-off) generates little or no information content
at the output of a nonlinear system.

Data Issues

Interpretation of biological data consists of integrating
data from several levels in the organismic hierarchy, in-
cluding genomic sequences, microarray information, pro-
teomic and metabolic information, and physiological in-
formation. This data will be analyzed through the use
of various algorithms and statistical techniques. How-
ever, many of these techniques ignore domain knowledge
of the system, which could lead to better and more effi-
cient analysis of the data. Data analysis techniques like
clustering are independent of whether they are applied
on shopping data, weather data or biological data. We
will incorporate domain knowledge from biology for im-
proved and intelligent analysis of data. We have started
some preliminary work in this area for the analysis of
microarray data.

One of the analysis techniques that we have tested
using simulator data is clustering. We will also com-
pare clustering methods with other techniques and also
with knowledge based clustering. In knowledge-based
clustering, the implementation will use intelligent soft-
ware agents to obtain knowledge automatically from
databases. The intelligent agents will gather the knowl-

edge from different sources on the web such as pathway
databases, etc., and will use this knowledge during data
analysis. We propose to build a system for microarray
data analysis that can be incorporated to related ongoing
work in intelligent multi-agent systems for data analysis.
Specific agents will be used to gather the knowledge rel-
evant for data analysis. This knowledge will then be
integrated with the analysis technique such as cluster-
ing. A proposed architecture for this is given in Figure 4
above.

Gene Network Model Structures

Determining network architecture from microarray data
is nontrivial. This data can consist of relative transcrip-
tion levels for thousands of genes over hundreds of time
points. Mathematical models, combined with biological
knowledge, are necessary to determine the relationships
contained within this data. A discussion of some of the
key considerations in building such models, notably data
requirement, is given in Fuhrman et al. (1999).

Several approaches for building models of transcrip-
tional regulatory gene networks from temporal microar-
ray data have been described in the literature. Top-down
modeling approaches have been primarily designed for
elucidating network connections from temporal microar-
ray expression data. As mentioned above, there is no
clear correlation between protein levels and relative tran-
scription levels and it is therefore not possible to deter-
mine network connections from microarray transcription
data alone (Gygi et al., 1999). Microarray data can be
used, however, to generate hypotheses that can direct
future experiments. Also, the methods are generally ap-
plicable to any system of large numbers of interacting
components, and are thus relevant for interpreting tem-
poral protein level data from gel electrophoresis and mass
spectrometry. There are few examples in the literature
where these methods have actually been applied (Reinitz
and Sharp, 1995; D’Haeseleer et al., 1999), and therefore
the utility of each of these methods still requires verifi-
cation. Four examples of top-down modeling approaches
are logical, linear, “linear plus squashing”, and differen-
tial.

In the logical approach, genes are either “on” or “off”
and have a limited number of inputs from other genes
(Kauffman, 1993). This approach is appealing because it
may give basic structural information and has the small-
est data requirement, of order log2(N) time points if the
transcription of N genes are only influenced by two genes
each (Akutsu et al., 1999). Its main limitations are that
the number of regulatory inputs must be limited a priori
and genes that can have intermediate expression levels
or influence the transcription of other genes to varying
degrees are neglected (Weaver et al., 1999). At the next
level of complexity is the linear approach (D’Haeseleer
et al., 1999), where the transcription levels of the genes
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at one time point are linear combinations of the expres-
sion levels of all of the genes at the previous time point.
The drawbacks of this approach are that it requires at
least as many time points as genes since it has N2 pa-
rameters, that it poses no economy on interconnections,
and that the process it describes is not linear. In spite
of this, D’Haeseleer et al. (1999), has had some success
with this approach when applying it to expression data
for rat nervous system development. An improvement
to the linear approach is the “linear plus squashing” ap-
proach (Reinitz and Sharp, 1995; Weaver et al., 1999).
The input to a gene is still a linear combination of the
expression levels of all of the other genes, but now the
input and the gene expression level are related by a sig-
moidal “squashing function.” This is a more realistic
model of gene expression. A fourth approach is the dif-
ferential model proposed by Chen et al. (1999). The time
rate of change of mRNA concentration is expressed as a
linear combination of the protein concentrations minus
a degradation term. The time rate of change of pro-
tein concentration is a linear combination of the tran-
script concentrations minus a degradation term. Since
this model includes additional states for the protein con-
centrations, it is an improvement over the linear model.
A drawback is that the number of empirical parameters
for this model is nearly twice that of the linear model,
giving it a significantly larger data requirement. The
system is also not completely determined unless initial
protein concentrations are known.

Conclusions

Clearly a new era for biology is emerging that can bring
tremendous developments in medicine and understand-
ing. Before these can be realized, however, computa-
tional approaches must be developed that can make full
use of the data coming from the high throughput tech-
nologies. Given the highly regulated and interconnected
nature of biological systems, methods from control engi-
neering should be able to contribute significantly towards
this goal.
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