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Abstract
Reactor engineering generally uses distributed parameter models for design purpose. These models are not often used
for process control design. May the use of this kind of complex models improve control performance? This paper
compares different control strategies based on a distributed parameter model to a time-scaled DMC that only uses a
simple input-output model for the control of a bleaching reactor.
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Introduction

The design of tubular reactors is usually performed by
using mass and energy balances on a thin slice of the
reactor. This modelling approach leads to partial differ-
ential equation models. However, process control prac-
tice for this type of reactor often uses lumped models
such as first order plus delay transfer functions. Could
there be some advantage to use the distributed parame-
ter model for control purposes? On one hand, answering
this question is easier when actuators and sensors are
also distributed like in furnace heat control. Using a
distributed parameter model then allows to use all the
information in a structured manner. On the other hand,
when sensors and actuators are only present at bound-
aries, performance enhancement using a distributed pa-
rameter model is not obvious. This question will be ex-
plore in this paper on a bleaching reactor application.

The bleaching process is the last step of pulp prepa-
ration. Its purpose is to improve the brightness of the
pulp to a specified level which fulfills customers needs.
The control objective for a bleaching reactor is then to
obtain the desired brightness with a minimum output
brightness variance at the lowest chemical cost. Tradi-
tional approaches to this control problem include vari-
ations around compensated brightness and scheduling,
but the increase of computer power and the introduc-
tion of on-line analyzers offer new possibilities for model-
based control such as directly using the PDE model.

Different models for the bleaching are presented in the
literature for control purposes. Traditionally transfer
function or other input-output models are used. But
the need for more complex models is pointed out with
the use of mixed model. Barrette and Perrier (1995) use
multiple CSTR and Wang et al. (1995) use a combina-
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tion of CSTR and PFR. Recently, a PDE model have
been proposed by Renou et al. (2000b).

Various approaches have been considered to use a PDE
phenomenological model directly. Ray (1981) proposed
to divide control approaches on PDEs in two groups .
The first group is composed of early lumping methods
where a preliminary discretization of the PDE model is
used to obtain a set of ODEs. This lumping is often re-
alized by numerical techniques such as finite difference,
orthogonal collocation or finite elements. Christofides
(1996) has used the Galerkin method for the control of
parabolic PDE. Early lumping techniques also includes
the use of global differentiation proposed by Dochain
(1994) as an approximation of partial derivative. This
approach have been applied to hyperbolic PDE on a
bioreactor by Bourrel (1996) and on a bleaching reactor
model by the authors (Renou et al., 2000b). The second
group of techniques is based on late lumping methods
where the controller design problem is solved directly
with the PDE model. When necessary, lumping may
be applied for controller implementation. Christofides
(1996) has used this approach in the case of hyperbolic
system with a distributed control action. The control of
parabolic PDE has been previously addressed by Hong
and Bentsman (1994). They provide a design solution for
systems in which the control action appears explicitly in
the PDE system. For the boundary control problem, the
authors have proposed a direct adaptive control strategy
in Renou et al. (2000a) for the linear case.

The objective of this study is to present some results
on the use of more complex models to enhance control
performance. For this purpose, an early lumping and
a late lumping strategy are compared to a simple time-
scaled Dynamic Matrix Control (DMC) algorithm. The
first section of the paper presents the PDE model devel-
opment for a ClO2 bleaching reactor. The second section
briefly show the design ideas for each controller. The fol-
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lowing section presents the main comparative results in
terms of response to flow variations, step point changes
and kinetic parameter mismatch.

Bleaching Reactor Model

The bleaching process for chemical pulp consists of ex-
tracting lignin from wood fibre. This brownish colored
complex polymer is responsible for wood fiber coloration.
It could be degraded by using a strong oxidant like ClO2.
A PDE model for this process reactor can be obtained by
mass balances on lignin (L) and ClO2 (C) on a thin sec-
tion of the reactor. The following space axial dispersion
model is then obtained:
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In this model, reaction kinetics explicitly appears and
can be identified by laboratory batch experiments. Hy-
drodynamical parameters v and D can be determined by
tracer analysis. Here the kinetic data obtained by Savoie
and Tessier (1997) have been considered and hydrody-
namical parameters were deduced from Pudlas et al.
(1999) as shown in Renou et al. (2000b). The follow-
ing kinetics model and hydrodynamical parameters are
used:

rL1(L,C) = −kL C2L2 = −0.0065 C2L2 (4)

rC1(L,C) = −kC C2L2 = −0.0010 C2L2 (5)

v = 1 m/s, D = 0.001 m2/s (6)

for a 30 meter tower. Finally we consider the inlet con-
centration of ClO2, Cin, and the lignine concentration
at the outlet, Lout, as the manipulated variable and the
controlled variable, respectively. Lignine and ClO2 mea-
surement are assumed to be available at the both ends
of the reactor.

Time-Scaled DMC

The DMC controller is designed using two dynamic ma-
trices: βCL for ClO2 input to lingin output response and

Figure 1: Global differences controller.

βLL for lignin input to lignin output response. At each
control step, the following criterion is applied:

min
∆u(k)

φ = [e(k + 1)− βCL + K2∆u(k)T ∆u(k)T ]T

[e(k + 1)− βCL + K2∆u(k)T ∆u(k)T ] (7)

The prediction error takes the input lignin disturbances
into account such as:

e(k + 1) ≡ y∗(k + 1)

− [ŷ0(k) + w(k + 1) + βLL∆L(k)] (8)

In the preceding equation, y∗ is the set point, ŷ0 is the
prediction if no further control action is taken, w is the
estimation of disturbance and ∆L is the variation of
lignin at the inlet. Traditional DMC is sensitive to flow
rate variations since they represent, in fact, a variation
of dead-time from an input-output point of view. To
overcome this problem efficiently, information about the
flow rate has to be transmitted to the controller. To
reach this goal, the prediction time span is scaled by the
variation of flow rate. Thus, the ∆t between each calcu-
lation of the control action is scaled by the ratio between
the new flow rate and the old flow rate. This approach
can be practically implemented by using oversampling or
interpolating dynamic matrices and prediction.

Early Lumping Approach

One of the problems with the PDE model described by
Equations 1–3 is that the control action does not ap-
pear explicitly in the PDE equations. Dochain (1994)
have proposed to use global differences as an approxi-
mation for space partial derivatives. This early lumping
approach introduces ClO2 input and lignin output in an
approximate model. An exact linearization approach of
this model can then be considered. The following ap-
proximation are used for both species:

∂L(1, t)
∂z

=
L(1, t)− L(0, t)

∆z
= Lout(t)− Lin(t) (9)
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Figure 2: Late lumping internal model controller.

To obtain the approximate model, system mass balances
are expressed at the reactor outlet, global differences are
introduced and both equations are combined by their
kinetic term. These operations give the following result:

dLout(t)
dt

= −v(Lout(t)− Lin(t)) + D(Lin(t)− Lout(t))

+
kL1

kC1

(dCout(t)
dt

+ v(Cout(t)− Cin(t))

−D(Cin(t)− Cout(t))
)

(11)

Using a backward finite difference to approximate the
ClO2 time derivative, an input-output relation between
ClO2 input and lignin output can be obtained. Exact
linearization principle can be applied on this equation to
obtain the following control law in which λ and γ are
external loop tuning parameters:

Cin(t) =
1

v + D

(
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+
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∆t
+
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[
u
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])

(12)

u(t) = λ
[
(Lsp − Lout(t))

+ γ

∫ t

0

(Lsp − Lout(t))dt
]

(13)

To insure more robustness to this algorithm, an adap-
tation mechanism is added for the reaction rate ratio as
shown in Figure 1. A model is simulated in parallel with
a variable kL1, noted kA, which is modified according to
the error between the adaptation model and the system
model on lignin using a linear first order filter.

Late Lumping Approach

To use the whole information of the PDEs model an in-
ternal model approach is considered. The error between
the model and the system is then used in direct adap-
tive control scheme. To account for lignin inlet variation
a feedforward compensation is added to this controller.
The feedforward controller action is divided in two parts.
The first part uses an internal model of the process to
give an estimation of the reference output to the con-
troller. The second part directly gives a correction of

ClO2 needed to compensate for the deviation of lignin
from the nominal operating point. Those calculation are
based on a relaxation algorithm. Figure 2 shows the
proposed control structure.

The controller design is performed using the Lyapunov
second method following the approach presented in Re-
nou et al. (2000a). The controller and adaptation laws
are defined by:
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˙Ref in = −θ(Lout(t)−Refff (t) (17)
˙̃
kL = −a〈eL, Q〉 (18)
˙̃
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using the following error functions:

eL(z, t) = L(z, t)−M(z, t) (20)
eC(z, t) = C(z, t)−N(z, t) (21)

Q(z, t) = L2C2 −M2N2 (22)

In those equations, M(z, t) and N(z, t) are the lignin and
chlorine dioxide model profiles, respectively. The con-
troller law uses, or implementation purposes, only infor-
mation from sensors at both ends of the reactor. Overall
this control structure will behave as a feedforward con-
troller if the model match the system. Otherwise the
feedback part will account for model mismatch.

Simulation Results

Numerical simulation of the control algorithm applied
to the system has been performed using a sequencing
algorithm with a 100 node mesh (Renou et al., 2000c).
In this algorithm, convection, dispersion and reaction
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Figure 3: Operating conditions variations.
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Figure 4: Flow rate variations.

phenomena are successively considered at each time step.
The controller parameters have been chosen to minimize
overshoot and oscillations. Simulations are started at
steady state with Lin = 31 Kappa and Cin = 2.35 g/l.
The Kappa index is a measure of pulp whiteness. A
sequence of events is applied to deviate the process from
its nominal operating point as shown in in Figure 3.

Figure 4 shows the response of the system to flow rate
variations. In each case the response of the controller
to the variation of the delay is adequate. This result is
guaranteed in the DMC case by the time-scaling of the
model. In PDE based models, the time delay is implicit,
and therefore, including flow rate variation directly in
the control law accounts for time delay variation. The
late lumping controller gives the less important deviation
from set point in transient.

Figure 5 shows the response of the system to set-point
variations. In this simulation, time-scaled DMC and late
lumping controller give similar results that match open-
loop dynamics of the reactor. The early lumping con-
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Figure 5: Set-point variations.
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Figure 6: Model perturbations.
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troller exhibits an overshoot in case of set-point varia-
tion : this is due to the use of important simplifications
in the PDE model. This overshoot can be reduced at
the cost of a slower response time. Figure 6 shows the
response of the system to kinetic parameter disturbances
and parameter adaptations in PDE-based controller are
shown in Figure 7. In this simulation time-scaled DMC
exhibits oscillations. The linear model use in this con-
troller is showing its limits to the successive deviations
from the nominal operating point. The early lumping
controller induces a large deviation from the set point
as for the set-point variation, but the transient is still
smooth. The late lumping controller provides a fast re-
sponse to kinetic parameter variation.

Conclusion

A comparison between three levels of modeling for con-
trol have been presented: time-scaled DMC, a early
lumping approach based on global differentiation of par-
tial derivatives and a late lumping approach based on
Lyapunov second method with feedforward action. The
simulation results show the improvement by using a PDE
model for tubular reactors. This improvement is partic-
ularly important when the process moves away from its
nominal operating point where the nonlinearities in the
kinetics cannot be followed adequately by a simple linear
model.
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