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Abstract
An analytical solution to the nonlinear model predictive control (NMPC) optimization problem is derived for single–input
single–output (SISO) systems modeled by second–order Volterra–Laguerre models. All input moves except the current
move (m > 1 in the NMPC framework) are approximated by solving an unconstrained linear MPC problem which utilizes
a locally accurate linear model of the process. This linear MPC problem has an analytical solution; this is substituted
into a nonlinear equation which is solved exactly for the current input move, ∆u(k|k). Results using this multi–m NMPC
formulation are superior to a previously developed analytical NMPC controller that required m = 1 (Parker and Doyle III,
1998).
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Introduction

Model predictive control (MPC) is a control algorithm of
industrial and academic interest (Allgöwer et al., 1999;
Biegler, 1998) that solves an optimization problem on-
line at each time step. For processes that display highly
nonlinear behavior, whether due to the operating con-
ditions or nonlinear dynamics (e.g. input multiplica-
tive processes and high-purity distillation), performance
degradation or instability can result when linear con-
trol algorithms are utilized. The use of nonlinear MPC
(NMPC) can diminish this performance loss while retain-
ing the multivariable and constraint handling capabilities
of MPC.

A high-fidelity nonlinear process model and an opti-
mization routine capable of solving the on-line optimiza-
tion problem in real-time are required to reap the ben-
efits of the NMPC algorithm. The use of a fundamen-
tal process model is conceptually appealing in that the
process physics can be explicitly incorporated. Unfortu-
nately, these models require significant time (often mea-
sured in man-months or more) and effort to construct,
and the resulting NMPC optimization problems are non-
convex and computationally unattractive for most real-
istic systems (Zheng, 1997; Mayne, 1996).

In place of a fundamental model one can substitute a
nonlinear empirical model identified from process data.
These data-driven models capture only the input-output
behavior of the process, thereby sacrificing physical un-
derstanding for rapid model development. One popular
model structure, and the model form used in this work,
is the second-order Volterra model (Doyle III et al., 1995;
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Zheng and Zafiriou, 1995) given by the equation:

ŷ(k) =
M∑
i=1

h1(i)u(k − i)

+
M∑
i=1

M∑
j=1

h2(i, j)u(k − i)u(k − j) (1)

This model structure can capture the behavior of fading
memory nonlinear processes, such as the bioreactor case
study examined below. Highly parameterized Volterra
models can be efficiently projected onto the Laguerre
basis to produce a Volterra-Laguerre model (Schetzen,
1980; Dumont et al., 1994; Zheng and Zafiriou, 1995):

`(k + 1) = A(α)`(k) + B(α)u(k) (2)

ŷ(k) = CT `(k) + `T (k)D`(k) (3)

Nonconvex NMPC optimization problems result from
the use of this model form (the objective function is 4th-
order in u). If only a single input move is of interest,
the optimization problem can be solved analytically (Du-
mont et al., 1994; Parker and Doyle III, 1998). Another
approach to this NMPC problem is to solve for only the
current input (u(k|k)) exactly, and solve for any future
moves approximately using linear MPC and a locally ac-
curate process model (Zheng, 1997) because these future
moves are never actually implemented. This paper ad-
dresses the synthesis of an NMPC controller which an-
alytically calculates an input profile by combining ele-
ments of Parker and Doyle III (1998) and Zheng (1997).
Although a benefit of the current work is its compu-
tational efficiency, the concept of approximating future
manipulated variable moves is employed here because it
facilitates the analytical solution to the m > 1 problem.
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Input-Output Model Identification

Volterra model identification is accomplished using Al-
gorithm 3 from (Parker et al., 2001). This involves a
decomposition of (1) as follows:

y(k) = h0 + L(k) + D(k) + O(k) (4)

L(k) =
M∑
i=1

h1(i)u(k − i)

D(k) =
M∑
i=1

h2(i, i)u2(k − i)

O(k) = 2
M∑
i=1

i−1∑
j=1

h2(i, j)u(k − i)u(k − j)

Here the linear, second-order diagonal, and off-diagonal
coefficient contributions are given by L, D, and O, re-
spectively. Tailored input sequences, which excite spe-
cific contributions and minimize others, provide superior
coefficient identification compared to cross-correlation
techniques (Parker et al., 2001). The identified Volterra
model is then projected onto the Laguerre basis to ad-
dress the noise sensitivity of Volterra models and si-
multaneously reduce the model parameterization (9 vs.
860 unique parameters for the Volterra-Laguerre and
Volterra models, respectively). This projection yields a
Volterra-Laguerre model which optimally approximates
the identified Volterra model in the mean-squared error
sense. The C vector and D matrix are calculated via
least-squares from the identified Volterra kernels, and
the Laguerre time-scale, 0 < α ≤ 1, is selected to mini-
mize the error between the identified Volterra model and
the expanded Volterra-Laguerre model (where expansion
is the inverse of the projection operation). The resulting
process model is given by (2) and (3).

Controller Synthesis

The NMPC controller utilizes the standard squared 2-
norm objective function given by:

min
∆U(k|k)

‖Γy [R(k + 1)− Y(k + 1|k)] ‖2
2

+ ‖Γu∆U(k|k)‖2
2 (5)

The solution developed below employs the formalism of
solving for ∆U as opposed to absolute U. Matrices Γy

and Γu are used to trade off setpoint tracking versus
manipulated variable movement, respectively. The min-
imization problem in (5) is solved at each sample time for
a series of m manipulated variable moves which minimize
the objective over a prediction horizon of length p. An
analytical solution to the m = 1 problem has been de-
veloped for SISO problems modeled using the Volterra-
Laguerre structure (2) and (3) (Parker and Doyle III,

1998). Limits on the input-output dimension and m re-
sulted from an inability to solve a third-order vector or
matrix polynomial.

Utilizing the linear approximation of future manipu-
lated variable moves (Zheng, 1997), the setpoint tracking
term of (5) can be decomposed according to the following
equation:

min
∆U(k|k)

‖Γy [R(k + 1)− YN (k + 1|k)− YL(k + 1|k)] ‖2
2

+ ‖Γu∆U(k|k)‖2
2 (6)

Here the terms YN and YL represent the contributions
of the first calculated input move (nonlinear, exact) and
the remaining m− 1 future input moves (linear, approx-
imate), respectively. The linear component of the prob-
lem can be formulated as the solution to a modified ref-
erence signal, RL(k + 1|k) = R(k + 1)− YN (k + 1|k):

min
∆UL(k+1|k)

‖ΓyL [RL(k + 1|k)− YL(k + 1|k)] ‖2
2

+ ‖ΓuL∆UL(k + 1|k)‖2
2 (7)

An analytical solution to this problem exists (Garćıa
et al., 1989). The controller model is developed by com-
bining the linear process dynamics (2) with the lineariza-
tion of the process output (3). The resulting linear con-
troller model is given by (8) and (9).

xL(k + i|k) = (8)
0 i = 1∑i

j=1 Ām−j−1B∆u(k + j|k) 2 ≤ i ≤ m−1

Ai−m+1 ∑m−1
j=1 Ām−j−1B∆u(k + j|k) i ≥ m

= G∆UL(k + 1|k)

yL(k + i) = (9)[
CT + 2xT

linD
]
xL(k + i|k) = HxL(k + i|k)

The matrix Āi = (Ai−1 + Ai−2 + . . . + I), and the m− 1
future input moves are given by ∆UL. For input mul-
tiplicative processes, the xlin vector must change with
operating point because no linear integrating controller
can stabilize an input multiplicative process at the op-
timum (Morari, 1983). In this work the matrix H was
recalculated at each time step using a local linearization
about the current process state, xL(k) (Garćıa, 1984).
The G matrix is static, and hence calculated off-line in
this work.

The solution to the linear problem is given by the fol-
lowing equation:

∆UL(k + 1|k) = K(R(k + 2)− YN (k + 2|k)) (10)

where

K =
(
GT HT ΓT

yLΓyLHG + ΓT
uLΓuL

)−1

GT HT ΓT
yLΓyL (11)
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The weighting matrices ΓyL = Γy(2 : p, 2 : p) and
ΓuL = Γu(2 : m, 2 : m) are of dimension p − 1 and
m− 1, respectively. Equation (10) represents a solution
for ∆UL(k + 1|k) in terms of only the first input move,
∆u(k|k). The remainder of the derivation, given below,
conceptually follows Parker and Doyle III (1998).

Substituting (10) into (6), yields the objective function

min
∆u(k|k)

ET
[
IT ΓT

y ΓyI + KT ΓT
uLΓuLK

]
E+∆u2(k|k)Γ2

u(1, 1)

(12)
where

E = (R(k + 1)− YN (k + 1|k)) (13)
I = Ip−1×p−1 −HGK (14)

YN (k + i|k) = ε0 + ε1∆u(k|k) + ε2∆u2(k|k) (15)

ε2(k + i|k) = BT ĀT
i DĀiB (16)

ε1(k + i|k) = CT ĀiB + 2`T (k)
(
Ai

)T
DĀiB

+ 2ε2(k + i|k)u(k − 1) (17)

ε0(k + i|k) = CT
(
Ai

)
`(k) + `T (k)

(
Ai

)T
D

(
Ai

)
`(k)

+ ε1(k + i|k)u(k − 1) (18)

The matrices K and Āi are defined as above, and I is an
appropriately sized identity matrix. This objective func-
tion is a function of the current Volterra-Laguerre state,
`(k), the immediate past input, u(k − 1), and ∆u(k|k).
If Ei is defined as

Ei =


εi(k + 1|k)
εi(k + 2|k)

...
εi(k + p|k)

 (19)

then the optimal ∆u(k|k) can be calculated by differenti-
ating equation (12) with respect to ∆u(k|k) and setting
the result equal to zero:

0 = ξ3∆u3(k|k) + ξ2∆u2(k|k) + ξ1∆u(k|k) + ξ0 (20)

where

ξ3 = 2ET
2 ΓT

yNΓyNE2 (21)

ξ2 = 3ET
1 ΓT

yNΓyNE2 (22)

ξ1 = 2ET
2 ΓT

yNΓyNE0 + ET
1 ΓT

yNΓyNE1

− 2ET
2 ΓT

yNΓyNR(k + 1) + Γ2
u(1, 1) (23)

ξ0 = ET
1 ΓT

yNΓyNE0 − ET
1 ΓT

yNΓyNR(k + 1) (24)

ΓyN =
[

Γy(1, 1) 0
0 IT ΓT

yLΓyLI + KT ΓT
uLΓuLK

]
(25)

Provided that the ξi’s are real, a solution to (20) exists
(Tuma, 1987). The solution method involves a substi-
tution for ∆u(k|k), and interested readers are referred
to (Tuma, 1987) as the complete derivation is omitted

due to space limitations. The cubic equation solution
involves a term, D, which lies beneath a radical similar
to

√
b2 − 4ac in the quadratic equation. Roots of (20)

are determined by the value of D as follows:

D > 0 one real root, 2 complex roots
D = 0 3 real roots, at least 2 equal
D < 0 3 real unequal roots

(26)

All real roots are transformed back to the initial prob-
lem space and are analyzed for optimality by simulating
the Volterra-Laguerre model over the prediction hori-
zon to calculate an objective function value (OFV). The
∆u(k|k) which minimizes the OFV is implemented.

The analytical NMPC algorithm developed in this
work retains the constraint handling capabilities of the
algorithm developed previously (Parker and Doyle III,
1998). However, only the first (nonlinear) input move is
constrained. In this formulation, solutions which cause
the manipulated variable to violate imposed magnitude
constraints are replaced by the constraint itself, and the
OFV is recalculated. The unconstrained solution of the
linear controller subproblem is used. This is done to
maintain the existence of an analytical solution to the
control problem, (5). Constraint handling on the fu-
ture moves can be implemented in a “soft” framework,
where ΓuL can be tuned independently from Γu(1, 1), so
that the linear moves are penalized for large magnitude
changes. Although the algorithm developed in the cur-
rent work has relaxed the limitation of m = 1 imposed on
the analytical NMPC algorithm in Parker and Doyle III
(1998), it is still limited to SISO problems. Formula-
tion of the multivariable problem with m > 1 is feasible
in the context of this algorithm. However, equation (20)
would be a third-order vector polynomial, and an analyt-
ical solution for this problem requires further work. Rate
constraints are not included in this formulation because
they are not relevant to the case study below, but incor-
poration of rate constraints into the nonlinear problem
would be straightforward.

Case Study: Continuous Bioreactor

A model for the growth of Klebsiella pneumoniae on glu-
cose in a continuous-flow bioreactor was developed by
Baloo and Ramkrishna (1991). Cell biomass exit con-
centration (g/L) was the output of interest, and dilution
rate (hr−1) was the manipulated variable. The nomi-
nal operating condition used in this study was 0.97 hr−1

yielding a biomass concentration of 0.2373 g/L.
From this system, a second-order Volterra-Laguerre

model was identified using Algorithm 3 from Parker
et al. (2001). The sample time was 15 minutes, and the
Volterra model memory was M = 40. The inputs and
outputs were scaled according to u = uactual−unominal

0.08

and y = yactual−ynominal

0.01 . The input sequence amplitude
for identification was 2.375. After projection, the result-
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Figure 1: Response to a -0.05 g/L change in the ref-
erence (dotted) at t = 5 hr for various move horizon
lengths: m = 1 (solid), m = 14, (dashed), and m =
14 w/ RLS (dash-dot). Other tuning parameters:
p = 16, Γy = Ip×p, Γu(1, 1) = 0, ΓuL = Im−1×m−1.

ing Volterra-Laguerre model ((2), (3)) with α = 0.59 had
the following matrices:

A =

 0.59 0 0
0.652 0.59 0
−0.385 0.652 0.59

 (27)

B = [0.807 − 0.476 0.281]T (28)

C = [−0.249 0.128 0.002]T (29)

D =

 −0.050 −0.006 0.010
−0.006 −0.023 0.008
0.010 0.008 −0.013

 (30)

Validation resulted in unbiased residuals of less than 0.5
mg/L, such that in the region of identification, the iden-
tified model and the actual differ by less than 2%.

Partial motivation for developing the analytical
NMPC controller capable of handling m > 1 is the
expectation that the use of larger move horizons would
result in more aggressive controller response and there-
fore improved performance. Magnitude constraints of
0.2 ≤ u(k) ≤ 1.1 hr−1 were imposed on the dilution
rate, so that the cells did not starve or get washed out
of the reactor, respectively. The response of the system
under analytical NMPC control to a step change of -0.05
g/L in the reference signal is shown in Figure 1. The
nonlinear programming MPC solution to this problem is
not shown, because it is trapped in a local minimum at
the high dilution rate constraint, and is therefore unable
to track the setpoint change. The increase in move
horizon improves tracking performance by 5%. A more
aggressive response to the offset observed before t = 10
hr can be seen in the manipulated variable. Typical
of more aggressive controllers, greater undershoot is
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Figure 2: Response to a +0.025 g/L change in the
reference at t = 5 hr for various move horizon lengths:
m = 1 (solid), m = 14, (dashed), and m = 14
w/ RLS (dash-dot), and nonlinear programming MPC
with m = 14 and RLS (dotted). Other tuning pa-
rameters: p = 16, Γy = Ip×p, Γu(1, 1) = 0, ΓuL =
0.1Im−1×m−1.

also observed. The addition of a recursive least-squares
(RLS) algorithm to update the Volterra-Laguerre model
on-line is straightforward, and the C and D matrices
are updated using a standard algorithm (Ljung, 1987).
The improvement in the model accuracy is evidenced by
the lack of undershoot and reduced oscillation around
the reference. The more accurate model improves the
controller prediction, thereby improving performance
by 14% versus m = 14 without RLS and by 18% versus
the m = 1 analytical NMPC controller. It should be
noted that changes in the tuning weights, Γy and Γu,
will change the degree of performance improvement.

In the case of an unreachable setpoint, the analyt-
ical NMPC algorithm performs as shown in Figure 2.
All controllers remained stable. There was little observ-
able difference between the m = 1 and m = 14 con-
trollers. The full nonlinear solution implemented with
RLS (nonlinear programming MPC, the dotted line) out-
performed the controllers without RLS, but the analyt-
ical solution controller with m = 14 and RLS reached a
steady state closest to the actual process optimum (dilu-
tion rate= 0.89hr−1). It is possible that the full nonlin-
ear solution could approach the analytical solution if the
measurement signal were not noise-free, which limited
the ability of the algorithm to update the model after
t = 10 hr.

Summary

Given the nonlinear nature of many processes (e.g. biore-
actors and CSTRs) and the nonlinear behaviors which
result from operating in certain regimes (e.g. high purity
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distillation), nonlinear MPC can offer significant perfor-
mance improvements. The use of data-driven models
in NMPC facilitates model development, and the choice
of a particular structure can further simplify controller
synthesis. By exploiting the structure of the Volterra-
Laguerre (or equivalently, Volterra) model, an analytical
solution to the NMPC problem was derived. Although
this solution is not exact for m > 1, as it includes an ap-
proximation for the future input moves, significant per-
formance improvement was observed in comparison with
controllers synthesized using m = 1. A standard recur-
sive least-squares algorithm, used in conjunction with the
analytical NMPC controller, led to superior performance
due to the ability of the algorithm to further update the
model based on the current operating point.
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