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Abstract
We show that the general Anti-Windup-Bumpless-Transfer (AWBT) controller structure naturally emerges from the
structure of Model Predictive Control (MPC) with input constraints and plant model structure that is linear or nonlinear
affine in the input variables. The key to establishing that relationship between AWBT control and MPC is a particular
interpretation of the maximum principle.
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Introduction

Controller design for linear or nonlinear processes with
actuator saturation nonlinearities has long been stud-
ied within various contexts (Kothare, 1997). There are
two distinct classes of control structures that handle
input saturation nonlinearities: (a) On-line optimiza-
tion based control structures, such as Model Predictive
Control (MPC), and (b) anti-windup bumpless transfer
(AWBT) controllers that have a closed form and do not
perform on-line optimization. If properly designed, MPC
can provide optimality, robustness, and other desirable
properties. However, because of the time needed to per-
form the on-line optimization, MPC is usually imple-
mented on relatively slow processes. On the other hand,
AWBT controllers completely bypass on-line optimiza-
tion; therefore they inherently have lower computational
requirements and can be used on faster processes.

The AWBT controller design approach is based on
the following two-step design paradigm: Firstly, a lin-
ear controller is designed ignoring input constraints. In
the next step, an anti-windup scheme is added to com-
pensate for the adverse effects of input constraints on
closed-loop performance. Campo (1997) and Kothare
et al. (1994) unified all heuristically developed AWBT
control schemes into the structure shown in Figure 1,
and developed a general framework for studying stabil-
ity and robustness issues. The importance of that work
lies in that model uncertainty can be taken into account
systematically and theory exists to analyze, at least in
principle, the closed-loop system for stability and robust-
ness. However, that analysis is also based on the stan-
dard conic sector nonlinear stability theory. Therefore,
the results could be potentially conservative. The design
of AWBT controllers for SISO systems relies on a mix of
intuitive and rigorous arguments, which become difficult
to use in the MIMO case (Peng et al., 1998). As pointed
by Doyle et al. (1987), for MIMO controllers, the satu-
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Figure 1: Classical AWBT controller structure.

ration may cause a change in the plant input direction
resulting in disastrous consequences. Through an ex-
ample, Doyle et al. (1987) showed that all anti-windup
schemes of the time failed to work on MIMO systems.
Recently, Kothare and Morari (1997) described three
performance requirements that should be incorporated
in a multi-objective multivariable AWBT controller syn-
thesis framework. Although promising lines for design-
ing an AWBT controller using dynamic output feedback
and one-step design were outlined, many of the details
like “recovery of linear performance” need to be worked
out.

The MPC design approach naturally and explicitly
handles multivariable input and output constraints by
directly incorporating them into the on-line optimiza-
tion problem. The issues of stability and robustness of
MPC are now a fairly well understood topic (Rawlings
and Muske, 1993; Mayne et al., 2000; Nikolaou, 2000).

For linear plants the MPC problem can be reduced
to a quadratic program (QP) which can be solved ef-
ficiently (Cutler and Ramaker, 1980; Garćıa and Mor-
shedi, 1986). Alternatively, to reduce the computational
load, MPC may use a cascaded on-line optimization
approach in which a steady-state target is first calcu-
lated on-line via linear programming (cost minimization)
and then an unconstrained least-squares problem steers
the controlled system towards the steady-state optimum
(Kassmann et al., 2000; Rao and Rawlings, 1999). It
should be stressed that the solution of the least-squares
problem (inputs to the controlled system) should sat-
isfy constraints, even though the latter are not explicitly
considered in the least-squares problem. Least-squares
solution inputs that do not satisfy constraints are sim-
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ply clipped, clearly a non-optimal solution.
MPC for nonlinear plants naturally leads to nonlin-

ear programs (NLP) which are in general non-convex
and computationally demanding (Biegler and Rawlings,
1991; Mayne and Michalska, 1991, 1990; Kreshenbaum
et al., 1994; Qin and Badgwell, 2000).

Both MPC and AWBT controllers each have their own
advantages and disadvantages. However, to the best of
our knowledge, no clear relationship between these two
control schemes has been established.

In this work, we rigorously show that there is a direct
relationship between MPC and AWBT control. In fact,
we show that the heuristically proposed AWBT structure
of Figure 1 naturally emerges from the structure of MPC
with quadratic objective, input constraints, and (linear
or nonlinear) plant model structure affine in the input
variables. This realization is important for a number of
reasons:
• It provides theoretical justification for the heuristi-

cally proposed AWBT structure of Figure 1.
• It allows direct substitution of MPC with input con-

straints by controllers with a closed-form structure,
which allows computations to be performed signif-
icantly faster. Computational efficiency has been
pursued by several other investigators using a vari-
ety of different approaches, such as approximation of
the on-line optimization (Zheng, 1999), or a priori
determination of active constraints (De Dona and
Goodwin, 2000; Bemporad et al., 2000).

• It facilitates the design of both MPC and AWBT
controllers, because the insight into a controller from
either class can be augmented by using insight into
an equivalent controller from the other class.

• It allows constrained least squares to be used with
computational efficiency in MPC systems that fol-
low a cascaded structure of linear programming fol-
lowed by (unconstrained) least squares (Kassmann
et al., 2000; Rao and Rawlings, 1999).

The proposed approach works for linear models as well
as nonlinear models in which the input appears affinely.
It also works equally well for SISO and MIMO systems.

From MPC to AWBT

MPC and On-line Optimization

Consider a discrete-time non-linear system in which the
input u(i) appears affinely in the right-hand side of the
system difference equation, i.e.:

x(i+1) = f [x(i)] + g[x(i)]u(i) + d(i), x(0) = x0 (1)
y(i) = h[x(i)]

where x(i) ∈ <n is the state vector, u(i) ∈ <m is
the control vector, d(i) ∈ <n is the disturbance vector,
f [x(i)] ∈ <n, and g[x(i)] ∈ <n×m. For the linear case

the system is

x(i+1) = Φx(i) + Γu(i) + d(i), x(0) = x0 (2)
y(i) = Cx(i)

where Φ ∈ <n×n and Γ ∈ <n×m.
The vector of manipulated variables is constrained as

umin ≤ u(i) ≤ umax (3)

where umin and umax are real vectors.
To simplify the discussion, we assume that x(i) is mea-

sured.
According to standard MPC practice, the optimization

problem to be solved at time step k is

min
z,v

N∑
i=0

[
zT
d (k+i)Qzd(k+i) + ∆vT (k+i)R∆v(k+i)

]
(4)

subject to

zd(k+i+1) = z(k+i+1)− r(k+i+1) (feedback error)
z(k) = x(k) (feedback measurement)

z(k+i+1) = fm [z(k+i)] + gm [z(k+i)] v(k+i) + d(k+i)

or

z(k+i+1) = Φmz(k+i) + Γmv(k+i) + d(k+i)

(prediction)
umin ≤ v(k+i) ≤ umax (input constraints)

where i = 0, 1, . . . , N−1; Q and R are diagonal posi-
tive definite matrices; fm and gm are the nonlinear plant
model vector functions; Φm and Γm are the linear plant
model matrices; r is the desired state; zd is the de-
viation from the desired state; x is the current state;
∆v(j) ≡ v(j) − v(j − 1) is the change in control vector
at time j; d(k) is a load disturbance (bias) at time k
estimated, for simplicity, as

d(k) = x(k)− (fm[x(k−1)] + gm[x(k−1)]u(k−1))

for the nonlinear case, or

d(k) = x(k)− (Φmx(k−1) + Γmu(k−1))

for the linear case.
The controlled system is assumed to be controllable.

Of the N control moves v̂(k), . . . , v̂(k+N−1) computed
at time k, only the first one is implemented: u(k) ≡
v̂(k). At the next time instant k+1, when the new value
for state x(k+1) becomes available, the minimization of
Equation 4 is performed with the new initial condition,
to provide u(k+1).

Necessary conditions satisfied by the solution of the
optimization problem of Equation 4 can be obtained us-
ing the discrete maximum principle (Polak and Jordan,
1964; Halkin, 1966). Note that Boltyanskii (1978, pg.
54) has showed that not all formulations of the discrete
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R−1gm[ẑ(k)]T
u(k)

Figure 2: Block diagram for the system of Equa-
tions 5 through 10.

maximum principle that have appeared in literature are
correct.

Next, we apply the discrete maximum principle to the
MPC control problem with input bounds, in order to
obtain an analytical solution. The maximum principle is
a necessary condition. Under the additional assumption
that the problem is convex, the maximum principle is
also a sufficient condition for optimality (Theorem 47.7
in Boltyanskii, 1978).

The Discrete Maximum Principle and MPC

We apply the maximum principle to the optimization
problem of Equation 4. There are two crucial points to
stress:
• The matrix R in Equation 4 is diagonal, and
• The input constraints set is U ≡ {v|umin ≤ v ≤

umax}.
Under these conditions, we get the following necessary

conditions for the optimal solution:
System Equations:

ẑ(k+i+1)− ẑ(k+i) = fm [ẑ(k+i)]

− ẑ(k+i) + gm [ẑ(k+i)] v̂(k+i) + d(k)︸︷︷︸
=x(k)−fm(x(k−1))−
gm(x(k−1))u(k−1)

(5)

≡ Fi (ẑ(k+i), v̂(k+i)) , i = 0, . . . , N−1

ẑ(k) = x(k)

Adjoint equations:

p(k+i) =(
∂fm[ẑ(k+i)]

∂z
+

m∑
j=1

∂gm,j [ẑ(k+i)]

∂z
v̂j(k+i)

)T

︸ ︷︷ ︸
η[ẑ(k+1),v̂(k+i)]

p(k+i+1)

−Qzd(k+i), i = 0, . . . , N−1 (6)

where gm,j denotes the jth column of the matrix gm.
Transversality equation:

p(k+N) = 0 (7)

Minimization of the Hamiltonian:

v̂(k+i) = sat
[
v̂(k+i−1) + R−1gm[ẑ(k+i)]T p(k+i+1)

]
(8)

where v̂(k−1) = u(k−1) and the saturation function is
defined in a standard way, i.e., for u ∈ <m,

sat(u) ≡ [sat(u1) · · · sat(um)] . (9)

Based on the above, the input to the controlled process
at time k is

u(k) = v̂(k). (10)

A Revealing Block Diagram

Equations 5 through 10 correspond to a static (alge-
braic) system, namely knowledge of x(k) is, in princi-
ple, sufficient for computation of everything else. Fig-
ure 2, shows a block diagram interpretation of Equa-
tions 5 through 10.

The block M is the following set of algebraic equations:

ẑ(k+1) = fm[x(k)] + gm[x(k)]v(k) + d(k)
ẑ(k+2) = fm[ẑ(k+1)] + gm[ẑ(k+1)]v̂(k+1) + d(k)

...
ẑ(k+N) = fm[ẑ(k+N−1)]

+ gm[ẑ(k+N−1)]v̂(k+N−1) + d(k)

where

d(k) = x(k) = fm(x(k−1))− gm(x(k−1))u(k−1). (11)

The block G is the following set of algebraic equations:

p(k+N) = 0
p(k+N−1) = η [ẑ(k+N−1), v̂(k+N−1)] p(k+N)

−Qzd(k+N−1)
...

p(k) = η [ẑ(k), v̂(k)] p(k+1)−Qzd(k)

The block P is the projection matrix

P =


Im 0 · · · 0

0 0
...

...
. . .

...
0 · · · · · · 0


N×N

.

Remarks.
• An essential trait of the structure in Figure 2 is that

there is a feedback loop with the saturation func-
tion in the forward path and algebraic equations in
both the forward and feedback paths. This struc-
ture bears strong resemblance to the general AWBT
structure of Figure 1 (Kothare, 1997). However, un-
like the classical AWBT structure, which is based on
experience, the structure of Figure 2 emerges natu-
rally as a result of formulating the controller design
problem through MPC. In addition, Figure 2, pro-
vides guidelines on how to design an AWBT con-
troller starting from MPC.
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• Figure 2 implies that

e = N(Se, x, r), v̂ = Se, u = Pv̂ (12)

where S denotes the saturation function (Equa-
tion 9). On the other hand, if the saturation block
were placed right after the output of the feedback
loop, before P, in Figure 2 (i.e., if a saturation block
were appended to a controller designed without tak-
ing input constraints into account), then we would
have

e = N(e, x, r), v̂ = Se, u = Pv̂ (13)

The above equations make it clear that the second
alternative, Equation 13 is different from the first
one, Equation 12 and show what is the missing ele-
ment in controller design that does not take satura-
tion explicitly into account during the design. The
above comment will be more concrete in the linear
case, discussed below.

On-line Implementation

The controller structure of Figure 2, albeit optimal in
the MPC sense, is not suitable for direct on-line im-
plementation, the reason being that the set of algebraic
equations 12 must be solved at each time step. A time-
recursive set of equations would be required, so that v̂(k)
could be computed from data up to and including time
k. To circumvent that difficulty, we use the following
heuristic:

Let the optimal input sequence computed at time k−1
be {ŵ(k−1), ŵ(k), . . . , ŵ(k+N−2)}. Then at time k we
use

{v̂(k), v̂(k+1), . . . , v̂(k+N−2), v̂(k+N−1)} =

{ŵ(k), ŵ(k+1), . . . , ŵ(k+N−2), ŵ(k+N−2)} (14)

in Equations 5 and 8. This heuristic introduces a mem-
ory (delay) in the feedback path of Figure 2, thus making
the structure suitable for on-line implementation. Note
that the choice v̂(k+N−1) = ŵ(k+N−2) implicitly as-
sumes that the optimal input sequence over the finite
optimization horizon reaches a virtually flat profile to-
wards the end of the horizon.

Analytical Solution for a Linear System with
Quadratic Objective

Consider the system of Equation 1 and corresponding
model used in Equation 4. In this case, the vector of
predicted optimal states satisfies the following equation:

 ẑ(k)
...

ẑ(k+N)

 =


I

Φm

...
ΦN

m


︸ ︷︷ ︸

L2

⊗x(k)

+



0 · · · · · · 0

I
. . .

...

Φm

. . .
. . .

...
. . .

. . .
. . .

...
ΦN−1

m · · ·ΦT
m I 0


⊗ Γm

︸ ︷︷ ︸
L2

 v̂(k)
...

v̂(k+N)

+

d(k)
...

d(k)



where d(k) is estimated as in Equation 11 and ⊗ de-
notes the Kronecker product. The adjoint equations,
Equation 6, imply that the costate vectors , satisfy the
following equations:

p(k+N)
...

p(k)

 = −



0 · · · · · · 0

I
. . .

...

ΦT
m

. . .
. . .

...
...

. . .
. . . 0

ΦT N−1

m · · ·ΦT
mI


⊗Q

︸ ︷︷ ︸
L3

ẑ(k+N−1)
...

ẑ(k)

 (15)

The minimization of the Hamiltonian, Equation 8, yields

v̂(k+i) = sat[v̂(k+i−1)

+ R−1ΓT
mp(k+i+1)], i = 0, . . . , N−1. (16)

Again, the approximation of Equation 14 can be used.

Remarks.
• It is straight forward to modify the previous discus-

sion for the objective function in Equation 4 con-
taining a term quadratic in v instead of ∆v. The
well-known advantage of using the ∆v is that step
disturbance or setpoint changes result in zero offset.

• Figure 2 indicates that

e = Lxx + Lrr + Lv v̂ = Lxx + Lrr + LvSe (17)

⇒ (I − LvS)e = Lxx + Lrr (18)

Because the quadratic minimization of Equation 4 is
convex, there must exist a unique optimal solution,
which implies that the above equation must have a
unique solution for e, i.e., e = (I − LvS)−1(Lxx +
Lrr), from which we get

u = Pv̂ = PSe = PS(I−LvS)−1(Lxx+Lrr) (19)

It is interesting to note again that if the controller
was designed without taking input saturation into
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account, and a saturation block were appended to
it, then the corresponding mapping between (x, r)
and u would be

u = Pv̂ = PSe = PS(I − Lv)−1(Lxx + Lrr) (20)

The above equation trivially shows that this design
approach is not optimal.

Conclusions

In this work we established a direct relationship between
multivariable AWBT control and MPC with quadratic
objective, input constraints and plant model structure
affine in the input variables. The key to establishing that
relationship was application of the discrete maximum
principle to the on-line optimization problem solved by
MPC.

The results of this work are important for both theo-
retical and practical reasons.

From a theoretical viewpoint, these results provide
fundamental justification for the empirical realization
that virtually all heuristically developed AWBT control
structures (Figure 1) follow a similar pattern involving
a nonlinear (saturation) block and linear transfer func-
tions (Figure 2). The structure of Figure 2 is actually
valid for nonlinear systems as well.

From a practical viewpoint, the substitution of model
predictive controllers with input constraints by con-
trollers with a closed-form structure allows computations
to be performed significantly faster. This is particularly
important for MPC systems that follow a cascaded struc-
ture of linear programming followed by (unconstrained)
least squares (Kassmann et al., 2000; Rao and Rawlings,
1999), because it allows constrained least squares to be
used with computational efficiency in place of uncon-
strained least squares.

Of both theoretical and practical importance is the
fact that insight into a controller from either the MPC
or AWBT class can be augmented by using insight from
an equivalent or related controller of the other class.

A number of simulation examples can be downloaded
from http://athens.chee.uh.edu.
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