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Abstract
The paper discusses a framework for modeling, analyzing and controlling systems whose behavior is governed by interde-
pendent physical laws, logic rules, and operating constraints, denoted as Mixed Logical Dynamical (MLD) systems. They
are described by linear dynamic equations subject to linear inequalities involving real and integer variables. MLD models
are equivalent to various other system descriptions like Piece Wise Affine (PWA) systems and Linear Complementarity
(LC) systems. They have the advantage, however, that all problems of system analysis (like controllability, observability,
stability and verification) and all problems of synthesis (like controller design and filter design) can be readily expressed
as mixed integer linear or quadratic programs, for which many commercial software packages exist.

In this paper we first recall how to derive MLD models and then illustrate their use in predictive control. Subsequently
we define “verification” and show how verification algorithms can be used to solve a variety of practical problems like
checking the correctness of an emergency shutdown procedure implemented on a PLC, or assessing the performance of a
constrained MPC controller. The eventual practical success of these methods will depend on progress in the development
of the various optimization packages so that problems of realistic size can be tackled.
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Introduction

The concept of a model of a system is traditionally asso-
ciated with differential or difference equations, typically
derived from physical laws governing the dynamics of the
system under consideration. Consequently, most of the
control theory and tools have been developed for such
systems, in particular for systems whose evolution is de-
scribed by smooth linear or nonlinear state transition
functions. On the other hand, in many applications the
system to be controlled is also constituted by parts de-
scribed by logic, such as for instance on/off switches or
valves, gears or speed selectors, evolutions dependent on
if-then-else rules. Often, the control of these systems is
left to schemes based on heuristic rules inferred by prac-
tical plant operation.

Recently, in the literature researchers started dealing
with hybrid systems, namely hierarchical systems com-
posed of dynamical components at the lower level, gov-
erned by upper level logical/discrete components (Gross-
mann et al., 1993; Branicky et al., 1998; Labinaz et al.,
1997; Branicky, 1995). Hybrid systems arise in a large
number of application areas, and are attracting increas-
ing attention in both academic theory-oriented circles as
well as in industry. Our interest is motivated by several
clearly discernible trends in the process industries which
point toward an extended need for new tools to design
control and supervisory schemes for hybrid systems and
to analyze their performance.

This paper discusses a framework for modeling, ana-
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(a) Hybrid control systems.
Finite state machines and
continuous dynamics in-
teract through analog-to-
digital (A/D) and D/A in-
terfaces

(b) Piecewise affine
systems

Figure 1: Hybrid models.

lyzing and controlling models of systems described by
interacting physical laws, logical rules, and operating
constraints. We will focus exclusively on discrete time
models. We note, however, that interesting mathemat-
ical phenomena occurring in hybrid systems, such as
Zeno behaviors (Johansson et al., 1999) do not exist in
discrete-time. On the other hand, most of these phe-
nomena are usually a consequence of the continuous-time
switching model, rather than the real natural behavior.
Our main motivation for concentrating on discrete-time
models stems from the need to analyze these systems and
to solve optimization problems, such as optimal control
or scheduling problems, for which the continuous-time
counterpart would not be easily computable.

Two main categories of hybrid systems were success-
fully adopted for analysis and synthesis purposes (Bran-
icky, 1995): hybrid control systems (Alur et al., 1993;
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Asarin et al., 1995; Bemporad and Morari, 1999; Lygeros
et al., 1996, 1999), which consist of the interaction be-
tween continuous dynamical systems and discrete/logic
automata (Figure 1(a)), and switched systems (Branicky,
1998; Johansson and Rantzer, 1998; Sontag, 1981), where
the state-space is partitioned into regions, each one be-
ing associated with a different continuous dynamics (Fig-
ure 1(b)).

Several modeling frameworks have been introduced for
discrete-time hybrid systems. We will refer frequently to
the piecewise affine (PWA) systems (Sontag, 1981, 1996).

x(t + 1) = Aix(t) + Biu(t) + fi ,

for x(t) ∈ Ci , {x : Hix ≤ Ki} (1)

where x ∈ X ⊆ Rn, u ∈ Rm, {Ci}s−1
i=0 is a polyhedral

partition of the sets of states X and fi is a constant vec-
tor. Furthermore, we mention here linear complemen-
tarity (LC) systems (Heemels, 1999; van der Schaft and
Schumacher, 1998; Heemels et al., 2000) and extended
linear complementarity (ELC) systems (De Schutter
and De Moor, 1999), max-min-plus-scaling (MMPS)
systems (De Schutter and van den Boom, 2000), and
mixed logical dynamical (MLD) systems (Bemporad and
Morari, 1999). Each modeling framework has its ad-
vantages. For instance, stability criteria were formu-
lated for PWA systems (Johansson and Rantzer, 1998),
and control and verification techniques were proposed
for MLD discrete-time hybrid models (Bemporad and
Morari, 1999; Bemporad et al., 2000). In particular,
MLD models were proven successful for recasting hybrid
dynamical optimization problems into mixed-integer lin-
ear and quadratic programs, solvable via branch and
bound techniques (Nemhauser and Wolsey, 1988). Re-
cently, the equivalence of PWA, LC, ELC, MMPS, and
MLD hybrid dynamical systems was proven construc-
tively in (Heemels et al., 2001; Bemporad et al., 2000a).
Thus the theoretical properties and tools can be easily
transferred from one class to another.

Mixed Logical Dynamical (MLD) Systems

We briefly recall the mixed logical dynamical (MLD) sys-
tem framework introduced in (Bemporad and Morari,
1999). MLD systems are hybrid (control) systems de-
fined by the interaction of logic, finite state machines,
and linear discrete-time systems, as shown in Figure 1(a).
The ability to include constraints, constraint prioritiza-
tion, and heuristics augment the expressiveness and gen-
erality of the MLD framework.

The MLD modeling framework relies on the idea of
translating logic relations into mixed-integer linear in-
equalities (Bemporad and Morari, 1999; Cavalier et al.,
1990; Raman and Grossmann, 1991; Tyler and Morari,
1999; Williams, 1977, 1993). By following standard no-
tation, we adopt capital letters Xi to represent state-

ments, e.g. “x ≥ 0” or “Temperature is hot”. Xi is
commonly referred to as a literal, and has a truth value
of either TRUE or FALSE. Boolean algebra enables state-
ments to be combined in compound statements by means
of connectives: “∧” (and), “∨” (or), “∼” (not), “→”
(implies), “↔” (if and only if), “⊕” (exclusive or). Con-
nectives satisfy several properties (see e.g. (Christiansen,
1997)), which can be used to transform compound state-
ments into equivalent statements involving different con-
nectives, and simplify complex statements. Correspond-
ingly one can associate with a literal Xi a logical variable
δi ∈ {0, 1}, which has a value of either 1 if Xi =TRUE,
or 0 otherwise. A propositional logic problem, where a
statement X1 must be proved to be true given a set of
(compound) statements involving literals X1, . . . , Xn,
can be solved by means of a linear integer program by
suitably translating the original compound statements
into linear inequalities involving logical variables δi. In
fact, the propositions and linear constraints reported in
Table 1 can easily be seen to be equivalent.

These translation techniques can be adopted to model
logical parts of processes and heuristic knowledge about
plant operation as integer linear inequalities. The link
between logic statements and continuous dynamical vari-
ables, in the form of logic statements derived from con-
ditions on physical dynamics, is provided by properties
(AD1), (DA1) in Table 1, and leads to mixed-integer lin-
ear inequalities, i.e., linear inequalities involving both
continuous variables of Rn and logical (indicator) vari-
ables in {0, 1}. Consider for instance the statement
X , [f1(x) ≤ 0] where f : Rn 7→ R is a linear (affine)
function, assume that x ∈ X, where X ⊂ Rn is a given
bounded set, and define

Mi , max
x∈X

fi(x), mi , min
x∈X

fi(x), i = 1, 2

Theoretically, an over[under]-estimate of Mi [mi] suffices
for our purpose. By associating a binary variable δ with
the literal X, one can transform X , [f1(x) ≤ 0] into
mixed integer inequalities as described in (AD1), Ta-
ble 1, where ε is a small tolerance (typically the machine
precision), beyond which the constraint is regarded as
violated. Note that sometimes translations require the
introduction of auxiliary variables (Williams, 1993, p.
178), for instance according to (DA1) a quantity which
is either f1(x) is X is true, or f2(x), requires the intro-
duction of a real variable z.

The rules of Table 1 can be generalized for relations
involving an arbitrary number of discrete variables com-
bined by arbitrary connectives. Any combinational rela-
tion of logical variables can in fact be translated to the
conjunctive normal form (CNF)

P1 ∧ P2 ∧ . . . ∧ Pm, Pi = Y i
1 ∨ Y i

2 ∨ . . . ∨ Y i
ni

where Y i
j is a literal X or its inverse ∼ X, by using stan-

dard methods (Bemporad et al., 2000b). As an example,
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Relation Logic (In)equalities

L1 AND (∧) X1 ∧X2 δ1 = 1, δ2 = 1

L2 OR (∨) X1 ∨X2 δ1 + δ2 ≥ 1

L3 NOT (∼) ∼ X1 δ1 = 0

L4 XOR (⊕) X1 ⊕X2 δ1 + δ2 = 1

L5 IMPLY (→) X1 → X2 δ1 − δ2 ≤ 0

L6 IFF (↔) X1 ↔ X2 δ1 − δ2 = 0

X3 = X1 ∧X2 δ1 + (1− δ3) ≥ 1
L7 ASSIGNMENT δ2 + (1− δ3) ≥ 1

(=, ↔) X3 ↔ X1 ∧X2 (1− δ1) + (1− δ2) + δ3 ≥ 1

AD1 EVENT [f(x) ≤ 0] ↔ [δ = 1] f(x) ≤ M −Mδ
f(x) ≥ ε + (m− ε)δ

(m2 −M1)δ + z ≤ f2(x)
DA1 IF-THEN-ELSE IF X THEN z = f1(x) ELSE z = f2(x) (m1 −M2)δ − z ≤ −f2(x)

(=Product) (z = δf1(x) + (1− δ)f2(x)) (m1 −M2)(1− δ) + z ≤ f1(x)
(m2 −M1)(1− δ)− z ≤ −f1(x)

Table 1: Basic conversion of logic relations into mixed-integer inequalities. Relations involving the inverted literals ∼ X
can be obtained by substituting (1− δ) for δ in the corresponding inequalities.

the statement (L7) X3 ↔ X1 ∧X2 is equivalent to

(∼ X1∨ ∼ X2 ∨X3) ∧ (X1∨ ∼ X3) ∧ (X2∨ ∼ X3) (2)

Subsequently, the CNF form can be translated (again,
automatically and without introducing additional inte-
ger variables) into the set of integer linear inequalities

yi
1 + yi

2 + . . . + yi
ni
≥ 1, i = 1, . . . ,m,

where yi
j = δi

j if Y i
j = X or (1 − δi

j) if Y i
j =∼ X. For

instance, it is immediate to check that the CNF (2) maps
to the inequalities reported in Table 1(L7).

The state update law of finite state machines can be
described by logic statements involving binary states,
their time updates, and indicator variables. It is clear
that the automatized translation mentioned above can
be directly applied to translate automata into a set of
linear integer inequalities. An example will be provided
when modeling the PLC control code of the batch evap-
orator process benchmark.

By collecting the equalities and inequalities generated
by the translation of the automata, analog-to-digital in-
terface (AD1), digital-to-analog interface (DA2), and by
including the linear dynamic difference equations, we can
model the hybrid system depicted in Figure 1(a) as the
Mixed Logical Dynamical (MLD) system

x(t + 1) = Φx(t)+G1u(t) + G2δ(t) + G3z(t) (3a)
y(t) = Hx(t)+D1u(t) + D2δ(t) + D3z(t) (3b)
E2δ(t) + E3z(t) ≤ E1u(t) + E4x(t) + E5 (3c)

where x ∈ Rnc × {0, 1}n` is a vector of continuous
and binary states, u ∈ Rmc × {0, 1}m` are the inputs,

y ∈ Rpc ×{0, 1}p` the outputs, δ ∈ {0, 1}r` , z ∈ Rrc rep-
resent auxiliary binary and continuous variables respec-
tively, which are introduced when transforming logic re-
lations into mixed-integer linear inequalities, and Φ, G1,
G2, G3, H, E1,. . . ,E5 are matrices of suitable dimensions.
The inequalities (3c) include the constraints obtained by
the D/A, A/D, and automaton part of the system, as
well as possible physical constraints on states and in-
puts. Despite the fact that the description (3) seems to
be linear, clearly the nonlinearity is concentrated in the
integrality constraints over binary variables. The follow-
ing simple example illustrates the technique.

Example 1

Consider the following switched system

x(t + 1) =
{

0.8x(t) + u(t) if x(t) ≥ 0
−0.8x(t) + u(t) if x(t) < 0 (4)

where x(t) ∈ [−10, 10], and u(t) ∈ [−1, 1]. The condition
x(t) ≥ 0 can be associated with a binary variable δ(t)
such that

[δ(t) = 1] ↔ [x(t) ≥ 0] (5)

By using the transformation (AD1) in Table 1, Equa-
tion 5 can be expressed by the inequalities

−mδ(t) ≤ x(t)−m

−(M + ε)δ ≤ −x− ε

where M = −m = 10, and ε is a small positive scalar.
Then (4) can be rewritten as

x(t + 1) = 1.6δ(t)x(t)− 0.8x(t) + u(t) (6)
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By defining a new variable z(t) = δ(t)x(t) which, by
(DA1) in Table 1, can be expressed as

z(t) ≤ Mδ(t)
z(t) ≥ mδ(t)
z(t) ≤ x(t)−m(1− δ(t))
z(t) ≥ x(t)−M(1− δ(t)),

the evolution of system (4) is ruled by the linear equation

x(t + 1) = 1.6z(t)− 0.8x(t) + u(t)

subject to the linear constraints above.
We assume that system (3) is completely well-

posed (Bemporad and Morari, 1999), which means
that for all x, u within a bounded set the variables
δ, z are uniquely determined, i.e., there exist functions
F , G such that, at each time t, δ(t) = F (x(t), u(t)),
z(t) = G(x(t), u(t))1. Therefore the x- and y-trajectories
exist and are uniquely determined by the initial state
x(0) and input signal u. In light of the transforma-
tions of Table 1, it is clear that the well-posedness
assumption stated above is usually guaranteed by the
procedure used to generate the linear inequalities (3c),
and therefore this hypothesis is typically verified by
MLD relations derived from modeling real-world plants.
Nevertheless, a numerical test for well-posedness is
reported in (Bemporad and Morari, 1999, Appendix 1).

Recently, in (Bemporad et al., 2000b) a declarative
language for specifying hybrid control systems has been
developed which fully automatizes the construction of
the MLD matrices. Such a language (called HYSDEL,
HYbrid System DEscription Language) will be used
later to model the batch evaporator process benchmark.
Throughout the paper, we will assume that both the
PWA and the MLD forms are available. Their role is
complementary and in our algorithms we use whichever
one is more appropriate for a specific task.

Predictive Control of MLD Systems

The predictive control problem for MLD sytems can be
defined formally as follows. Consider an equilibrium pair
(xe, ue) Let the components δe,i, ze,j correspond to de-
sired steady-state values for the indefinite auxiliary vari-
ables. Let t be the current time, and x(t) the current
state. Consider the following optimal control problem

min
{vT−1

0 }
J(vT−1

0 , x(t)) ,
T−1∑
k=0

‖v(k)− ue‖2Q1

+ ‖δ(k|t)− δe‖2Q2
+ ‖z(k|t)− ze‖2Q3

+ ‖x(k|t)− xe‖2Q4
+ ‖y(k|t)− ye‖2Q5

(7)

1A more general definition of well-posedness, where only the
components of δ and z entering (3a)–(3b) are required to be unique,
is given in (Bemporad and Morari, 1999).

subject to

x(T |t) = xe

x(k + 1|t) = Ax(k|t) + B1v(k) + B2δ(k|t)
+ B3z(k|t)

y(k|t) = Cx(k|t) + D1v(k) + D2δ(k|t)
+ D3z(k|t)

E2δ(k|t) +E3z(k|t) ≤ E1v(k) + E4x(k|t) + E5

(8)

where Q1 = Q′
1 > 0, Q2 = Q′

2 ≥ 0, Q3 = Q′
3 ≥ 0, Q4 =

Q′
4 > 0, Q5 = Q′

5 ≥ 0, x(k|t) , x(t + k, x(t), vk−1
0 ), and

δ(k|t), z(k|t), y(k|t) are similarly defined. Assume for
the moment that the optimal solution {v∗t (k)}k=0,...,T−1

exists. According to the receding horizon philosophy, set

u(t) = v∗t (0), (9)

disregard the subsequent optimal inputs
v∗t (1), . . . , v∗t (T − 1), and repeat the whole optimization
procedure at time t + 1. The control law (7)–(9) will
be referred to as the Mixed Integer Predictive Control
(MIPC) law.

In principle all the design rules about parameter
choices and theoretical results regarding stability devel-
oped for MPC over the last two decades can be applied
here to MIPC after some adjustments. For instance, the
number of control degrees of freedom can be reduced to
Nu < T , by setting u(k) ≡ u(Nu − 1), ∀k = Nu, . . . , T .
While this choice usually reduces the size of the opti-
mization problem dramatically at the price of inferior
performance, here the computational gain is only par-
tial, since all the T δ(k|t) and z(k|t) variables remain in
the optimization.

Infinite horizon formulations are inappropriate for
both practical and theoretical reasons. In fact, approx-
imating the infinite horizon with a large T is computa-
tionally prohibitive, as the number of 0-1 variables in-
volved in the MIQP depends linearly on T . Moreover,
the quadratic term in δ might oscillate (for example, for
a system which approaches the origin in a “switching”
manner), and hence “good” (i.e., asymptotically stabiliz-
ing) input sequences might be ruled out by a correspond-
ing infinite value of the performance index; it could even
happen that no input sequence has finite cost.

Using an appropriate stability definition (Bemporad
and Morari, 1999) have proven asymptotic stability of
the MIPC scheme. In the typical fashion, the end point
constraint was invoked in the Lyapunov arguments.

Despite the fact that very effective methods exist to
compute the (global) optimal solution of the MIQP prob-
lem (7)–(9) (see Section below), in the worst-case the
solution time depends exponentially on the number of
integer variables. In principle, this might limit the scope
of application of the proposed method to very slow sys-
tems, since for real-time implementation the sampling
time should be large enough to allow the worst-case com-
putation. However, the stability proof does not require
that the evaluated control sequences {U∗

t }∞t=0 are global



140 Manfred Morari

optima, but only that they lead to a decrease in the
objective function. Thus the solver can be interrupted
at any intermediate step to obtain a suboptimal solu-
tion U∗

t+1 which satisfies the decrease condition. For in-
stance, when Branch & Bound methods are used to solve
the MIQP problem, the new control sequence U∗

t can be
selected as the solution to a QP subproblem which is
integer-feasible and has the lowest value. Obviously in
this case the performance deteriorates.

Example 2

Consider the following system



x(t + 1) = 0.8

[
cos α(t) − sin α(t)
sin α(t) cos α(t)

]
x(t) +

[
0
1

]
u(t)

y(t) = [1 0]x(t)

α(t) =

{
π
3

if [1 0]x(t) ≥ 0
−π

3
if [1 0]x(t) < 0

x(t) ∈ [−10, 10]× [−10, 10]
u(t) ∈ [−1, 1]

(10)
By using auxiliary variables z(t) ∈ R4 and δ(t) ∈ {0, 1}
such that [δ(t) = 1] ↔ [[1 0]x(t) ≥ 0], Equation 10 can
be rewritten in the form (3) as

x(t + 1) =
[

I I
]
z(t)

10
−10− ε
−M
−M
M
M
M
M
−M
−M

0
0
0
0



δ(t) +



0 0
0 0
I 0
−I 0
0 I
0 −I
I 0
−I 0
0 I
0 −I
0 0
0 0
0 0
0 0



z(t) ≤



0
0
0
0
0
0
B
−B
B
−B
0
0
1
−1



u(t) +



1 0
−1 0

0
0
0
0

A1

−A1

A2

−A2

I
−I
0
0



x(t) +



10
−ε
0
0
M
M
M
M
0
0
N
N
1
1


where B = [0 1]′, A1, A2 are obtained by (10) by setting
respectively α = π

3 ,−π
3 , M = 4(1 +

√
3)[1 1]′ + B, N ,

10[1 1]′, and ε is a properly small positive scalar.
In order to stabilize the system to the origin, the feed-

back control law (7)–(9) is adopted, along with the pa-
rameters T = 3, ue = 0, δe = 0, ze = [0 0 0 0]′,

δ(t)u(t)
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Figure 2: Closed-loop regulation problem for sys-
tem (10). Closed-loop trajectories (thick lines) and
optimal solution at t = 0 (thin lines, right plots).
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Figure 3: Closed-loop tracking problem for sys-
tem (10), with y(t) = x1(t).

xe = [0 0]′, ye = 0, and the weights Q1 = 1, Q2 = 0.01,
Q3 = 0.01I4, Q4 = I2, Q5 = 0. Figure 2 shows the result-
ing trajectories. The trajectories obtained at time t = 0
by solving the optimal control problem (7)–(8) are also
reported in the right plots (thin lines). Consider now a
desired reference r(t) = sin(t/8) for the output y(t). We
apply the same MIPC controller, with the exception of
Q4 = 10−8I2, Q5 = 1. The steady-state parameters are
selected as ye = r(t), and ue, xe, δe, ze consistently. Fig-
ure 3 shows the resulting closed-loop trajectories. Notice
that the constraint −1 ≤ u(t) ≤ 1 prevents the system
from tracking the peaks of the sinusoid, and therefore
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the output trajectory is chopped. �

MIQP Solvers

With the exception of particular structures, mixed-
integer programming problems involving 0-1 variables
are classified as NP -complete, which means that in the
worst case, the solution time grows exponentially with
the problem size (Raman and Grossmann, 1991). De-
spite this combinatorial nature, several algorithmic ap-
proaches have been proposed and applied successfully to
medium and large size application problems (Floudas,
1995), the four major ones being

• Cutting plane methods, where new constraints (or
“cuts”) are generated and added to reduce the fea-
sible domain until a 0-1 optimal solution is found.

• Decomposition methods, where the mathematical
structure of the models is exploited via variable par-
titioning, duality, and relaxation methods.

• Logic-based methods, where disjunctive constraints
or symbolic inference techniques are utilized which
can be expressed in terms of binary variables.

• Branch and bound methods, where the 0-1 combina-
tions are explored through a binary tree, the feasi-
ble region is partitioned into sub-domains system-
atically, and valid upper and lower bounds are gen-
erated at different levels of the binary tree.

For MIQP problems, (Fletcher and Leyffer, 1998) indi-
cate Generalized Benders’ Decomposition (GBD) (Laz-
imy, 1985), Outer Approximation (OA), LP/QP based
branch and bound, and Branch and Bound as the major
solvers. See (Roschchin et al., 1987) for a review of these
methods.

Several authors agree on the fact that branch and
bound methods are the most successful for mixed integer
quadratic programs. (Fletcher and Leyffer, 1998) report
a numerical study which compares different approaches,
and Branch and Bound is shown to be superior by an
order of magnitude. While OA and GBD techniques can
be attractive for general Mixed-Integer Nonlinear Prob-
lems (MINLP), for MIQP at each node the relaxed QP
problem can be solved without approximations and rea-
sonably quickly (for instance, the Hessian matrix of each
relaxed QP is constant).

As described by (Fletcher and Leyffer, 1998), the
Branch and Bound algorithm for MIQP consists of solv-
ing and generating new QP problems in accordance with
a tree search, where the nodes of the tree correspond
to QP subproblems. Branching is obtained by generat-
ing child-nodes from parent-nodes according to branch-
ing rules, which can be based for instance on a-priori
specified priorities on integer variables, or on the amount
by which the integer constraints are violated. Nodes are
labeled as either pending, if the corresponding QP prob-
lem has not yet been solved, or fathomed, if the node has

already been fully explored. The algorithm stops when
all nodes have been fathomed. The success of the branch
and bound algorithm relies on the fact that whole sub-
trees can be excluded from further exploration by fath-
oming the corresponding root nodes. This happens if
the corresponding QP subproblem is either infeasible or
an integer solution is obtained. In the second case, the
corresponding value of the cost function serves as an up-
per bound on the optimal solution of the MIQP problem,
and is used to further fathom other nodes having greater
optimal value or lower bound.

Some of the simulation results reported in this paper
have been obtained in Matlab by using the commercial
Fortran package (Fletcher and Leyffer, 1994) as a MIQP
solver. This package can handle both dense and sparse
MIQP problems. The latter has proven to be particularly
effective to solve most of the optimal control problems
for MLD systems. In fact, the constraints have a trian-
gular structure, and in addition most of the constraints
generated by representation of logic facts involve only a
few variables, which often leads to sparse matrices.

Explicit Computation of MPC Control Law

In (Bemporad et al., 2002) the authors presented a new
approach to implement MPC, where all the computation
effort is moved off-line. The idea is based on the obser-
vation that in (8) the state x(0|t) can be considered a
vector of parameters, and (7)–(9) as a multi-parametric
Mixed Integer Quadratic Program (mp-MIQP). If the
1-norm is used in (7) instead of the 2-norm a multi-
parametric Mixed Integer Linear Program (mp-MILP)
results. An algorithm to solve mp-MILP problems was
presented in (Acevedo and Pistikopoulos, 1997). Once
the multi-parametric problem (7,8) has been solved off
line, i.e., the solution U∗

t = f(x(t)) of (7,8) has been
found, the model predictive controller is available explic-
itly. In (Acevedo and Pistikopoulos, 1997) the authors
also show that the solution U∗ = f(x) of the mp-MILP
problem is piecewise affine. Clearly, the same properties
are inherited by the controller, i.e.,

u(t) = Fix(t) + gi, for

x(t) ∈ Ci , {x : Hix ≤ Si}, i = 1, . . . , s
(11)

where ∪s
i=1Ci is the set of states for which a feasible so-

lution to (7,8) exists. Therefore, the closed MPC loop
is of the form (1), where Ai = A + BFi, fi = Bgi,
Bi = 0. Note that the form of the closed-loop MPC
system remains PWA also when (i) the matrices A, B
of the plant model are different from those used in the
prediction model, and (ii) the plant model has a PWA
form. Typically, the MPC law is designed based on a lin-
ear model obtained by linearizing the nonlinear model
of the plant around some operating condition. When
the nonlinear model can be approximated by a PWA
system (e.g., through multiple linearizations at different
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Figure 4: Reachability analysis problem.

operating points or by approximating nonlinear static
mappings by piecewise linear functions), the closed-loop
consisting of the nonlinear plant model and the MPC
controller can be approximated by a PWA system as
well.

The explicit representation of the MPC controller dis-
cussed above is significant for several reasons. First of
all, it gives some insight into the mathematical struc-
ture of the controller which is otherwise hidden behind
the optimization formalism. Furthermore it offers an al-
ternative route to an efficient controller implementation,
opening up the route to use MPC in “fast” and “cheap”
systems where the on-line solution of a QP and espe-
cially an MILP is prohibitive. Finally, the fact that we
can represent the closed loop system in a PWA form al-
lows us to apply new tools for performance analysis as
discussed below.

Verification of MLD and PWA Systems

In this section we will briefly review the topic of veri-
fication and sketch the available algorithms. There are
numerous practical applications of verification, two of
which (checking the correctness of an emergency shut
down control system and performance analysis of MPC)
will be discussed in some detail.

The problem of verification of hybrid systems, or, in
system theoretical words, the reachability analysis of hy-
brid systems can be defined as follows:

Reachability Analysis Problem. Given a hybrid sys-
tem Σ (either in PWA form (1) or MLD (3)), a set of
initial conditions X(0), a collection of disjoint target sets
Z1, Z2, . . ., ZL, a bounded set of inputs U, and a time
horizon t ≤ Tmax, determine (i) if Zj is reachable from
X(0) within t ≤ Tmax steps for some input sequence
{u(0), . . . , u(t−1)} ⊆ U; (ii) if yes, the subset of initial
conditions XZj (0) of X(0) from which Zj can be reached
within Tmax steps; (iii) for any x1 ∈ XZj

(0) and x2 ∈ Zj ,
the input sequence {u(0), . . . , u(t− 1)} ⊆ U, t ≤ Tmax,
which drives x1 to x2.

We will denote by X(t,X(0)) the reach set at time t

Figure 5: Flowchart of the benchmark evaporator
system.

starting from any x ∈ X(0) and by applying any input
u(k) ∈ U, k ≤ t− 1.

Although finite time reachability analysis cannot an-
swer certain “liveness” questions (for instance, if Zi will
be ever reached), the reachability problem stated above
is decidable. The reason for focusing on finite-time reach-
ability is that the time-horizon Tmax has a clear mean-
ing, namely that states which are reachable in more than
Tmax steps are in practice unreachable. Many undecid-
able problems can be approximated by decidable ones
which are equivalent from a practical point of view. The
decidable algorithm shown in (Bemporad et al., 2000a)
for observability analysis, and the decidable stability
analysis proposed in (Bemporad et al., 2000) are other
examples of such a philosophy. Nevertheless, the prob-
lem is NP -hard.

Verification

Algorithm. Assume X(0) ⊂ Ci is a convex polyhe-
dral set. With the algorithm introduced in (Bemporad
et al., 2000) computing the evolution X(Tmax,X(0)) re-
quires: (i) the reach set X(t,X(0))

⋂
Ci, i.e., the set of

evolutions at time t in Ci from X(0); (ii) crossing de-
tection of the guardlines Ph , X(t,X(0))

⋂
Ch 6= ∅,

∀h = 0, . . . , i − 1, i + 1, . . . , s − 1; (iii) elimination of
redundant constraints and approximation of the poly-
hedral representation of the new regions Ph (approxi-
mation is desirable, as the number of facets of Ph can
grow linearly with time); (iv) detection of emptiness of
X(t,Ph) (emptiness happens when all the evolutions have
crossed the guardlines) and detection of X(t, Ph) ⊆ Zj ,
j = 1, . . . , L (these will be referred to as fathoming con-
ditions), (v) detection of X(t,Ph) ∩ Zj 6= ∅, j = 1, . . . , L
(reachability detection).
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Figure 6: Model of the controller as finite state ma-
chine.

Batch Evaporator Process Benchmark. In this
section we report on an application of the verifica-
tion algorithm outlined in the previous section to the
benchmark problem proposed within the ESPRIT-LTR
Project 26270 VHS (Verification of Hybrid Systems)2 as
case study 1. The full system consists of an experimen-
tal batch plant (Kowalewski, 1998). In this paper we
will focus only on the evaporator system, as proposed
in (Kowalewski and Stursberg, 1998), which is schemat-
ically depicted in Figure 5. The considered subsystem
consists of three parts: the upper tank 1 (labeled as B5
in Figure 5), the lower tank 2 (B7) and the condenser
(K1). Tank 1 is equipped with a heating system (H), and
is connected to tank 2 by a pipe and a valve (V15), while
the outlet of tank 2 is controlled by valve V18. Both the
heating system and the valves can only have two config-
urations: on (open) and off (closed). The levels h1, h2 of
the solution in the two tanks, and the temperature T of
tank 1 are detected by sensors. These provide four logic
signals: tank 1 empty, tank 2 empty, alarm, and crystal-
lization. A tank is considered as empty when its level is
lower than 0.01 m.

During normal operation of the plant, an aqueous solu-
tion of salt enters tank 1 to be concentrated. The exiting
steam flows through a condenser. When the concentra-
tion of salt has reached a certain level, the heating sys-
tem is switched off, valve V15 is opened, and the solution
flows to tank 2 for post-processing operations. The plant
is designed in such a way that more than one batch can
be produced at the same time, so that tank 1 and tank 2
can process different batches in parallel.

Here we want to analyze the exception handling
needed when the condenser does not work properly. Sup-
pose that for some reason (e.g. lack of cooling agent) the
condenser malfunctions. In this case, the steam cannot
be cooled down and the pressure rises in tank 1. The
heating system should be switched off to prevent dam-
ages to the plant due to over-pressure. On the other
hand, the temperature in tank 1 should not get lower
than a critical temperature Tc, otherwise the salt may
crystallize and expensive procedures would be needed to
restore the original functionality.

The plant is controlled by a PLC (programmable logic

2http://www-verimag.imag.fr/VHS/

controller). The finite state machine underlying the con-
trol code is described in Figure 6, where the event alarm
occurs when T ≥ Ta and crystallization when T ≤ Tc.

The control strategy can be explained as follows.
When a malfunctioning of the condenser is detected, the
controller enters the alarm mode and immediately opens
valve V18 to empty tank 2. During this phase, the heat-
ing is still on (heating state). When the temperature in
tank 1 reaches the alarm level Ta (alarm), the heating is
switched off and the controller enters the state cooling.
Finally, when tank 2 is empty, the controller gets in the
state draining, where valve V18 is closed and valve V15 is
opened, and the solution flows from the upper tank to
the lower one. From draining, the controller can either
switch to the state won if tank 1 gets empty, or to lost
if the temperature in tank 1 gets lower than the critical
value Tc.

The goal is to verify that the controller satisfies the
following safety requirements: (i) if a malfunctioning in
the cooling system of the condenser occurs, the heater
must be turned off quickly enough to prevent damages
to the condenser, (ii) the solution in tank 1 is drained
to tank 2 before it eventually solidifies, (iii) when the
valve 15 is open tank 2 is empty.

Certifying that the PLC code satisfies these specifica-
tions amounts to verify that from all the initial states in
a given set X0 the system never reaches the state lost,
or, equivalently, that the system always reaches the state
won

Modeling the Evaporator Benchmark in MLD
Form. In order to use the verification tools outlined
above, we need to obtain a hybrid model of the batch
evaporator process in MLD form. We consider the model
described in (Stursberg, 1999), which only takes into ac-
count the heights h1, h2 and the temperature T of tank 1.
The model is summarized in Table 2 (dynamic equations
associated with each logical state), and is based on the
following simplifying assumptions: (i) the pressure in-
crease during the evaporation in the heating phase is
neglected, (ii) the dynamics during the cooling phase is
the same for T ≷ 373 K, (iii) average constants replace
ranges of physical parameters.

After the piece-wise linear approximation of the square
root relation (three sections) the model can be readily ex-
pressed in the HYSDEL language (see Appendix ). The
MLD model generated by the compiler includes three
continuous states xc, three logic states x`, 19 Boolean
inputs δ and eight auxiliary variables z.

Verification Results. We aim at verifying that af-
ter an exception occurs, the PLC code based on the con-
trol logic of Figure 6 safely shuts down the plant to the
won state for any initial condition x(0) =

[ xc(0)
x`(0)

]
∈ X0 =

{T, h1, h2, x` : T = 373, 0.2 ≤ h1 ≤ 0.22, 0.28 ≤ h2 ≤
0.3, x` =

[ 0
0
0

]
}.
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Logic state Heating V15 V18 Dynamic behavior

Heating on closed open


∂T
∂t = k3(q − k4(T − te))
∂h1
∂t = 0

∂h2
∂t = −k2

√
h2

Cooling off closed open


∂T
∂t = k5(T − te)
∂h1
∂t = 0

∂h2
∂t = −k2

√
h2

Draining off open closed


∂T
∂t = k5(T − te)
∂h1
∂t = −k1

√
h1

∂h2
∂t = k2

√
h1

Won off closed closed


∂T
∂t = k5(T − te)
∂h1
∂t = 0

∂h2
∂t = 0

Lost off closed closed


∂T
∂t = k5(T − te)
∂h1
∂t = 0

∂h2
∂t = 0

Table 2: Hybrid model of the evaporator process.

Figure 7: Set evolution from X0 to the target set
Z1 (won) for Ta = 391 (same evolution, different
perspectives).

To this end, we apply the verification algorithm pre-
sented above, and label as target set Z1 the set of safe
states {x : x` =

[ 0
1
0

]
} (won), and as target set Z2 the set

of unsafe states {x : x` =
[ 0

1
0

]
} (lost). The results of the

algorithm are plotted in Figure 7, where the set evolu-
tion in the three-dimensional continuous state space h1,
h2, T from the initial conditions X(0) is depicted from
different view angles.

The tool can also easily perform parametric verifica-
tion if the vector of parameters θ enters the model lin-
early, and its range is a polyhedral set Θ (e.g. Θ is an
interval). Constant parameters can in fact be taken into
account by augmenting the state vector to

[
x
θ

]
, adding a

constant dynamics θ(t+1) = θ(t) for the additional state
θ, and setting the set of initial conditions to X(0) × Θ.
Vice versa, varying parameters with unknown dynamics
can be modeled as additional inputs to the system, i.e.,
as disturbances.

We use parametric verification for checking against
variations of the alarm temperature Ta in the range
383 K≤ Ta ≤ 393 K. As Ta is a constant parameter
of the PLC code, it is treated as an additional state.

The parametric verification produces the following re-
sult: for Ta ≥ 390.4902 the controller drives the plant to
the terminal state Z1 (won) for all the initial heights and
temperature in X0. The parametric verification requires
82 s to build the graph of evolution on a PC Pentium II
400 MHz running interpreted Matlab code.
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Performance Characterization

While there are many performance measures for linear
systems (ranging from the traditional Integral-Square-
Error to the modern Hinfty criterion) the performance
of systems with constraints under MPC is more difficult
to characterize in a compact meaningful manner. Obvi-
ously, as a minimum requirement the closed loop MPC
system must be stable. All the available MPC stability
results hold when the associated optimization problem
is feasible. Thus, a possible performance charcterization
would be to determine that region of the state space for
which all emanating trajectories lead to feasible opti-
mization problems as they evolve. To arrive at a more
quantitative measure we can define a region C0 around
the origin and determine that region DT (0) of the state
space for which all emanating trajectories lead into C0

in T time steps. This problem can also be solved by the
proposed verification algorithm as detailed below.

We aim at estimating the domain of attraction of the
origin, and the set of initial conditions from which the
state trajectory remains feasible for the constraints. As
mentioned in the previous section, the nominal MPC
closed-loop system is an autonomous PWA system. The
origin belongs to the interior of one of the sets of the
partition, namely the region where the LQ gain K is
asymptotically stabilizing while fulfilling the constraints,
which by convention will be referred to as C0. Denote by
D∞(0) ⊆ Rn the (unknown) domain of attraction of the
origin. Given a bounded set X(0) of initial conditions,
we want to characterize D∞(0)

⋂
X(0).

By construction, the matrix A0, associated with the
region C0, is strictly Hurwitz and f0 = 0 (in fact, in C0

the feedback gain is the unconstrained LQR gain F0 =
K, g0 = 0 (Bemporad et al., 2002)). Then we can com-
pute an invariant set in C0. In particular, we compute
the maximum output admissible set (MOAS) X∞ ⊆ C0.
X∞ is the largest invariant set contained in C0, which
by construction of C0 is compatible with the constraints
umin ≤ Kx(t) ≤ umax, xmin ≤ x(t) ≤ xmax. By (Gilbert
and Tan, 1991, Th.4.1), the MOAS is a polyhedron with
a finite number of facets, and is computed through a fi-
nite number of linear programs (LP’s) (Gilbert and Tan,
1991).

In order to circumvent the undecidability of stability,
we give the following

Definition 1 Consider the PWA system (1), and let the
origin 0 ∈

◦
C0 , {x : H0x < S0}, and A0 be strictly

Hurwitz. Let X∞ be the maximum output admissible set
(MOAS) in C0, which is an invariant for the linear sys-
tem x(t + 1) = A0x(t). Let T be a finite time horizon.
Then, the set X(0) ⊆ Rn of initial conditions is said to
belong to the domain of attraction in T steps DT (0) of
the origin if ∀x(0) ∈ X(0) the corresponding final state
x(T ) ∈ X∞.

(a) Closed-loop MPC.
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(b) Explicit solution.

Figure 8: Example 12.

Note that DT (0) ⊆ DT+1(0) ⊆ D∞(0), and DT (0) →
D∞(0) as T →∞. The horizon T is a practical informa-
tion about the speed of convergence of the PWA system
to the origin and thus about its dynamic performance.

Definition 2 Consider the PWA system (1), and let
Xinfeas , Rn\ ∪s

i=1 Ci. The set X(0) ⊆ Rn of initial
conditions is said to belong to the domain of infeasibility
in T steps IT (0) if ∀x(0) ∈ X(0) there exists t, 0 ≤ t ≤ T
such that x(t) ∈ Xinfeas.

In Definition (2), the set Xinf must be interpreted as a
set of “very large” states. Although instability in T steps
does not guarantee instability (for any finite T , a trajec-
tory might reach Xinf and converge back to the origin),
it has the practical meaning of labeling as “unstable”
the trajectories whose magnitude is unacceptable, for in-
stance because the PWA system is no longer valid as a
model of the real system.

Given a set of initial conditions X(0), we aim at finding
subsets of X(0) which are safely asymptotically stable
(X(0)

⋂
DT (0)), and subsets which lead to infeasibility in

T steps (X(0)
⋂

IT (0)). Subsets of X(0) leading to none
of the two previous cases are labeled as non-classifiable
in T steps. As we will use linear optimization tools, we
assume that X(0) is a convex polyhedral set (or the union
of convex polyhedral sets). Typically, non-classifiable
subsets shrink and eventually disappear for increasing
T .

An Example. Consider the system y(t) =
s+1

s2+s+2u(t), and sample the dynamics with T = 0.2 s.
The task is to regulate the system to the origin while ful-
filling the constraints −1 ≤ u(t) ≤ 1 and x(t) ≥

[−0.5
−0.5

]
.

To this aim, we design an MPC controller based on the
optimization problem

min
ut,ut+1

||xt+2|t||2P +

1∑
k=0

||xt+k|t||2 + .1||ut+k||2

subj. to −2 ≤ ut+k ≤ 2, k = 0, 1

xt+k|t ≥ xmin, xmin ,
[−0.5
−0.5

]
, k = 0, 1

(12)

where P is the solution to the Riccati equation (in this
example Q =

[
1 0
0 1

]
, R = 0.1, Nu = Ny = Nc = 2).
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Figure 9: Partition of initial states into safely stable,
and infeasible in T = 20 steps.

Note that this choice of P corresponds to setting ut+k =
Kxt+k|t for k ≥ 2, where K is the LQR gain, and min-
imizes

∑∞
k=0 x′t+k|txt+k|t + .01u2

t+k with respect to ut,
ut+1. The closed loop response from the initial condi-
tion x(0) = [1 1]′ is shown in Figure 8(a).

The solution to the mp-QP problem was computed by
using the solver in (Bemporad et al., 2002) in 0.66 s on
a PC Pentium III 650 MHz running Matlab 5.3, and the
corresponding polyhedral partition of the state-space is
depicted in Figure 8(b). The MPC law is linear in each
one of the four depicted regions.

Region #3 corresponds to the unconstrained LQR con-
troller, #1 and #4 to saturation at −1 and +1, respec-
tively, and #2 is a transition region between LQR control
and the saturation.

Note that the union of the regions depicted in Fig-
ure 8(b) should not be confused with the region of attrac-
tion of the MPC closed-loop. For instance, by starting at
x(0) = [3.5 0]′ (for which a feasible solution exists), the
MPC controller runs into infeasibility after t = 5 time
steps.

The reachability analysis algorithm described above
was applied to determine the set of safely stable initial
states and states which are infeasible in T = 20 steps
(Figure 9). The algorithm computes the graph of evolu-
tions in 115 s on a Pentium II 400 running Matlab 5.3.

Conclusions

The paper argues that many unsolved problems of prac-
tical interest involve systems where dynamics and logic
interact. A big subclass of such systems can be mod-
eled in discrete time as Mixed Logic Dynamical (MLD)
systems described by linear dynamic equations subject
to linear inequalities involving real and integer variables.
As an immediate benefit of the MLD description most

system analysis and synthesis tasks can be cast as mixed
integer optimization problems, for which many commer-
cial solvers exist.

Our group has concentrated on this model paradigm
and developed a wide variety of tools and techniques
(only a small fraction of which was discussed in this
paper), among them: HYSDEL, a modelling language
for the specification of MLD systems and a compiler to
generate the MLD models; a model predictive controller
with an explicit representation where the optimization
effort is entirely shifted off-line; an algorithm for the ver-
ification of MLD systems which is useful for a variety of
tasks ranging from checking the correctness of PLC code
to assessing the performance of MPC loops; several al-
gorithms to analyze the observability of MLD systems
essential for filter design, process monitoring and fault
detection; several filtering algorithms based on the mov-
ing horizon idea with rather general convergence guar-
antees.

In collaboration with different companies we have ap-
plied the tools to a range of problems including traction
control and gear shift/clutch operation on automotive
vehicles, power management for electrical utilities, fault
detection on a benchmark multi-tank system, optimal
operation of a gas supply system, blood pressure control
in anesthesia and analysis of an emergency shutdown
system for a pilot batch plant.

All the investigated theoretical problems are “hard”
in the mathematical sense (maybe all interesting prob-
lems are?), which implies—loosely speaking—that in the
worst case the computational effort grows exponentially
with the problem size. Thus the future challenge will
be to develop approximate methods which provide good,
if not optimal answers for problems with specific struc-
tures and where the computational effort grows only in
a polynomial fashion. Otherwise the applicability of the
developed tools will remain limited to small problems.

An extensive set of reports describing all aspects of
our work on hybrid systems is available from our web
site http://control.ethz.ch
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Appendix

HYSDEL (HYbrid Systems DEscription Lan-
guage)

The derivation of the MLD model, i.e., a set of linear
difference equations and mixed-integer linear inequali-
ties, from an interconnection of components involving
continuous systems and logic is an involved tedious task
for all but the most simple example problems. There-
fore we have developed a HYbrid Systems DEscription
Language (HYSDEL) for the specification of such sys-
tems and a compiler which readily generates the equiv-
alent MLD form. The HYSDEL compiler is available
on-line at http://control.ethz.ch/~hybrid/hysdel.
Thanks to the equivalence between the various hybrid
system descriptions mentioned in the paper, the MLD
form can be used as an intermediate step to obtain the
corresponding PWA, LC, ELC, or MMPS counterpart.

In HYSDEL systems are viewed as the interconnec-
tion of basic objects. Each object admits an equivalent
representation as linear mixed-integer equalities and in-
equalities. The basic objects are:

• A/D (Analog-to-Digital) block. Can extract
logic facts from the activity level of linear thresh-
olds.A graphical representation is provided in Fig-
ure 10.

• D/A (Digital-to-Analog) block. Is the counter-
part of the A/D block. This block (see Figure 11)
is able to associate with the output different linear
expressions according to the different logic value of
the input.

• Automaton. Evolves according to the logic part of
the overall system input and the logic signals com-
ing out from the A/D blocks and from other au-
tomata. As the schematic representation depicted
in Figure 12 shows, the automaton typically makes
its internal state available to other components.

• Continuous dynamics. Is a Discrete-time Linear
Time Invariant (D-LTI) system and the different
modes of operation are obtained by connecting (see
Figure 13) the input to the output of a D/A block.

As an illustration the HYSDEL code for the batch evap-
orator example is shown in Figure 14.

A/D
Continuous

Input

Boolean

Output

Figure 10: A/D block—Continuous to logic conver-
sion.

D/A
Boolean

Input

Continuous

Output

Continuous

Input

Figure 11: D/A block—Logic to continuous conver-
sion.

Automaton
Boolean

Input

Boolean

Output

Internal State

Figure 12: Automaton.

D-LTI
Continuous

Input

Continuous

Output

Internal State

Figure 13: Discrete-time-invariant linear continuous
dynamics.
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/* VHS Esprit Project - Case Study 1 */

SYSTEM batchevaporator {
INTERFACE {

STATE {
REAL tmp,h1,h2,tal;
BOOL p1,p2,p3; }

OUTPUT {
REAL outreal1;
BOOL outbool1; }

PARAMETER {
REAL q = 5000; /* kW */

(other parameters are omitted for brevity)

}
}

IMPLEMENTATION {
AUX {

REAL zT, zh1a, zh1b, zh1c, zh2a, zh2b, zh2c, zh2d;

BOOL ti1,ti2,l1,l2,h,v18,v15,d1;
BOOL l1h1,l1h2; /* Linearization of sqrt */
BOOL da1,da2,da3,da4,da5,da6,da7; }

LOGIC {
h = ~p1&~p2&~p3;
v18 = ~p1&~p2&~p3 | ~p1&~p2&p3;
v15 = p1&~p2&~p3;
da1=v18&~l1&l1h1;
da2=v18&~l1&~l1h1;
da3=~v18&~l1;
da4=v15&~l2&l1h2;
da5=~v15&~l2&l1h2;
da6=v15&~l2&~l1h2;
da7=~v15&~l2&~l1h2; }

AD {
ti1 = -tmp+tal <= 0 [-Tmin+Talmax,-Tmax+Talmin,1e-2];
ti2 = tmp-338 <= 0 [Tmax-338,Tmin-338,1e-2];
l1 = h1-0.01 <= 0 [hmax-0.01,hmin-0.01,1e-6];
l2 = h2-0.01 <= 0 [hmax-0.01,hmin-0.01,1e-6];
l1h1 = h1-l1h1t <= 0 [hmax-l1h2t,hmin-l1h2t,1e-6];
l1h2 = h2-l1h2t <= 0 [hmax-l1h2t,hmin-l1h2t,1e-6]; }

DA {
zT = {IF h THEN atmp1*tmp+btmp1 [atmp1*Tmax+btmp1,atmp1*Tmin+btmp1,0]

ELSE atmp2*tmp+btmp2 [atmp2*Tmax+btmp2,atmp2*Tmin+btmp2,0] };
zh1a = {IF da1 THEN ah1a*h1+bh1a [ah1a*hmax+bh1a,ah1a*hmin+bh1a,0] };
zh1b = {IF da2 THEN ah1b*h1+bh1b [ah1b*hmax+bh1b,ah1b*hmin+bh1b,0] };
zh1c = {IF da3 THEN h1 [hmax,hmin,0] };
zh2a = {IF da4 THEN ahh2a*h1+h2+bhh2a [ahh2a*hmax+hmax+bhh2a,ahh2a*hmin+hmin+bhh2a,0]};
zh2b = {IF da5 THEN ah2a*h2+bh2a [ah2a*hmax+bh2a,ah2a*hmin+bh2a,0] };
zh2c = {IF da6 THEN ahh2b*h1+h2+bhh2b [ahh2b*hmax+hmax+bhh2b,ahh2b*hmin+hmin+bhh2b,0]};
zh2d = {IF da7 THEN ah2b*h2+bh2b [ah2b*hmax+bh2b,ah2b*hmin+bh2b,0] }; }

CONTINUOUS {
tmp = zT;
h1 = zh1a + zh1b + zh1c;
h2 = zh2a + zh2b + zh2c + zh2d;
tal = tal; }

AUTOMATA {
p1= (~p1&~p2&p3&l2) | (p1&~p2&~p3&~ti2&~l1);
p2= (p1&~p2&~p3&l1) | (p1&~p2&~p3&ti2) | (~p1&p2&~p3) | (~p1&p2&p3);
p3= (~p1&~p2&~p3&ti1) | (~p1&~p2&p3&~l2) | (p1&~p2&~p3&ti2) | (~p1&p2&p3); }

MUST {
~(ti1 & ti2); /* Excludes combination ti1,ti2=11 */
~(p1 & (p2 | p3)); /* Excludes logical states 101,110,111 */
~l1h1|~l1;
~l1h2|~l2; }

}
}

Figure 14: Example of HYSDEL code for the batch evaporator example.


