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Abstract
This contribution presents results obtained from a model based design of metabolic networks. In the first part of the
paper, topological analysis is used for exploring the metabolic architecture. These investigations—also called pathway
analysis or flux space analysis—are aimed at detecting the metabolic routes that lead from anyone starting point to some
products. The technique is applied for the computation of maximal yields for amino acids and, for the first time, also
for the analysis of metabolic networks in context with the formation of biomass. The latter study leads to an array of
mutants with different biomass yields, for which the name “Phenome” has been coined.

In the second part of the contribution, a strategy for the optimization of product formation rates is presented by means
of the ethanol formation rate in Saccharomyces cerevisiae. A dynamic model based on experimental observations at
defined anaerobic conditions serves as a starting point. Non-linear optimization of the distribution of enzyme activities
results in a substantial increase of ethanol formation rate. The optimum is mainly constrained by homeostasis and can
be characterized by higher activities of strongly rate limiting steps. However, some enzymes exerting almost no control
on ethanol flux (e.g. triose phosphate isomerase) are found at higher activities as well. This finding can be explained by
the enzyme’s ability of counteracting an increase of pool concentrations effectively.
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Introduction

One of the fascinating challenges in mastering biosystems
is to interpret living processes in a quantitative man-
ner. As such, mathematical modeling is of central impor-
tance. At a time of the ballooning amount of data gener-
ated by the high throughput technology in genome, tran-
scriptome, proteome and metabolome research, one of
the important issues for modeling is to bridge the gap be-
tween data and an integrated understanding of the com-
plex functionality of biosystems. Moreover, there is an
urgent need for new approaches to strengthen the model
based design of biosystems. This activity is of increasing
relevance with respect to the optimization of yields, se-
lectivities and productivities in industrial bioprocesses.
Furthermore, mathematical modeling will lead to signif-
icant insight through an integrative analysis of diseases
and support target identification for drug discovery.

While the potential and promise of biological systems
modeling is substantial, also several obstacles are en-
countered. Before benefits can be gathered from bio-
logical systems analysis, issues like, for example, the ap-
propriate balance between significance, complexity and
availability of quantitative experimental observations
need to be addressed. Furthermore, in many cases insuf-
ficient emphasis has been placed on fundamental ques-
tions of purpose, intended application (Bailey, 1998),
predictive power and relevance concerning significant
contributions to the solution of the aforementioned prob-
lems.

This contribution aims at the design of biosystems
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Figure 1: Optimization of bioprocesses through
metabolic engineering.

within industrial applications. Therefore, modeling is
part of a well known engineering cycle depicted in Fig-
ure 1.

Central to the general modeling framework is its pre-
dictive strength. A sound prediction, in turn, must
rest upon reliable experimental data. In the majority
of cases, implementation of the model-based suggestions
for genetic reprogramming is performed with the aid
of recombinant DNA-technology. Unfortunately, only
few models qualify for the design of metabolic networks.
When extrapolation beyond the horizon of experimen-
tal observations is required, the missing link mostly is
predictive strength. A critical assessment of the state
of the art and meaningful discussion of the present lim-
its would require a comprehensive evaluation of several
fundamental issues of modeling biosystems. Only two of
these issues will be addressed in this contribution: (1)
Flux analysis based on topological properties and (2)
Flux optimization based both on toplogical and kinetic
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Figure 2: Quantification of flux distributions.

properties of metabolic networks.

Flux Analysis

According to the source of information, balance equa-
tions for the metabolic system of interest can be created
(see Figure 2).

When balance equations are derived from annotated
sequence data, the resulting stoichiometric matrix re-
flects the metabolic capabilities of the genotype. While
depending on physiological conditions, a more specific
phenotype is considered when data from cDNA chips or
proteome analysis are used. Generally, balance equations
of structured metabolic models can be written as

d

dt
n = Nv, (1)

where matrix N (m× n) contains the stoichiometric co-
efficients νi,j of the n biochemical reactions. m denotes
the number of metabolites, v the vector of reaction rates,
whereas the vector of metabolites is denoted by n. Note
that in Equation 1 the transport rates across the various
membranes of the cell as well as the dilution of metabo-
lites due to growth are included in the state vector of the
reaction rates v. For steady state conditions Equation 1
reads:

Nv = 0. (2)

Metabolic Flux Analysis

Depending on the data available and the area of appli-
cation, Equation 2 can be used for the computation of
flux distributions in metabolic networks. The first route
delivers solutions for flux distributions through exper-
imentally determined exchange fluxes (Stephanopoulos
et al., 1998; Mauch et al., 2000).

For the estimation of unknown metabolic fluxes from
experimentally determined fluxes, we rewrite Equation 2
as

[Nm|Nc]
[
vm

vc

]
= 0, (3)

where vector vm consists of q experimentally determined

fluxes. The remaining (q − n) unknown fluxes are gath-
ered in vector vc. Partitioning of v into the known fluxes
vm and unknown fluxes vc then yields

Nmvm + Ncvc = 0, (4)

with matrices Nm (m× q) and Nc (m× n− q) corre-
sponding to vm and vc, respectively. From Equation 4
we obtain

Ncvc = −Nmvm, (5)

and upon multiplying Equation 5 by the transposed of
matrix Nc, the solution for unknown fluxes Nc is ob-
tained according to

vc = −
(
NT

c Nc

)−1
NT

c Nmvm, (6)

where the superscript -1 indicates matrix inversion. By
defining the pseudoinverse N#

c

N#
c =

(
NT

c Nc

)−1
NT

c , (7)

Equation 6 may be rewritten as

vc = −N#
c Nmvm. (8)

Mathematically, a determined metabolic system is de-
fined by

dim (vm) = n− rank (N) . (9)

That is, the amount of experimentally determined
fluxes q in vm equals the degree of freedom of the
metabolic network. If no conservation relations are
present in a determined system, the pseudoinverse N#

c

coincides with the inverse of Nc, thus(
NT

c Nc

)−1
NT

c = (Nc)
−1

. (10)

Hence, the fluxes vc of a determined system without con-
servation relations may be obtained by

vc = −N−1
c Nmvm. (11)

Importantly, a solution for vc only exists for a nonsin-
gular matrix Nc, that is

det (Nc) 6= 0, (12)

and for a determined metabolic system with 0 ≤ z < m
conservation relations:

det
(
NT

c Nc

)
6= 0. (13)

Provided the existence of a unique solution for vc, the
metabolic system is called observable. For an under-
determined metabolic network we have

dim (vm) < n− rank (N) , (14)

and since a unique solution for vc cannot be obtained,
we always find

det
(
NT

c Nc

)
= 0. (15)
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Hence, the dimension l of the solution space for an under-
determined system is given by

l = n− rank (Nc)− dim (vm) , (16)

whereas an overdetermined (i.e. redundant) metabolic
system is characterized by

dim (vm) > n− rank (N) . (17)

Similarly to a determined system, in overdetermined
systems a unique solution for the unknown fluxes vc

can only be derived if Equation 13 holds. Note that
an overdetermined system is not necessarily observable.
Frequently we meet the situation where experimental in-
formation on some fluxes is redundant while part of the
metabolic network still cannot be observed. The prob-
lem of non-observable fluxes can often be bypassed when
experimental data derived from tracer experiments are
available. Those measurements of labeled substrates are
either performed with NMR (Marx et al., 1996; Szyperski
et al., 1999) or gas chromatography/mass-spectroscopy
(GC-MS) (Christensen and Nielsen, 2000; Dauner and
Sauer, 2000). When metabolite balance equations are
extended with balance equations for the metabolite la-
beling distributions, a system of non-linear equations has
to be solved to estimate the associated steady state flux
distributions (Wiechert and de Graaf, 1997; Wiechert
et al., 1997; Schmidt et al., 1997, 1999).

Flux Space Analysis

Flux space analysis (see Figure 2) summarizes strategies
for topological analysis leading to meaningful informa-
tion on the flux space in metabolic networks. This is an
area of increasing importance in integrative functional
genomics aimed at a better understanding of the com-
plex relation between genotype and phenotype (Schus-
ter et al., 1999; Schilling et al., 1999, 2000; Schuster
et al., 2000a; Edwards and Palsson, 1999; Palsson, 2000).
This area—in terms of the “omic” revolution sometimes
named “phenomics”—becomes urgent for developing en-
gineering methods to deal with the massive amounts of
genetic and expression data in an integrative and holistic
way.

Flux space analysis (sometimes also called pathway
analysis) aims at detecting the metabolic routes that
lead from anyone starting point to the products of inter-
est steady state condtitions. The two strategies applied
for this analysis are the null space and the convex cone.
While linear algebra is used to determine the null space
of the homogeneous system of linear equations, meth-
ods of convex analysis (Vanderbei, 1998) are applied to
compute the convex cone.

The null space of matrix N is the subspace spanned
by k = rank (N)− dim (v) linearly independent vectors
v satisfying Equation 2. Accordingly, every linear in-
dependent base vector forms a column of the null space

matrix K (n× k), thus

NK = 0. (18)

Within the null space lie all of the flux distributions
under which the system can operate at steady state.
Thus, the null space allows to describe any flux distri-
bution of a genotype (by superposing it’s base vectors).
The vectors spanning the nullspace are, however, non-
unique solutions of Equation 2. Moreover, the base vec-
tors of the nullspace do not necessarily fulfill reversibility
criteria of individual reactions.

A different approach rests upon convex analysis and
leads to unique sets of vectors spanning the space of ad-
missible fluxes, for which names like, for example, ele-
mentary flux modes (Heinrich and Schuster, 1996) or ex-
treme pathways (Schilling et al., 2000) have been coined
for. In contrast to the base vectors of the nullspace, flux
vectors obtained by convex analysis always obey sign re-
strictions of practically irreversible reaction steps. The
investigations presented in the following are based on the
concepts of the elementary flux modes.

Elementary Flux Modes

Elementary flux modes are non-decomposable flux dis-
tributions admissible in steady state, including reaction
cycles (Heinrich and Schuster, 1996). Normally, elemen-
tary flux modes comprise a set of non-zero fluxes and a
set of zero fluxes, with the latter pointing to enzymes
which are not used to implement a specific function.
An example for an elementary mode which frequently
occurs in cellular systems is the complete oxidation of
substrate in the respiratory chain. To sustain respi-
ration, enzymes catalyzing anabolic reactions obviously
become dispensable. Another example might be an ele-
mentary flux mode leading to the formation of an amino
acid where, again, larger parts of the respiratory chain
are nonessential. Thus, by computing elementary flux
modes, the metabolic capacity of a given metabolic net-
work is unitized. In other words, the phenotype of a
certain genotype may be characterized by the complete
set of elementary flux modes.

The motivation for the study of elementary flux modes
arises from various potential applications. In biotech-
nology, an important objective is to increase the yield of
biosynthetic processes where a desired product can often
be synthesized by various different routes. It is then of
interest to detect and subsequently implement the route
on which the product/substrate ratio is maximum. Gen-
erally, a flux pattern that uses only the optimal route
cannot be obtained in practice. Nevertheless, it is help-
ful to compute the upper limits for the molar yield from
a given network topology.

It has turned out that the problem of maximizing the
yield of a biotransformation can be solved by detecting
all elementary modes in the system and choosing the
mode giving the best yield (Schuster et al., 1999). Al-
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Figure 3: Convex polyhedral cone K spanned by
three generating vectors e1 to e3. Flux distribution
J results from a linear combination of the generating
vectors ei.

ternatively, such optimization problems were tackled by
linear programming (Fell and Small, 1986; Savinell and
Palsson, 1992; van Gulik and Heijnen, 1995).

In many cases, the net direction of a reaction is known.
Therefore, we decompose the flux vector into two subvec-
tors, virr and vrev, corresponding to what will be called
the irreversible and reversible reactions, respectively. So
we have

virr ≥ 0. (19)

Equation 2 in conjunction with inequality(19) deter-
mines what is called a convex polyhedral cone. The edges
of the convex cone are established by the elementary flux
modes, and all the points on the interior of the cone can
be represented as positive combinations of these funda-
mental pathways (see Figure 3). From there, the convex
cone enfolds all potential stationary flux distributions of
a metabolic system.

Pursuing the goal to find basic pathways in biochemi-
cal reaction networks, Schuster and Schuster (1993) have
earlier developed a method for detecting the simplest flux
vectors v fulfilling relations (2) and (19) with all reac-
tions assumed to be irreversible. Generalizing the ap-
proach in that both reversible and irreversible reactions
are allowed for, this has led to the concept of elementary
flux modes (Schuster and Hilgetag, 1994).

Elementary flux modes are defined as follows (Heinrich
and Schuster, 1996, cf.): An elementary flux mode, M,
is defined as the set

M = {v ∈ Rn|v = λv∗, λ > 0} , (20)

where v∗ is a n- dimensional vector (unequal to the null
vector) fulfilling the following two conditions.

(a) Steady-state condition. Nv∗ = 0.

(b) Sign restriction.

If the system involves irreversible reactions, then the
corresponding subvector virr of v∗ fulfils inequality (19).

For any couple of vectors and (unequal to the null vector)
with the following properties:

• v
′
and v

′′
obey restrictions (a) and (b),

• both v
′

and v
′′

contain zero elements wherever v∗

does, and they include at least one additional zero
component each, v∗ is not a nonnegative linear com-
bination of v

′
and v

′′
,v∗ 6= λ1v

′
+λ2v

′′
, λ1, λ2 > 0.

The last condition formalizes the concept of genetic in-
dependence introduced by Seressiotis and Bailey (1988).
The condition says that a decomposition into two other
modes should not involve additional enzymes.

Elementary modes have been determined in a number
of biochemical networks, such as the synthesis of pre-
cursors of aromatic amino acids (Liao et al., 1996), the
tricarboxylic acid cycle and adjacent pathways (Schuster
et al., 1999) and glycolysis and alternative pathways in
bacteria (Dandekar et al., 1999).

While the promise is substantial, the value of the topo-
logical analysis will not be fully utilized until algorithms
are developed capable of tackling large metabolic, sig-
naling or gene networks efficiently. What are the limits
of the known algorithms in the calculation of elementary
flux modes when applied to large systems?

Most of the algorithms applied to biological systems
so far are bottom up approaches (Schuster et al., 2000b;
Schilling et al., 2000). Initially, the stoichiometric matrix
is augmented with the identity matrix. Next, a consec-
utive computation of matrices through combination of
rows is performed until the stoichiometric matrix only
contains zero elements. Obviously, this is a consecutive
approach where all elementary modes are created at the
final step. In addition, a large number of interim solu-
tions are computed which finally disappear. By conse-
quence, since even modest network sizes showing a larger
degree of freedom might feature thousands of elementary
flux modes, the problem easily becomes computationally
intractable. Nevertheless, (Schilling and Palsson, 2000)
have recently tackled the problem of prediction of the
so called extreme pathways for Haemophilus influenza,
represented by a network of 461 reactions. The strategy
applied rests upon a decomposition of the network into
subsystems to get a picture of the structural information
for the entire system.

Alternative approaches make use of top down strate-
gies considering the entire system in a more direct way
(Happel and Sellers, 1989). As a result, successive so-
lutions containing the complete network information are
created. Mauch (to be published) developed an algo-
rithm performing combinations of the base vectors of the
null space in pairs. Figure 4 shows an example of the
application of this algorithm for a system with 141 reac-
tions in which the polymerization reactions for formation
of biomass—and therefore growth—has been taken into
account for the prediction of the elementary flux modes.
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Figure 4: Elementary flux modes in S. cerevisiae.
Explanation see text.

Each column shown in Figure 4 represents an elemen-
tary flux mode utilizing glucose as the sole carbon and
energy source while producing biomass. Open symbols
represent deleted genes for various reactions in the net-
work. Obviously, these different mutants—or different
phenotypes—are still able to grow albeit with varying
yield coefficients. Elementary modes given in Figure 4
are ordered in descending sequence with respect to the
yield of biomass on glucose. The maximal value of the
biomass yield is in agreement to what has been mea-
sured for S. cerevisae growing with glucose under aero-
bic conditions. For mutants with defects in the transport
systems via the mitochondrial membrane, for example,
the biomass yield decreases to a value observed under
anaerobic conditions. Thus, structural properties of the
network clearly define the upper limit of product yields.
Interestingly, these findings are independent of the ki-
netic properties of the network. Absolute values of fluxes
as well as a dynamic response to system perturbations,
however, can only be described when kinetic rate equa-
tions have been assigned.
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Figure 5: Maximal yields of amino acids on glucose
in S. cerevisiae.

By a closer inspection of the solution shown in Fig-
ure 4, it is possible to separate more flexible regions of
the network from rigid parts. For instance, we cannot
delete any reaction in the pathways leading to amino
acids. This is a reasonable finding for growth in the
presence of synthetic media. In contrast, greater flexi-
bility is observed in the citric acid cycle (TCA), pentose
phosphate (PP) shunt and intracellular transport. It is
interesting to recognize that these variations also have
been identified as key modulations during the process of
evolution.

The design aspect of these predictions may be bet-
ter elaborated by examples of biotechnological relevant
product formation. A desired product can often be syn-
thesized by various different routes or pathways within
the network. It is then of interest to detect the route
on which the product/substrate ratio is maximum. Fig-
ure 5 illustrates an example showing the maximal yield
of the individual 20 amino acids on substrate glucose in
S. cerevisiae.

The results shown in Figure 5 have been obtained by
detecting all elementary modes in the system and then
choosing the mode giving the best yield. Sometimes,
however, implementation of an elementary mode leading
to a slightly non-optimal yield might be easier from a
practical point of view. In contrast to linear optimiza-
tion, the complete set of elementary flux modes immedi-
ately provides the complete spectrum of alternative im-
plementations.

Flux Optimization

The driving force for selection of an optimal pathway
is the maximization of the yield of the product. How-
ever, economic considerations also require optimization
of the product formation rate (productivity). This prob-
lem leads to the question of an optimal modulation of
enzyme activities in metabolic networks.

At first glance, the example chosen for this
discussion—ethanol production with the yeast S.
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cerevisiae—appears to be rather boring because it has
been tackled so many times by yeast geneticists. The
primary aim of these empirical attempts to modulate
(mostly amplify) the key enzymes within glycolysis
is the maximization of ethanol production rate which
correlates with carbon dioxide evolution and, in turn,
with the baking power of yeast. While addressing this
problem it should be emphasized that the interest in
answering the question of an optimal redistribution of
enzyme activities is much broader. Generally, knowledge
of the rate controlling steps in the central metabolism
(glycolysis and PP shunt) is of central importance for
cell cultures used for producing proteins as well as for
the analysis of potential targets in cancer cells. Another
field of interest is the identification of potential targets
for antitrypanosomal drugs, important for treatment of
the african sleeping sickness (Bakker et al., 1999). The
last named authors concluded that “Despite the great
interest, it is not yet known completely for any organism
how the control of the glycolytic flux is distributed”.

Dynamic Model

Similar to the strategy of Bakker et al. (1999), the prob-
lem can be approached from the basis of experimentally
determined kinetic properties of the key enzymes which
are then aggregated to a dynamic model. Individual rate
expressions including their kinetic parameter have been
identified in vivo by a stimulus response methodology
(Theobald et al., 1997; Rizzi et al., 1997; Vaseghi et al.,
1999): A pulse of glucose or alternative stimuli are in-
troduced into a continuous culture operating at steady
state and the transient response of several intracellular
metabolite and cometabolite pools is experimentally de-
termined in time spans of seconds or, recently, also mil-
liseconds (Buziol et al., to be published). Within these
relatively short time spans, enzyme concentrations are
considered to be in a “frozen” state. Figure 6 summa-
rizes examples for some of the experimental observations
of metabolites and cometabolites from the yeast S. cere-
visiae growing under anaerobic conditions.

The metabolome’s response due to dynamic system
excitation has been used to identify the dynamic system
behavior by a stepwise internalization of metabolites sim-
ilar to the method proposed by Rizzi et al. (1997). To
describe the dynamic system behavior, deterministic ki-
netic rate equations for the pathways for the reactions
have been formulated.

The general form of this rate equations can be written
as

ri = rmax,i f (c,p) , (21)

where the maximal rate (capacity) rmax,i is obtained
from the vector of model parameters p, the vector com-
prising metabolite, cometabolite and effector concentra-
tions c and the flux distribution J at the systems’s steady
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state (e.g. µ = 0.1 h−1); accordingly

rmax,i = 1/rsteady state
i f

(
csteady state,p

)
. (22)

Intracellular flux distribution has been estimated by ex-
perimentally determined uptake and excretion rates of
glucose, carbon dioxide, ethanol, glycerol and biomass.
The results are documented in Figure 7.
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Figure 6: Comparison between model simulation and measured concentrations of glycolytic metabolites and cometabolites
after dynamic system excitation. Data shown left from the broken lines represent steady state values at a growth rate of
µ = 0.1 h−1.

Sensitivity Analysis

The next step towards solving the envisaged design prob-
lem is to calculate the so called flux control coefficients,
or—in the terminology of engineering—sensitivity coeffi-
cients. The flux control coefficient CJ

Ei
has been defined

as the fractional change of the network flux J caused by
a fractional change in the level of enzyme activity Ei.
Thus,

Flux Control Coefficient =
dJ (Ei)

dEi
. (23)

or normalized

CJ
Ei

=
dJ/J

dEi/Ei
=

d lnJ (Ei)
d lnEi

. (24)

Figure 8 depicts the results of these calculations for
those enzymes involved on the path from glucose to
ethanol.

Since only a subset of the flux control coefficients with
respect to ethanol formation are shown in Figure 8 (ex-
cluding, for example, the coefficients of enzymes involved
in the PPP shunt), flux coefficients of this subset do not
necessarily sum up to one. From the hierarchy of sensi-
tivities it can be concluded that the enzyme responsible
for the transport of glucose via the cell membrane (per-
mease) shows the overwhelming control strength upon
the ethanol production rate. Consequently, amplifica-
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Figure 9: HXT5 multi copy plasmid.

tion of this enzyme should lead to an increased flux from
glucose to ethanol.

Synthesis—Amplification of Hexose Transporters

Experimental verification of the above-named design
proposal has been performed in a collaboration project
with Institute of Microbiology from the University of
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Figure 10: Specific substrate uptake rate qs and
specific product formation rate qp during anaerobic
chemostat cultivation. (1) Wild strain. (2) HXT5
with a single copy of the gene integrated the chro-
mosome and constitutively expressed. (3) Multi copy
plasmid with HXT5.

Düsseldorf (Dr. Boles). Within this project, the kinet-
ics of the three most important hexose transporters out
of the 17 transporters identified from the yeast genome
project are investigated (Boles et al., 1997; Buziol et al.,
to be published). One of these s—HXT5—has been also
expressed with a multi copy plasmid, shown in Figure 9
(Boles, to be published).

The transporter gene in HXT5 is flanked by an en-
hanced HXT7 promoter and HXT7 terminator, respec-
tively. HXT7 is a high affinity transporter expressed
at low glucose concentrations. The construct shown in
Figure 9 ensures expression of HXT5 at target growth
conditions. The same transporter has been integrated as
single copy in the chromosome of a yeast strain in which
all the genes of the other transporters has been knocked
out (Wieczorke et al., 1999). As a result of these genetic
constructions, it is possible to compare the flux of glu-
cose through the glycolysis between two strains differing
only in the amount of the hexose transporter. Accord-
ing to the hierarchy of flux control coefficients discussed
in context with Figure 8, one would expect a noticeable
increase of ethanol flux.

Experiments with three different strains were per-
formed in continuous cultures at a dilution rate of D =
0.07 h−1 (Buziol et al., to be published). The results of
these experiments are summarized in Figure 10.

Compared to the wild type, ethanol excretion rate and
substrate uptake rate of the strain with higher trans-

porter activity have found to be 10% and 25% higher,
respectively. The discussion of the relevance of these re-
sults from industrial point of view is beyond the horizon
of this paper. However, the rather modest effect prompts
the question: Are there any other alternative design pos-
sibilities resulting in a substantial increase of the ethanol
production rate?

Objective Function

The apparent failure to produce significant increase of
the glycolytic flux points to the fundamental question
if the underlying assumptions leading to the design sug-
gestion are adequate. Keeping in mind that the pathway
of interest is part of a whole—the living cell—, the idea
that one need to amplify a single or multiple enzymes ac-
cording to the hierarchy of flux control coefficients may
not correspond to physiological reality. There are two as-
pects that should attract attention. First, an increased
expression of enzymes is linked with energetically expen-
sive protein synthesis. Glycolytic enzymes in yeast are
known to contribute in the order of 30% to the total
amount of cellular proteins. Thus, it seems to be likely
that overexpression of these enzymes result in a stress sit-
uation with an unforeseeable impact on cell physiology.
Instead of a single or simultaneous elevation of enzyme
activities, a more robust strategy should try to keep the
total concentration of proteins at a constant value and
redistribute the activities according to the required ob-
jective. The optimization problem may then be stated
as

Maximize J
(
rPath

max

)
(25)

subject to
1
w

w∑
i=1

rmax
i

rmax
i,reference

≤ Ω. (26)

In writing Equation 26 we assume that the maximal
rate rmax

i is proportional to the enzyme amount. There-
fore, Equation 26 specifies a fixed level for the total en-
zyme activity Ω.

Another relevant issue concerns the pool concentra-
tion of the metabolites within the cell. Attempts to
increase metabolic fluxes by changes in individual en-
zyme concentrations may lead to substantial changes in
metabolite concentrations. Again, a substantial change
in metabolite concentrations either proves to be cyto-
toxic or at least leads to an undesired flux diversion
(Kell and Mendes, 2000). Therefore, preservation of the
metabolite concentrations close to the steady-state val-
ues of the wild strain is at any rate desirable to meet the
basic property of well established metabolic systems for
which the metaphor homeostasis has been coined (Reich
and Selkov, 1981). It is also known that part of an op-
timal performance of cells with respect to the use of,
for example, energy and carbon sources is a process of
adaptation leading to a change of structure to control
homeostasis. Interestingly, such structural changes may
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Figure 11: Increase of the Ethanol formation rate as
a function of the maximal deviation from initial pool
concentrations.

include a change of enzyme concentrations via regulation
of enzyme synthesis. Hence, homeostasis puts a further
constraint on the metabolic redesign. Mathematically,
this could take the form

1
m

m∑
i=1

∣∣∣csteady state
i,optimum − csteady state

i,reference

∣∣∣
csteady state
i,reference

≤ Θ. (27)

Finally, the optimum must be constraint to stable
steady states, leading to condition (28)

d

dt
c = 0 and Re (λi,optimum) ≤ 0, (28)

with Re (λi) denoting the real part of the system’s eigen-
values.

Optimal Solutions

Retaining the total activity at the system’s initial state
at Ω = 1, non-linear optimization of enzyme activities
yielded significantly higher ethanol formation rates (see
Figure 11.

As shown in Figure 11, amplification of ethanol for-
mation largely depends on the allowed deviation from
the initial pool concentrations Θ. Since the ratios of
enzyme levels on the elementary flux mode glucose—
ethanol are subject to modifications, no amplification
can be expected for Θ = 0% while the maximal pos-
sible amplification of ethanol formation is found to be
as much as 144% at Θ = 210%. No stable steady states
have been detected above this value.

Figure 12 shows the optimal distribution of enzyme
activities for the selected example, 40% increase of pool
concentrations resulting in an amplification of ethanol
formation of 63%.

The optimized modulation of the enzyme activities re-
sults in an unexpected and interesting redistribution of
enzyme activities. Due to its large share in the control of
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Figure 12: Optimal distribution of enzyme activities.
All activities are related to their initial values.

ethanol formation rate, the activity of the hexose trans-
porter (perm) is found to be significantly higher in the
optimized metabolic system. In contrast, even though
the control coefficients of tis, gapdh, mut, enol and adh
are relatively small, activities of those enzymes are also
found to be larger compared to the non-optimized sys-
tem. This outcome can be explained by the enzymes
ability of counteracting an increase of pool concentra-
tions provoked by a risen glucose influx effectively. Ob-
viously, this is the result of the superposition of the three
objectives: maximization of flux at more or less home-
ostatic conditions and unchanged total amount of en-
zymes.

Concluding Remarks

This paper has presented typical examples of computer
aided design problems in Metabolic Engineering. The
examples shown refer to the two different characteristics
of biological systems: (1) Topological properties and (2)
Kinetic properties of the individual reactions.

Topological analysis of metabolic networks turns out
to be of immense value for relating genotypes and pheno-
types. The further application of the illustrated concept
of elementary flux modes critically depends on the de-
velopment of new and more effective algorithms to treat
larger networks. In case of biotechnological production
processes, the most important application concerns the
prediction of optimal topological properties for maximiz-
ing the product yield.

The second example illustrates model based design of
an enhanced product formation rate. In addition to in-
formation on the network topology, the suggested so-
lution of this important task in Metabolic Engineering
requires detailed knowledge on kinetic rate expressions.
Armed with a dynamic model for the most important
part of the system, it is then possible to apply non-linear



Computer-Aided Design of Metabolic Networks 91

optimization methods. The advantages of this approach
are twofold: (1) Effects on large changes in enzyme con-
centrations can be easily studied and (2) Constraints
such as limits on the total amount of enzymes and devi-
ations from steady state metabolite pool concentrations
can be taken into account in parallel.
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