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Abstract
This paper describes modeling and on-line optimization of a crude unit heat exchanger network at the Statoil Mongstad
refinery. The objective is to minimize the energy input in the gas fired heater by optimally distributing the cold crude oil
in the heat exchanger network. The steady state mass and energy balance of the 20 heat exchangers in the network yields
the process model. This model is fitted to the measured values using data reconciliation and unmeasured values like
heat exchanger duty and heat transfer coefficients are computed. The fitted model is used to compute the optimal split
fractions of crude in the network. This system has been implemented at the refinery and has resulted in a 2% reduction in
energy consumption. In operational modes where the unit is constrained on energy input this gives a increased throughput
and a significant contribution to the refinery profit.
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Introduction

This paper describes the development of a real time opti-
mization system including model development, data rec-
onciliation and on-line optimization. The case studied
is a heat exchanger network for pre-heat of feed in a
crude oil distillation unit at the Statoil Mongstad Refin-
ery. The system is implemented and is now running in
closed loop at the refinery. The optimal operation is com-
puted using a steady state model which before each run
is fitted to the current operation point. Process measure-
ments contain uncertainties as random errors and possi-
bly gross errors. This may be a result of miscalibration
or failure in the measuring device. This uncertainty is
reduced when the current operation point is estimated
using a larger number of measurements, than the num-
ber of unknowns in the process model, to compute a set
of reconciled data. Model parameters are estimated si-
multaneously or computed from the reconciled data. The
optimal operation is computed as the maximum of the
objective subject to the process model, current process
operation and model parameters. The optimal operation
is finally implemented as setpoints in the process control
system. A large number of methods for data reconcilia-
tion have been suggested. These include robust objective
functions (Chen et al., 1998), statistical tests, analysis
of measurement redundancy and variable observability
(Crowe et al., 1983). However, most examples and case
studies presented in the literature are based on simulated
processes, and most papers consider the data reconcilia-
tion decoupled from the optimization. One noteworthy
exception is (Chen et al., 1998) who present an applica-
tion of data reconciliation to a Monsanto sulfuric acid
plant, but the paper is somewhat limited on details on
the specific approach they have taken. The objective of
this paper is therefore to present an actual industrial im-
plementation, where we provide details about the data
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reconciliation approach, model and optimization.

Data Reconciliation

Data reconciliation is used to determine the current op-
eration point. If measurement had no uncertainty the
current operation point could be determined from n−m
independent measurements, where n is the number of
variables and m the number of equations in the model.
Since the measurements are uncertain and there are a
surplus of measurements, compared to the number of
unknown variables in the model, data reconciliation is
used to reduce this uncertainty. The reconciled values
minimizes some function of all measurement errors sub-
ject to the model equations. This is written as

min
x

nm∑
i=1

ψ(εi/σi) (1)

subject to

Ax = 0
g(x) = 0

All variables are collected in the vector x of dimension
n × 1. The measurement errors εi = xi − yi where yi

is a measurement of the variable contained in xi. All
measurement errors is scaled by its standard deviation
σi. The process model is separated into a set of linear
equations, Ax = 0, and nonlinear equations, g(x) = 0,
since most NLP solvers take linear and nonlinear equa-
tions as separate arguments. If the uncertainty in the
measurements are normal distributed with zero mean
the summed squared measurement error is used as ob-
jective function, ψ, in equation 1. However, in the case
of nonzero measurement error mean, gross errors, this
method gives a biased estimate of the process variables.
There are several methods for reducing of the effect of
gross errors. In (Crowe et al., 1983) and (Crowe, 1986)
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Figure 1: Combined Gaussian objective function.
The standard deviation σ = 1, p = 0.3 and b = 6.

collective and individual statistical tests of the measure-
ment errors are used to exclude measurements with gross
errors. In (Chen et al., 1998),(Tjoa and Biegler, 1991)
and (Johnston and Kramer, 1995) objective functions
less sensitive to gross errors are used. In this work the
Combined Gaussian objective function is selected due to
its numerical robustness and promising “small example”
results. In all robust objective functions the measure-
ment error is scaled by its standard deviation. Nor-
mally this distribution is not known and the standard
deviation has to be estimated from measured data or
determined by a reasonable guess based on the actual
measurement equipment installed and its measurement
range. The Combined Gaussian function is based on a
weighted sum of two Gaussian distributions, one distri-
bution of the random errors and one of the gross errors.
The combined Gaussian probability density function is
written as

fi =
1

σi

√
2π

[
(1− p) exp

(
−1

2
ε2i
σ2

i

)
+
p

b
exp

(
−1

2
ε2i
σ2

i b
2

)]
(2)

with the probability of a gross error in the measurements
p and the ratio of the standard deviations of the gross
errors to that of the random errors b. The objective
function to be minimized is the negative logarithm of
the probability density function,

∑nm

i=1 log(1/fi). The
Combined Gaussian objective function is graphed in Fig-
ure 1 with the least squares function for comparison.
Compared to the least squares method the robust func-
tions gives less penalty for measurement errors larger
than 3σ. For the reconciled data this typically gives large
measurement errors in few variables and small error in
the other variables. At least intuitively this is what one
would expect from the process measurements though it
is difficult to verify. In equation 1 there is no limitation
on the number of measurements and on which variable
to measure. Before the reconciled variables are accepted
some analysis has to be made to check if the unmeasured
variables are observable. The measurements can also be
classified as redundant or nonredundant measurements
which can be used to evaluate the reconciled variables

and decide if data reconciliation can be done if a specific
measurement is out of service. Let x∗r be a solution to
the reconciliation problem in equation 1. The nonlinear
constraints are linearized at the optimal solution x∗r such
that g(x) ≈ g(x∗r)+G(x−x∗r), whereG = ∂g(x)/∂x|x=x∗r .
The linear and linearized constraints can now be written
as

Âx− b̂ = 0 (3)

where

Â =
[
A
G

]
b̂ =

[
0

g(x∗r)−Gx∗r

]
The variables in x are separated into measured variables,
y, and unmeasured variables, z. The matrix Â is parti-
tioned into Â1 and Â2 where Â1 holds the columns of
Â corresponding to the measured variables and Â2 the
columns of Â corresponding to the unmeasured variables.
Equation 3 can now be written as

Â1y + Â2z = b̂ (4)

To be able to compute the unmeasured variables, from
the measured variables, the matrix Â2 must have full col-
umn rank. If the number of measurements ny < n−m,
where n is the number of variables and m the number
of equations, the size of Â2 is m × nz where nz > m
and the matrix Â2 has rank less than nz. This implies
that equation 4 has no unique solution for z when y is
known. A requirement is that the number of measure-
ments ny ≥ n−m, which is obvious, and that Â2 has full
column rank. The measurements can also be separated
into redundant and nonredundant measurements. If a
variables measurement is redundant it is possible to com-
pute its value if its measurement is removed. This is not
the case for a nonredundant measurement and removing
this measurement causes Â2 to be rank deficient. A sim-
ple test for redundancy is to check if PT Â1 has columns
with only zero elements, where P is defined as a matrix
that span the null space of ÂT

2 . Any zero columns in
corresponds to nonredundant measurements. Also note
that for a nonredundant measurement i we always have
that yi − ymi = 0 and that this measurement does not
contribute directly in the calculations of the reconciled
values.

Optimization

The typical process optimization problem has a linear
objective function like product price times product flow
which is to be maximized. For system simplicity the
same process model and variable vector are used in both
data reconciliation and process optimization. In the op-
timization problem some of the variable values are al-
ready known. These are typically disturbance variables
and connects the data reconciliation with the optimiza-
tion. The variable values are specified in the optimiza-
tion problem as a set of linear constraints (Rx = r) where
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Figure 2: Simplified crude unit overview.

r = Rx∗r . The matrix R has one nonzero element in each
row, equal to one, corresponding to the element in x,
which is set equal to its reconciled value. The optimiza-
tion problem can now be written as

min
x
−pTx (5)

subject to

Ax = 0
g(x) = 0
Rx = r

xmin ≥ x ≥ xmax

Inequality constraints in process optimization are typi-
cally bounds on singe variables. Inequality constraints
on combinations of variables may be added in this for-
mulation by introducing slack variables.

A Case Study

In the crude unit the crude feed is separated into suitable
components for production of propane, butane, gasoline,
jet fuel, diesel and fuel oil. The crude is preheated in
a heat exchanger network where heat is recovered from
the hot products and circulating refluxes. As shown in
Figure 2 the cold crude (DCR) is separated into seven
parallel streams (A-G) and heated by the hot products.
The flow in each pass and BSR heat exchanger bypasses
provides the degrees of freedom necessary for optimiza-
tion. The optimization objective is to save energy and
to recover as much heat as possible. The heater is the
main energy input in the process and heater outlet tem-
perature is held constant. The minimum energy is then
achieved by maximizing of the heater inlet temperature.
Both distillation columns have feed conditions indepen-
dent on the heat exchanger network operation. The inlet
temperatures of both columns are assumed to have per-
fect temperature control. The feed flow and composition
are then independent of operation of the heat exchanger

network. With this simplification a model of the dis-
tillation columns is not needed and a mass and energy
balance of the heat exchanger network is a sufficiently
detailed model for optimization. The optimal solution
must be within several process operating constraints.
The total crude flow or throughput is to be unchanged.
At each crude pass outlet there is a maximum tempera-
ture constraint to avoid flashing. On main column LGO
and HGO products, exiting the heat exchangers, there
is a maximum temperature limit as the products are fed
to the LGO and HGO driers (the driers are not drawn
in Figure 2). The preflash column inlet temperature is
to be unchanged. Some of the heat exchangers are also
included in the bottom circulating reflux (BSR) and the
total duty in BSR is to be unchanged.

The Process Model

The heat exchanger network can be viewed as a set of
nodes or unit operations connected by arcs or in this case
pipes. A set of balance equations, mass and energy bal-
ance, describes the internals of each node. Variables for
the arcs or pipes are fluid temperature and mass flow.
The nodes in this network are stream mix nodes, stream
split nodes and heat exchanger nodes. This selection of
variables makes all nodes independent of other variables
than those included in the input and output arcs. Heat
exchanger nodes also have some internal variables like
heat transfer coefficient and duty. This variable selec-
tion makes the model structure a simple and surveyable
and it makes it practical possible to compute analytical
derivatives of the nonlinear model equations. This re-
duces the numerical computational load in solving the
model. The following describes the simplified balance
equations for each type of node.

Mixing of Streams

In a node where n streams are mixed into one outlet
stream the mass and energy balance equations can be
written as

Fout −
n∑

i=1

Fini
= 0 (6)

Fouth(Tout)−
n∑

i=1

Fini
h(Tini

) = 0 (7)

where h(T ) is the specific enthalpy of the fluid. The mass
balance results in one linear equation and the energy
balance in one nonlinear equation.

Splitting of Streams

In a node where one inlet stream are separated into n
outlet streams the mass and energy balance equations
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can be written as

Fin −
n∑

i=1

Fouti = 0 (8)

Tin − Touti = 0 ∀ i = 1...n (9)

The mass balance results in one linear equation and the
energy balance results in n linear equations.

Heat Exchanger

For a heat exchanger node hot and cold side mass and
energy balance and heat transfer is written as

Fcin − Fcout = 0 (10)
Fhin − Fhout = 0 (11)

Q+ Fcin(h(Tcin)− h(Tcout)) = 0 (12)
Q− Fhin(h(Thin)− h(Thout)) = 0 (13)

Q− εCmin(Thin − Tcin) = 0 (14)

where the mass balance results in two linear equations
(10 ,11) and the energy balance results in two nonlin-
ear equations (12, 13). The heat transfer is described
by equation 14. The heat exchangers in this unit is of
multiple tube and multiple shell pass type and the ε-Ntu
method (Mills, 1995) is used for calculation of the heat
transfer. In equation 14 ε is the efficiency and Cmin is
the minimum capacity. Cmin is calculated as

Cmin = min(Cc, Ch) (15)

Cc = FcinCpc ≈ Fcin

h (Tcout)− h (Tcin)
Tcout − Tcin

(16)

Ch = FhinCph ≈ Fhin

h (Thout)− h (Thin)
Thout − Thin

(17)

The efficiency, ε, is a function of the number of transfer
units, Ntu, and the capacity ratio, RC . RC and Ntu is
calculated as

RC =
Cmin

Cmax
Ntu =

UA

Cmin
(18)

where Cmax = max(Cc, Ch). The efficiency ε equals ε1
for heat exchangers with single shell pass (n = 1) and
a even number of tube passes. ε equals ε2 for heat ex-
changers with even number of tube passes and n shell
passes. ε1 and ε2 is calculated as

ε1 = 2 {1 + RC

+
√

1 + R2
C

1 + exp
(
−Ntu

n

(√
1 + R2

C

))
1− exp

(
−Ntu

n

(√
1 + R2

C

))

−1

(19)

ε2 =

[(
1− ε1RC

1− ε1

)n

− 1

] [(
1− ε1RC

1− ε1

)n

−RC

]−1

(20)

When the equations for Cmin and ε is substituted into
equation 14 each heat exchanger is described by two lin-
ear and tree nonlinear equations.

Model Summary

There are totally 85 streams and 20 heat exchangers in
the heat exchanger network. There are 9 stream mixes
and 7 stream splits. The variables are 85 flows and 85
temperatures from the streams, 20 heat exchanger du-
ties, 20 heat transfer coefficients and adds up to totally
210 variables. From the heat exchangers we have 40 lin-
ear and 60 nonlinear equations. From the stream mixing
nodes we have 9 linear and 9 nonlinear equations and
from the split nodes we have 29 linear equations. Coef-
ficients for linear equations are collected in the matrix
A where each equation occupy one row. The equation
coefficients are placed in the column corresponding to its
variable position in x. The nonlinear equation residues
are collected in the residual vector g(x). The model is
now in the preferred form

Ax = 0 (21)
g(x) = 0 (22)

where A is a 78×210 matrix with the linear equation co-
efficients and g(x) is a 1×69 vector of nonlinear equation
residues.

On-line Data Reconciliation

Data is sampled from the process as one hour averages
and reconciled using the Combined Gaussian objective
function. Standard deviations for measurements are se-
lected to be 1◦C for temperature measurements and 2%
of the maximum measuring range for flow measurements.
The Combined Gaussian parameters p and b are set to 0.3
and 6. To avoid numerical difficulties in the model equa-
tions, like reversed flows, appropriate variable bounds
are added to the data reconciliation problem in equation
1. There are 88 measurements in the process, which is
a surplus of 25 compared to the number of unknown in
the process model. The described analysis shows that all
unmeasured variables are observable and that all mea-
surements are redundant. As a example Figure 3 shows
measured and reconciled values for 300 successive sam-
ples of one hour averages. The imbalance in the data is
most likely caused by a gross error in the flow measure-
ment of the hot stream Fh. The average error is 3.1 T/h
and is fairly constant in all samples.

On-line Optimization

In the optimization problem the number of equality con-
straints are increased to 205 which leaves 5 degrees of
freedom. These degrees of freedom corresponds to the
flow trough each of the seven passes in the hot train mi-
nus two since the total flow and BSR duty is set equal
to the reconciled value. As a example measured data is
reconciled and optimum operation computed. Compared
to current operation the pass flow (A-G) is changed by
[0.0,-9.2,-0.1,+9.0,+0.1,+1.0,-0.8]%. In addition bypass
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Figure 3: Measured (thin lines) and reconciled values
(thick lines) for one of the heat exchangers.

flows of heat exchangers in the BSR is changed such that
more heat is added in each pass while keeping the total
duty constant. This increases the heater pre-heat duty
by 2.3MW. Compared to the heater duty of ≈ 100MW
this gives a 2% reduction of energy requirement. Con-
straints on pass G outlet temperature and LGO drier
inlet temperature is active at optimal operation. Opti-
mal operation is implemented as flow ratio setpoints in
the MPC controller. Both the data reconciliation and
optimization problems is solved using a software pack-
age for constrained optimization problems (NPSOL from
Stanford University). This system runs on a DEC-Alpha
computer and the average solution time is 3 minutes.

Conclusion

A process model describing the mass and energy balance
is developed and used for data reconciliation and opti-
mization. The model is fitted to the measured values
and optimal feed split fractions are computed and im-
plemented in the control system once an hour. The rec-
onciled values provides valuable information about the
current condition of the measurement equipment and of
the condition of the heat exchangers. Comparison of
reconciled values and measured values have detected sev-
eral flow measurements with pour performance and also
a temperature measurement that was found to be in-
stalled in the wrong pipe. The evolution of heat transfer
coefficients during operation is also used to detect fouling
and schedule cleaning of the heat exchangers. The model
is sufficiently detailed for optimization purposes and the
predicted optimal heater inlet temperature is achieved
in the process.
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