
Emerging Technologies for Enterprise Optimization in the Process Industries

Rudolf Kulhavý∗
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Abstract
We discuss three emerging technologies for process enterprise optimization, using a different application domain as an
example in each case. The first topic is cross-functional integration on a model predictive control (MPC) foundation, in
which a coordination layer is added to dynamically integrate unit-level MPCs. Enterprise optimization for oil refining
is used to illustrate the concept. We next discuss data-centric forecasting and optimization, providing some details for
how high-dimensional problems can be addressed and outlining an application to a district heating network. The final
topic is adaptive software agents and their use for developing bottom-up models of complex systems. With learning and
adaptation algorithms, agents can generate optimized decision and control strategies. A tool for the deregulated electric
power industry is described. We conclude by emphasizing the importance of seeking multiple approaches to complex
problems, leveraging existing foundations and advances in information technology, and a multidisciplinary perspective.
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Introduction

The history of advances in control is the history of
progress in the level of automation. From single-loop
regulation to multivariable control to unit-level optimiza-
tion, we have seen step changes in the efficiency, through-
put, and autonomy of operation of process plants. The
next step in this progression is the optimization of the
enterprise—a process plant, a multifacility business, or
even a cross-corporate industry sector.

Enterprise optimization is the object of significant re-
search today. Given the diversity of potential applica-
tions and the relative newness of the topic, it is not
surprising that no one approach has been accepted as
a universal solution. Although it is conceivable that fu-
ture research will identify a cross-sector solution, at this
point it appears that multiple approaches are likely to
be necessary to best cover the full spectrum of potential
applications.

In this paper, we discuss three emerging technologies
for process enterprise optimization: cross-functional in-
tegration on a model predictive control (MPC) founda-
tion, data-centric modeling and optimization, and adap-
tive agents. The discussions are generic, but different
process applications are used in each case for illustra-
tion: oil refining, district heating, and electric power.

Enterprise Optimization on an MPC
Foundation1

MPC has proven to be the most viable multivariable con-
trol solution in the continuous process industries and it
is becoming increasingly popular in the semibatch and
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1This section is adapted from Lu (1998).

batch industries as well. Most industrial MPC products
also include a proprietary economic optimization algo-
rithm that is essential for driving the process to deliver
more profit. In terms of economic benefit, MPC is one
of the most significant enabling technologies for the pro-
cess industries in recent years, with reported payback
times between 3 and 12 months (Hall and Verne, 1993,
1995; Smith, 1993; Sheehan and Reid, 1997; Verne and
Escarcega, 1998).

Cross-Functional Integration as a New Trend

Traditionally, most MPC applications are used for sta-
bilizing operations, reducing variability, improving prod-
uct qualities, and optimizing unit production. In most
cases, a divide-and-conquer approach to a complex
plantwide production problem is adopted. In this ap-
proach, a large plant is divided into many process units,
and MPC is then applied on appropriate units. The
divide-and-conquer approach reduces the complexity of
the plantwide problem, but each application can reach
only its local optimum at best. In a complex plant, the
composition of local optima can be significantly less than
the potential global optimum. For example, the esti-
mated latent benefit for a typical refinery is 2-10 times
more than what the combination of MPC controllers can
capture (Bodington, 1995).

One possible approach to plantwide control is employ-
ing a single controller that is responsible for the whole
plant; however, this option is infeasible. To note just
the most obvious issue, commissioning or maintenance
would require the whole plant to be brought offline. An
alternative and practical approach for delivering global
optimization benefit is to add a coordination layer on
top of all the MPC applications to achieve the global op-
timum. The coordination layer usually covers multiple
functions of the plant, such as operations, production
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scheduling and production planning.

Complexity of MPC Coordination. With the
divide-and-conquer approach, transfer price is tradition-
ally used for measuring the merit of an advanced control
application from a plantwide view and over an appropri-
ate time period. The transfer price of a product (or a
feed) is an artificial price assigned to determine the ben-
efit contribution of a process unit to the overall plant
under an assumed level of global coordination. A com-
mon assumption in calculating transfer price is that the
product produced in a unit will travel through the de-
signed paths (or designed processes) with the designed
fractions to reach the final designated markets. This as-
sumption is not always valid due to a lack of dynamic
coordination among the units.

This phenomenon is referred to as benefit erosion2

(e.g., see Bodington, 1995) and is typically alleviated
by manual coordination between different sections of the
production processes. For example, after an advanced
control application is implemented on a refinery’s crude
unit, the yield of the most valuable component often
increases, whereas the yield of the least valuable com-
ponent decreases. The scheduling group would detect
the component inventory imbalances (which could cause
tank level problems if not corrected in time) rippling
through various parts of the refinery, and it would then
coordinate the affected parts of the refinery to “digest”
the imbalances. With feedback from scheduling and op-
erations groups, the planning group would update its
yield models to reflect the yield improvement and rerun
the plantwide optimization to generate a new production
plan and schedule.

The fundamental cause of benefit erosion, however, is
a lack of global coordination or optimization. Generally,
the more complex the production scheme, the greater the
problem. Therefore, a complex plant, such as a refinery
or a chemicals plant, presents a higher benefit potential
for cross-functional integration. If a new dynamic or
steady-state bottleneck is encountered, or if an infeasible
production schedule results, the scheduling group and
the planning group would have to work together with
the operations group to devise a new solution. The final
solution may take a few adjustments or iterations. For
complex cases, this process can take a few weeks or even
months.

Only when all operations and activities in the refinery
are coordinated together will benefit erosion be mini-
mized. Although the situation described in this refinery
example may sound primitive, it is still one of the better
cases. In reality, different parts of a refinery usually use
different tools with different models on different plat-
forms. Engineers and operators in different units look
at the same problem with very different time horizons.

2The benefit loss when the assumed level of global coordination
is not reached.

All of these factors complicate plantwide coordination in
practice.

Although the cross-functional integration approach re-
quires existing infrastructure to be revamped, including
the DCS hardware and supporting software systems, this
is increasingly less of an issue. Hardware and infras-
tructure costs have dropped significantly in recent years,
particularly when viewed as a percentage of the total
advanced control project budget. Support and organiza-
tional “psychology” sometimes hinder progress, but the
situation has improved as more and more refineries and
chemical plants realize the benefits of advanced control.

Long- and Short-Term Goals. Cross-functional
integration takes a holistic approach to the plantwide
problem. The integration encompasses a large number of
process units and operating activities. Practical consid-
erations suggest that it proceed bottom up, integrating
one layer at a time until the level of enterprise optimiza-
tion is finally reached, as depicted in Figure 1.

In Figure 1, the various layers in the pyramid describe
the plantwide automation solution structure and the
decision-making hierarchy. Around the pyramid struc-
ture is the circle of supply chain, production planning
and scheduling, process control, global optimization, and
product distribution. As more layers are integrated into
the cross-functional optimization, the integrated system
will perform more tasks and make more decisions that
are made heuristically and manually today. Long envi-
sioned by many industrial researchers, such as Prett and
Garc̀ıa (1988), this concept is now being further devel-
oped with design details of hardware systems, software
structures, network interfaces, and application struc-
tures.

As a long-term goal, enterprise optimization integrates
all activities in the whole business process, from the sup-
ply chain to production, and further to the distribution
channel. In addition, risk management can also be in-
cluded as a key technical differentiator. Parallel to the
structural development for such a general-purpose com-
plex system, some proof-of-concept projects have been
piloted, and experiments have been conducted on several
different structures (Bain et al., 1993; del Toro, 1991;
Watano et al., 1993). The multiple-layer structure de-
scribed in Figure 1 is believed to provide the flexibility
needed for implementing and operating such a system.
Moreover, each layer can be built at an appropriate level
of abstraction and over a suitable time horizon. The
lower layers capture more detailed information of various
local process units over a shorter time horizon, whereas
the higher layers capture more of the business essence of
the plant over a longer horizon.

As a short-term goal, cross-functional integration
could include, in a refinery, for example, raw mate-
rial allocation, inventory management, production man-
agement, unit process control, real-time optimization,
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Figure 1: Enterprise optimization—refinery example.

product blending, production planning, and production
scheduling. The instrumentation and real-time database
are in the bottom layer. The regulatory control comes
in the second layer. Following that are the MPC layer,
the global/multiunit optimization layer, the production
scheduling layer, and, last, the top production planning
layer.

More relevant to the control community, this inte-
gration will have a large impact on almost all control,
optimization, and scheduling technologies currently em-
ployed in the process industries. Advanced process con-
trol, primarily MPC and real-time optimization (RTO),
will certainly be affected, particularly in terms of con-
nectability, responsiveness, and compatibility.

MPC Considerations

This integration requires us to reassess the MPC and
RTO designs in terms of their online connectability and
their dynamic integration. There is a need for codesign-
ing MPC and RTO, or at least designing one taking into
account that it will be working with the other dynam-
ically. Furthermore, from a control perspective, global
coordination requires MPC applications to perform over
a much wider operating region and more responsively.
This poses new challenges to MPC technology, three of
which are discussed below.

Nonlinear MPC. The majority of chemical process
dynamics is, loosely speaking, slightly nonlinear and can
be well modeled with a linearized model around a given
operating point. With the application of CV/MV lin-
earizing transformations, linear MPC can be extended
to effectively handle a variety of simple nonlinear dy-
namics. Practical examples include pH control, valve
position control, high-purity quality control, and differ-
ential pressure control. However, under cross-functional
integration, a process will be required to promptly move
its operating point over a significant span, or else to op-
erate under very different conditions. Linear MPC may
not be adequate in such cases.

Two examples can serve to illustrate. First, as the op-
erating point of the process migrates, the dynamics of
some processes may change dramatically, even to the ex-
tent that the gain will change sign. For example, some
yields of the catalytic cracking unit in a refinery can
change their signs when operated between undercrack-
ing and overcracking regions. Second, transition con-
trol presents a unique type of nonlinear control problem.
During a transition, the process operating point typically
moves much faster than usual, and the process typically
responds more nonlinearly than usual. Examples include
crude switch in a refinery and grade transition in many
series production processes such as polymer and paper.

Both of these problems can be seen as instances of mul-
tizone control, where the process needs to be regulated
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most of the time in each of the zones and to be occa-
sionally maneuvered from one zone to another according
to three performance criteria. The first criterion is for
normal continuous operation in the first zone. The sec-
ond criterion is for normal operation in the second zone.
The third criterion is for special requirements during the
transition or migration.

Although solving the multizone control problem alone
has merit, solving it while coordinating with other parts
of the plant will potentially provide much greater ben-
efit. As enterprise optimization further advances, there
is an increasing need for a nonlinear MPC tool that can
solve multizone control problems. Likewise, there is an
increasing need for MPC formulations, linear and non-
linear, that take into account the requirements of cross-
functional optimization.

Model Structure. The MPC model structure is
preferred to have a linear backbone or linear substruc-
ture. The linear model can be developed experimentally,
and the nonlinear portion of the dynamics can be added
as the need arises. This preference stems from the fact
that, in most cases, one does not know a priori if a non-
linear model is necessary.

The model structure should also be scalable. Adding
controlled variables (CVs) and manipulated variables
(MVs) should not require the existing model to be rei-
dentified or regenerated. The user should easily be able
to eliminate any input-output pair of the model. The
preferred solution should not require the system to be
square or all the MVs to be available all the time.

The ability to share model information in the cross-
functional integration scheme is important. The model
obtained in an advanced control project is often the
single most costly item in the implementation. Shar-
ing model information with the other layers of cross-
functional integration can show substantial monetary
savings. This model sharing can be a two-way process:
bottom up and top down.

The preferred model-sharing scheme is bottom up. It
is much easier for engineers to find and correct model-
ing errors on a unit-by-unit basis in the control imple-
mentation than on a multiunit or plantwide basis under
cross-functional integration. Bottom-up model sharing
enhances usability, as engineers can verify their models
as they commission the MPC applications unit by unit.

The solution technique needs to be algorithmically ro-
bust. If multiple solutions exist, it is preferable to stick to
one branch of solutions throughout, or better yet, stick
to the branch of solutions that requires only the mini-
mum amount of control effort by some criterion.

Coordination Port. An essential requirement for
cross-functional integration is an independent port for
coordination. Simply sending a steady-state target as a
set-point to an MPC controller is inadequate. The dy-
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Figure 2: An example of different dynamic optimiza-
tion paths.

namic response required for coordination is often very
different from that for set-point change, and the per-
formance criterion can be completely different from set-
point tracking or disturbance rejection. With a single
port, it is difficult, if not impossible, to always satisfy
both requirements.

A good coordination port implementation in MPC is
one of the essential links in instituting cross-functional
optimization. The nature of the problem is illustrated
in Figure 2 as a simplified example of three CVs and
two MVs. The first CV has a set-point, and the other
two both have high and low bounds. (The MVs are not
shown in the diagram.) The coordination or optimiza-
tion target is solved by a global optimizer. The controller
needs to drive the system to the target in an independent
response for coordination. This is similar to designing
a two-degree-of-freedom controller for the coordination
port, except that the input direction and the response
requirement may vary from one transition to another.

Furthermore, when the coordination port problem is
not fully specified dynamically, as in many practical
problems that we encounter, multiple solution paths to
the destination exist, as depicted in Figure 2. Treating
this as a traditional control problem by specifying a de-
sired response trajectory is not always suitable for two
reasons. First, the CV error violation is usually much
less important in the transition than in normal opera-
tion. Second, except in trivial cases, one rarely knows a
priori which transitional path would be financially opti-
mal yet dynamically feasible.

An alternative solution is to solve for all equal solu-
tion paths in terms of the performance criteria (includ-
ing financial terms) and choose the one that requires the
minimum MV movement by some criterion. See Lu and
Escarcega (1997) for one such solution to the coordina-
tion port implementation.
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Summary

If MPC has been the main theme of the ’80s and ’90s in
the process control industries, cross-functional integra-
tion and enterprise optimization will be the main theme
of the next two decades. As we advance toward a higher
level of computer-integrated manufacturing, the problem
definition and the scope of classical model predictive con-
trol will be expanded. The cross-functional integration
approach requires the dynamic coordination of multiple
MPCs, not just in terms of steady-state operation, as in
many steady-state RTO and composite LP approaches.
One practical way of achieving dynamic coordination is
by designing a coordination port in the MPC control
strategies.

Although truly enterprise-scale applications along
these lines are yet to be implemented, our initial projects
in cross-functional integration are yielding exciting re-
sults. A cross-functional RMPCT3 integration is dis-
cussed by Verne and Escarcega (1998), who report signif-
icant benefits. More recently, Nath et al. (1999) describe
an application of Honeywell’s Profit r© Optimizer tech-
nology to an ethylene process at Petromont’s Varennes
olefins plant. In the Profit Optimizer approach, con-
trollers are not operating in tandem, and the dynamic
predictions of bridged disturbance variables are used
by individual RMPCTs to ensure dynamic coordina-
tion/compensation among them. The controllers thereby
work together to protect mutual CV constraints. The op-
timizer coordinates 10 controllers and other areas, cov-
ering the entire plant except for the debutanizer. During
the acceptance test for the system, a sustained increase
of over 10% in average production was achieved. This
production level surpassed the previous all-time record
for the plant by over 3.7% and was well above the expec-
tation of a 2.7% increase.

Our experience to date in enterprisewide advanced
control coordination has largely been limited to refining
and petrochemical plants. For chemical plants, one of the
key additional requirements is the integration of schedul-
ing, product switchover, and other discrete-event aspects
of plant operation within the formulation. The research
of Morari and colleagues (Bemporad and Morari, 1999)
on the optimization of hybrid dynamical systems is es-
pecially promising in this context.

Exploiting the Data-Centric Enterprise

From a technology that leverages the state-of-the-art in
empirical-model-based control, we next turn to a more
radical alternative to large-scale optimization. The key
idea is that, where first principles or identified models
cannot usefully be developed, we can consider histori-
cal data as a substitute. In other words, “the data is the

3RMPCT (Robust Multivariable Predictive Control Technol-
ogy) is a Honeywell MPC product.

model.” This mantra was not especially useful even a few
years ago, but now, with modern storage media available
at affordable prices and computer performance increas-
ing at a steady pace, entire process and business histo-
ries can be stored in single repositories and used online
for enhanced forecasting, decision making, and optimiza-
tion. This makes it possible to implement a data-centric
version of intelligent behavior:

• Focus on what matters—by building a local model,
on demand and for the immediate purpose.

• Learn from your errors—by consulting all relevant
data in your repository.

• Improve best practices—by adapting proven strate-
gies first.

The data-centric paradigm combines database queries
for selecting data relevant to the case, fitting the data re-
trieved with a model of appropriate structure, and using
the resulting model for forecasting or decision making.

When the size of the data repository becomes large
enough, the architecture of the database (the data
model) becomes crucial. To guarantee sufficiently fast
retrieval of historical data, the queries need to be run
against a specifically designed data warehouse rather
than the operational database. Once the relevant data
are retrieved, nonparametric statistical methods can be
applied to build a local model fitting the data. Data-
centric modeling can thus be seen as a synergistic merger
of data warehousing and nonparametric statistics.

Data-centric models can form the basis for enterprise
optimization. For example, the central problem of busi-
ness optimization is matching demand with supply in
situations when the supply or demand, or both, are un-
certain. Suppose that a reward due to supply is defined
as a response variable dependent on the decisions made
and other conditions. Supply optimization then amounts
to searching for maximum reward over the response sur-
face.

In contrast to traditional response surface methods,
data-centric optimization does not assume a global
model of the response surface; rather it constructs a lo-
cal model on demand—for each decision tested in opti-
mization. Since the response is estimated through lo-
cally weighted regression (as discussed below), noise is
automatically filtered. The uncertainty of the response
estimate can also be respected in the optimization by
replacing the estimated reward with the expected value
of a utility function of the reward. By properly shaping
the utility function, one can make decision making either
risk-prone or risk-averse. As for the optimization algo-
rithm itself, data-centric models lend themselves to any
stochastic optimization method, including simulated an-
nealing, genetic algorithms, and tabu search. (Response
surface optimization is only one example of a data-centric
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optimization scheme. Other schemes, such as optimiza-
tion over multiunit systems and distributed optimiza-
tion, are currently being investigated.)

We next contrast data-centric modeling with the more
established global and local modeling approaches and
provide some technical details. An overview of a ref-
erence application concludes this section.

Empirical Modeling

When exploring huge data sets, one must choose between
trying to fit the complete behavior of the data and lim-
iting model development to partial target-oriented de-
scriptions.

The global approach generally calls for estimation of
comprehensive models such as neural networks or other
nonlinear parametric models (Sjöberg et al., 1995). The
major advantage of global modeling is in splitting the
model-building and model-exploitation phases. Once a
model is fit to the data, model look-up is very fast.
Global models also provide powerful data compression.
After a model is built, the training data are not needed
any further. The drawback is that the time necessary
for estimation of unknown model parameters can be very
long for huge data sets. Also, global models are increas-
ingly sensitive to changes in the data behavior and may
become obsolete unless they are periodically retuned.

The local approach makes use of the fact that often it
is sufficient to limit the fit of the process behavior to a
neighborhood of the current working point. Tradition-
ally, local modeling has been identified with recent-data
fitting. Linear regression (Box and Jenkins, 1970) and
Kalman filtering (Kalman, 1960) with simple recursive
formulae available for parameter/state estimation have
become extremely popular tools. Their simplicity comes
at some cost, however. Adaptation of local-in-time mod-
els is driven solely by the prediction error. When a
previously encountered situation is encountered again,
learning starts from scratch. Further, when a process
is cycling through multiple operating modes, adaptation
deteriorates model accuracy.

The data-centric approach is an alternative to both
these prevailing paradigms. It extends recent-data fitting
to relevant-data fitting (see Figure 3). This “shift of
paradigm” combines the advantages of global and local
modeling. Namely, it provides

• a global description of the data behavior,

• through a collection of simple local models built on
demand,

• using all data relevant to the case.

The price we pay for this powerful mix is that all data
need to be at our disposal at all times (i.e., no single
compact model is returned as a result of modeling). The
data-centric model can be built out of the original data
stored in the database without any data compression.

Global
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Data

Adaptation

Estimation

Recent 
Data Local

Model

Query

Local
Model

Relevant
Data

 

Figure 3: Global, local-in-time, and local-in-data
modeling.

When applied for forecasting at the enterprise level, the
data needs to be aggregated properly. The forecasting
literature (see, e.g., West and Harrison, 1989) shows that
forecasting from aggregated data yields more robust and
more precise forecasts. The design of proper aggrega-
tion or more sophisticated preprocessing of data thus
becomes a crucial part of data-centric modeling. Poor
preprocessing strategies will need to be corrected before
data-centric models can be effective.

Data-Centric Modeling with Locally Weighted
Regression

To be more specific, we describe one possible implemen-
tation of data-centric modeling, namely, locally weighted
regression with local variable bandwidth. The algorithm
is by no means the only option and should be understood
only as an illustration of the general idea.

It is difficult to trace the originator of local modeling.
The concept appeared independently in various fields un-
der names such as locally weighted smoothing (Cleve-
land, 1979), nonparametric regression (Härdle, 1990), lo-
cal learning (Bottou and Vapnik, 1992), memory-based
learning (Schaal and Atkeson, 1994), instance-based
learning (Deng and Moore, 1994), and just-in-time es-
timation (Cybenko, 1996).

General Regression. Assume that a single depen-
dent variable or response y depends on n independent or
regressor variables ϕ1, ϕ2, . . . , ϕn through an unknown
static nonlinear function f(·) with precision up to an
unpredictable or stochastic component e

y = f(·) + e.
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The objective is to estimate response y0 for any par-
ticular regressor ϕ0.

Linearization in Parameters. Rather than trying
to fit the above global model to all the data available,
data-centric modeling suggests the application of a sim-
pler model to data points (y1, ϕ1), . . . , (yN , ϕN ) selected
so that ϕ1, ϕ2, . . . , ϕN are close to a specified regressor
ϕ.

A typical example is a model linearized around a given
column vector ϕ:

y = θ′(ϕ)ϕ + e,

where θ denotes a column vector of regression coefficients
and θ′ its transposition.

Curse of Dimensionality. A word of caution ap-
plies here. As the dimension of ϕ increases, the data
points become extremely sparsely distributed in the cor-
responding data space. To locate enough historical data
points within a neighborhood of the query regressor ϕ0,
the neighborhood can become so large that the actual
data behavior cannot be explained through a simplified
model.

Consider, for instance, a 10-dimensional data cube
built over 10-bit data; it contains 2100 ≈ 1030 bins! Even
a trillion (1012) data points occupy an almost zero frac-
tion of the data cube bins. Even with 5-bit (drastically
aggregated) data, 99.9% of bins are still empty.

We have an obvious contradiction here. To justify
a simple model, we must apply it in a relatively small
neighborhood of the query point. To retrieve enough
data points for a reliable statistical estimate, we must
search within a large enough neighborhood. One must
ask: Can data-centric modeling work at all?

Coping with Dimensionality. Luckily, real data
behavior is rarely that extreme. First, the data is usu-
ally concentrated in several regions around typical oper-
ating conditions, which violates the assumption of uni-
form distribution assumed in mathematical paradoxes.
Second, the regressor ϕ often lives in a subspace of lower
dimension. That is, ϕ = ϕ(x) where x is a vector of di-
mension smaller than the dimension of ϕ. Suppose, for
instance, that y, x1, and x2 denote process yield, pres-
sure, and temperature, respectively, and the model is a
polynomial fit with

ϕi(x1, x2) = x
m(i)
1 x

n(i)
2 .

The dimension of regressor ϕ can easily be much larger
than the dimension of x, but it is the dimension of x
that matters here; it defines the dimension of a data
space within which we search for “similar” data points.

Under the assumption ϕ = ϕ(x), the model is lin-
earized around the vector x:

y = θ′(x)ϕ + e

and applied to data points (y1, x1), . . . , (yN , xN ) selected
so that ‖xk − x0‖ ≤ d for k = 1, 2, . . . , N , where ‖∆‖ is
an Euclidean norm of vector ∆, x0 is a query vector, and
d is a properly chosen upper bound on the distance.

Weighted Least Squares. The simplest statistical
scheme for estimating the unknown parameters θ is based
on minimizing the weighted sum of prediction errors
squared:

min
θ

N∑
k=1

K(‖xk − x0‖)(yk − θT ϕk).

Each data point (yk, xk), k = 1, 2, . . . , N is assigned
a weight inversely proportional to the Euclidean dis-
tance of xk from x0 through a kernel function K(·).
Typical examples of kernel functions are the Gaussian
kernel K(∆) = exp(−∆2) or the Epanechnikov kernel
K(∆) = max(1−∆2, 0).

The kernel function assigns zero or practically zero
weight to data points (y, x) that appear too far from
the query vector x0. We can use this fact to accelerate
database query by searching only for data points within
the neighborhood of x0 defined by K(‖xk − x0‖) ≤ ε,
where ε is close to zero.

Performance Tuning. The performance of the
above algorithm crucially depends on the definition of
the Euclidean norm ‖∆‖. In general, the norm is shaped
by the “bandwidth” matrix S:

‖∆‖2 = ∆′S−1∆.

Through S, it is possible to emphasize or suppress
the importance of deviations from the query point x0 in
selected directions in the space of x-values. The matrix
S depends on x0 and can be determined, for example, by
the nearest neighbor or cross-validation method (Hastie
and Tibshirani, 1990).

Bayesian Prediction. The precision of prediction
is an important issue with any statistical method, but
in data-centric modeling it is even more pressing due to
the relatively small number of data points used for lo-
cal modeling. To quantify consistently the prediction
uncertainty, one can adopt the Bayesian approach to es-
timation and prediction (Peterka, 1981). Compared with
the least-squares method chosen above for simplicity, the
Bayesian method calculates a complete probability dis-
tribution of the estimated parameters. The distribution
is then used for calculating a probability distribution of
the predicted variable(s). From the predictive distribu-
tion, any derived statistic such as variance or confidence
interval can be computed. Due to the relative simplicity
of local models, the Bayesian calculations, notorious for
their computational complexity in many tasks, can be
performed here analytically, without any approximation
(for more details, see Kulhavý and Ivanova, 1999).
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Figure 4: A comparison of predicted (bars) and ac-
tual (line) steam.

Reference Application

The first operating application of data-centric forecast-
ing and decision making is an operator advisory system
in a large combined heat and power company in the
Czech Republic. The company supplies heat to a dis-
trict heating network and electricity to a power grid.
The whole system is composed of five generation plants,
a steam pipeline network totaling 60 miles, and five pri-
mary, partially interconnected hot-water pipeline net-
works of a total length of 46 miles.

Data-centric forecasting is being applied to predict the
total steam, heat, and electricity demand, heat demand
in individual hot-water pipelines, and total gas consump-
tion. The forecasts are performed in three horizons—15-
minute average one day ahead, 1-hour average one week
ahead, and 1-day average one month ahead (Figure 4).
Altogether, this requires the computation of 1,632 fore-
casts every 15 minutes, 2,856 forecasts every hour, and
1,581 forecasts every midnight. The use of highly opti-
mized data marts makes it possible to perform all the
computations, including thousands of database queries,
while still leaving enough time for other analytic appli-
cations.

Data-centric decision making is applied to optimiza-
tion of set-points (supply temperature and pressure) on
hot-water pipeline networks and to economic load allo-
cation over 16 boilers. Insufficient instrumentation of
hot-water pipeline networks is solved by complement-
ing data-centric optimization with a simple determinis-
tic model-based procedure for evaluating the objective
function. The lack of data is thus compensated for with
prior knowledge, combining the underlying physical laws
and some simplifying assumptions. The solution can be
adapted to a wide range of heat distribution networks
with different levels of system knowledge and process
monitoring. Data-centric modeling takes into account
the outdoor temperature, current (or planned) electric-

ity production, time of day, day of week, whether it is
a working day/holiday, and the recency of data. Elec-
tricity production is considered to reflect the effect of
operators’ decisions in addition to external conditions.

Incomplete measurements on the boilers do not allow
for online estimation of combustion efficiency for each
boiler separately. Data-centric optimization is config-
ured so as to exploit only available information. From
the total fuel consumptions of generation plants and the
total heat generated, the overall efficiency of the current
boiler configuration is calculated. Data-centric optimiza-
tion then searches in the process history and suggests
possible improvements. For frequent situations and con-
figurations, important for the company, enough points in
the history are retrieved and reliable results are obtained.
Different configurations are tested and evaluated while
taking into account the costs of reconfiguration. One of
the most valuable features of data-centric optimization is
that it automatically adapts to changing operating con-
ditions (e.g., variations in fuel calorific value, changes in
boiler parameters, and aging of equipment).

Summary

A criticism frequently voiced about the data-centric ap-
proach is that it is incapable of modeling plant behav-
ior in previously unvisited operational regimes and of
handling changes in the plant, such as minor equipment
failures, catalyst aging, and general wear and tear. In
general, as with any statistical model, the quality of
data-centric models depends crucially on the availabil-
ity and quality of historical data. The lack of data can
be compensated only by prior knowledge. One option
is to populate the database with both actual and vir-
tual data, the latter coming from a simulation model or
domain expert (Kulhavý and Ivanova, 1999).

Thus, the data-centric approach itself suggests a solu-
tion to the problem of integrating data and knowledge.
A historical database can be merged with a database
populated with examples generated based on heuristics
or conventional models. Different weightings can be as-
sociated with records that depend on their source. Thus
historical data can be preferred for operational regions
that are well represented in the recent history of plant
operation, whereas “synthetic” data can be preferred for
contexts for which process history provides few associ-
ated samples. In effect, a synthesis of multiple types of
information sources can be achieved using the database
as a common foundation.

To sum up, data-centric models can be applied to a
range of problems in the process industries, subject only
to an ability to satisfy the database-intensive search re-
quirements and the absence of a single compact model
that would permit closed-form analytic solutions. The
former will cease to be a real constraint in a few years due
to continuing progress in database and computer technol-
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ogy. The latter issue is fundamental—with on-demand
modeling, all decision making becomes iterative. For this
reason, the data-centric model should not be considered
a replacement for the classical results of decision and
control theory, but as a tool that can extend the reach of
automation and control to processes that have not been
amenable to analytic methods.

Optimization with Adaptive Agents

The term agent is used in multiple senses in the com-
putational intelligence and related communities. We use
it here to mean software objects that represent prob-
lem domain elements. Agents can, for example, repre-
sent units and equipment in a chemical plant, parts of
an electricity transmission and distribution network, or
suppliers and consumers in supply chains (Garćıa-Flores
et al., 2000). An agent must be capable of modeling the
input/output behavior of a system at a level of fidelity
appropriate for problems of interest. Couplings between
systems, whether material or energy flows, sensing and
control data, or financial transactions, can be captured
through interagent communication mechanisms. In some
sense, agent-based systems can be seen as extensions of
object orientation, although the extensions are substan-
tive enough that the analogy can be misleading.

One common use of agents is to develop bottom-up,
componentwise models of complex systems. With sub-
system behaviors captured with associated agents, the
overall multiagent system can constitute a useful model
of an enterprise such as a process plant or even an indus-
try structure. Given some initial conditions and input
streams, the evolution of the computational model can
track the evolution of the physical system. Often a quan-
titative match will be neither expected nor obtained, but
if the essential elements driving the dynamics of the do-
main are captured, even qualitative trends can provide
insight into and guidance for system operation.

The increasing interest in agent systems can be at-
tributed in part to advances in component software tech-
nology. Provided that common interface specifications
are defined, agents can be developed in different pro-
gramming languages and can be executing on different
processes or computers. Agents can vary from very sim-
ple to extremely sophisticated, and heterogeneous agents
may work together in a single application. “Plug-and-
play” protocols for agent construction encourage code
reuse and modularity while enabling agent developers
to work in a variety of programming languages. Generic
agent toolkits are now available (e.g., swarm www.swarm.
org, Lost Wax www.lostwax.com, and Zeus http://
193.113.209.147/projects/agents/zeus/) that can
facilitate the design of agent applications for diverse
problems. Languages for interagent communication for
broad-based applications have also been developed. One
such language, KQML, has been fairly widely adopted
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Control

Configure
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Online

Algorithms

Configuration

Internal State

Probe

 
Figure 5: Abstract agent architecture.

(Finin et al., 1994).

Decision Making and Adaptation in Agents

Figure 5 shows an example abstract agent architecture,
identifying some of the functions that are often incor-
porated. The In and Out boxes are the ports through
which the agent exchanges messages with other agents;
Status and Control are interfaces for the agent simulation
framework; and the Query, Configure, and Probe fea-
tures are used for initialization, monitoring, debugging,
and so on. An agent can maintain considerable inter-
nal state information, which can be used by algorithms
that implement its decision logic (its input/output be-
havior). Other online algorithms can be used to adapt
the decision logic to improve some performance criteria
(which may be agent-centric or global). The adaptation
mechanism is often internal to an agent, but it need not
necessarily be so.

The adaptation mechanism may be based on genetic
algorithms (Mitchell, 1996), genetic programming (Koza,
1992), evolutionary computing (Fogel, 1995), statistical
techniques, or artificial neural networks. These algo-
rithms act on structures within an agent, but the adap-
tation is often based on information obtained from other
agents. For example, a low-performing agent may change
its program by incorporating elements of neighboring,
better-performing agents.

The choice of learning algorithm interacts strongly
with how the agent represents its decision-making knowl-
edge and the kind of feedback available. For example,
LISP programs may lend themselves to genetic program-
ming. In a supervised learning situation, neural networks
may employ an algorithm such as back-propagation or
Levenburg-Marquardt minimization. However, in many
agent applications, only weaker information is available
(e.g., a final score, forcing agents to rely on reinforcement
learning algorithms). The learner must solve tempo-
ral and spatial credit assignment problems—determining
what aspect of its sequence of decisions led to the final
(or intermediate) score and what part of its internal rep-
resentation is responsible. Strategies such as temporal
differencing and Q-learning have been proposed for this
(Watkins and Dayan, 1992).

Multiple learning mechanisms can be incorporated
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Figure 6: SEPIA interface showing a four-zone,
three-generator, two-load scenario.

into the same agent environment, or even the same agent.
“Classifier systems” frequently incorporate a genetic al-
gorithm to evolve new classifiers over time. The use of
multiple adaptation mechanisms can offer unsuspected
advantages. One well-known example is the Baldwin
effect, in which learning interacts with evolution even
though the learned information is not inherited (Hinton
and Nowlan, 1987).

Example: A Simulator for Electric Power Indus-
try Agents

One industry where the integration of business and phys-
ical realms has recently taken on a new importance is
electric power. Deregulation and competition in the
power industries in several countries over the last few
years have resulted in new business structures. At the
same time, generation and transmission facilities impose
hard physical constraints on the power system. For a
utility to attempt to maximize its profit while ensur-
ing that its power delivery commitments can be accom-
modated by the transmission system—which is simulta-
neously being used by many other utilities and power
generators—economics and electricity must be jointly
analyzed.

A prototype modeling and optimization tool recently
developed under the sponsorship of the Electric Power
Research Institute provides an illustration. The tool,
named SEPIA (for Simulator for Electric Power Indus-
try Agents), integrates classical power flow models, a
bilateral power exchange market, and agents that repre-
sent both physical entities (power plants) and business
entities (generating companies). Through a full-featured
GUI, users can define, configure, and interconnect agents
to set up specific industry-relevant scenarios (see Fig-
ure 6). A scenario can be simulated with adaptation
capabilities enabled in selected agents as desired. For
example, a generation company agent can search a space

of pricing structures to optimize its profits subject to its
generation constraints, the transmission capabilities of
the system, and the simultaneous optimization of indi-
vidualized criteria by other agents that may bear a co-
operative or competitive relationship to it. Two reusable
and configurable learning/ adaptation mechanisms have
been incorporated within SEPIA: Q-learning and a ge-
netic classifier system.

SEPIA models a power system as a set of zones in-
terconnected by tie-lines. A transmission operator agent
conducts security analysis and available transfer capac-
ity calculation, including first contingency checks for all
proposed transactions. A dc power flow algorithm and a
simplified ac algorithm are included for this purpose.

Tools such as SEPIA have several potential uses:

• To identify optimized (although not necessarily opti-
mal) operational parameters (such as pricing struc-
tures or consumption profiles in the power industry
application).

• To determine whether an industry or business struc-
ture is stable or meets other criteria (such as fairness
of access).

• To evaluate the potential benefits of new technology
(e.g., superconducting cables and high-power trans-
mission switching devices).

• To generally help decision makers gain insight into
the operation and evolution of a complex system
that may not be amenable to more conventional
analysis techniques.

Further details on SEPIA are available in Harp et al.
(2000). A self-running demonstration can be down-
loaded from the project Web site at http://www.htc.
honeywell.com/projects/sepia.

Summary

Over the last several years, a technological convergence—
increasing processing power and memory capacities,
component software infrastructure developments, adap-
tive agent architectures—has made possible the devel-
opment of a new class of simulation and optimization
tools. With careful design, these tools can be used by
nonexperts, and they can provide a level of decision sup-
port and insight to analysts and planners. It is, how-
ever, important to recognize that agency architectures—
although the object of significant attention in both the
software research community and the high-technology
media—is no panacea (Wooldridge and Jennings, 1998).
Problems that will benefit from an agent-oriented solu-
tion are those that have an appropriate degree of mod-
ularity and concurrency. Even then, considerable effort
must be invested to endow agents with the necessary do-
main knowledge. For optimization applications, adapta-
tion capabilities must be carefully enabled in agents to
ensure that the flexibility of the agent-based approach
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does not immediately imply drastic computational inef-
ficiency.

Conclusions

We conclude with some “slogans” that reflect the moti-
vations and philosophy underlying the research reported
above.

Embrace pluralism. The more complex and encom-
passing the problems we attempt to solve, the less likely
that any one solution approach will suffice. Key problem
characteristics-such as the degree of knowledge and the
amount of data available-will vary considerably across
the range of enterprise optimization applications. Cov-
ering the space of problems of interest requires a mul-
tipronged research agenda and the development of ap-
proaches that are applicable across the diversity of prob-
lem instances.

Leverage existing foundations. New classes of prob-
lems need not mean new built-from-scratch solutions.
Especially from a pragmatic perspective, an ability to
create technology that can “piggy-back” on existing in-
frastructure can be a key differentiator. The extent of
disruption of systems and processes is always a consid-
eration in the adoption of new research results.

Exploit IT advances. Advances in hardware, soft-
ware, and communication platforms do not just allow
more complex algorithms to be run; they also suggest
new ways of thinking about problems. The doing away
with traditional technology constraints can be a liber-
ating event for the research community, although it is
important to remember that the inertia of a mature, es-
tablished industry is a significant constraint in its own
right.

Pursue multidisciplinary collaborations. Another
corollary of complexity is that its management is a mul-
tidisciplinary undertaking (Samad and Weyrauch, 2000).
In the current context, this is not only a matter of marry-
ing control theory, chemical engineering, and computer
science. As we attempt to automate larger-scale sys-
tems and pursue the autonomous operation of entire en-
terprises, any delimiting of multidisciplinary connections
seems arbitrary.

It appears to be a law of automation that the larger the
scale of the system to be automated, the more special-
ized and less generic the solution. At one extreme, the
PID controller is ubiquitous across all industries (pro-
cess, aerospace, automotive, buildings, etc.) for single-
loop regulation. At the multivariable control level, MPC
is the technology of choice for the process industries but
has had little impact in others. For enterprise optimiza-
tion, effective solutions will likely be even more domain-
specific. The fact that we have discussed three very dif-
ferent technologies does not imply a fundamental uncer-
tainty about which one of these will ultimately be the
unique “winner”; rather, it reflects a fundamental belief

that process enterprise optimization is too complex and
diverse a problem area for any one solution approach to
satisfactorily address.
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