
Hybrid Systems in Process Control: Challenges, Methods and Limits

Stefan Kowalewski ∗

Corporate Research and Development
Robert Bosch GmbH †

Frankfurt, Germany

Abstract
Hybrid dynamics in process control arise for various reasons. The main source is the interaction between computer-realized
discrete control functions and the continuous physico-chemical processes in the plant. But also physical or operational
constraints lead to discrete phenomena in otherwise continuous processes. The modeling, the analysis and the design of
hybrid control systems pose new problems for which the conventional systems and control theory is not an appropriate
tool. The paper identifies these challenges using illustrative case studies and gives a survey of recent approaches to a
formal treatment of hybrid systems. Particular emphasis is put on methods which were developed in computer science
in the last years. We will discuss to what extent these techniques can support the analysis and design of hybrid systems
in process control or automation and what the limits are.

Keywords
Hybrid systems, Hybrid automata, Safety analysis, Verification, Synthesis, Fault diagnosis

Introduction

The term “hybrid systems” was coined around ten years
ago and refers to systems with both continuous and dis-
crete dynamics. It is now a common research field in
control theory and computer science with regular con-
ference and workshop series. The purpose of this pa-
per is to present a survey on approaches from this field
and discuss their potential for solving problems in pro-
cess control or automation. In particular, we will focus
on models and methods from computer science research
which do not receive much attention from the process
control community.

In computer science, the treatment of hybrid systems
belongs to the field of formal methods. The term for-
mal method refers to approaches which systematically
use means of description with rigorously and consistently
defined syntax and semantics to represent design spec-
ifications or existing designs/plants for the purpose of
either proving that certain design requirements hold or
automatically synthesizing designs which provably meet
these requirements. Examples of methods which in com-
puter science are commonly agreed to be formal are ver-
ification or synthesis, whereas simulation (in the engi-
neering sense of the word) or optimization usually are
not regarded as being formal.

In the last years formal methods have found their way
from academia to industry in several domains. Appli-
cations are reported, for instance, from the design of
integrated circuits, communication protocols, embedded
controllers for airplanes and cars, logic control of ma-
chine tools, and flexible manufacturing systems. The
use of formal techniques in these fields is motivated by
the need for discovery of faults in early design stages

∗Robert Bosch GmbH, FV/SLD, P.O. Box 94 03 50, D-60461
Frankfurt, Germany. Email: stefan.kowalewski@de.bosch.com

†The results and opinions expressed in this paper were devel-
oped while the author was with the Department of Chemical En-
gineering at the University of Dortmund, Germany.

which helps to save costs and to achieve more reliable
systems. However, this development does not seem to
have reached the processing industries because from this
domain only a few academic projects and hardly any in-
dustrial application of formal methods are known. The
reason which is often given for this situation is that the
first formal methods were applicable only to purely dis-
crete problems (e.g., correctness of switching circuits)
whereas problems in processing systems usually involve
plants with continuous dynamics. Now that new for-
mal methods have been developed for hybrid systems, it
seems to be worthwhile to revisit the question of what
can be achieved by formal methods in process control or
automation. This is the motivation of this contribution.

The paper is organized as follows. In the following sec-
tion we will present a pragmatic definition of a hybrid
system and discuss why hybrid models arise. After that,
the hybrid automaton model is introduced with the help
of an example. In the section Analysis of Hybrid Sys-
tems reachability analysis is presented as the main anal-
ysis method. We discuss computational issues and the
need for abstraction which arises as a consequence from
the computational limitations. Based on these theoreti-
cal contemplations, the section Hybrid Systems Problems
presents an analysis of the status and and the potential
of formal methods for hybrid systems in the processing
industries. Four possible application domains are iden-
tified, the current practice in these fields is described,
existing academic initiatives for developing methods and
tools are reported, and reasons are discussed why the
practitioners are still reluctant to use them. A discus-
sion concludes the paper.

What are Hybrid Systems?

The definition of a hybrid system as a system which com-
bines continuous and discrete dynamics is a bit superfi-
cial. To be more precise, the term “hybrid systems”

121

122 Stefan Kowalewski

refers to models, not systems as such. A system is not
hybrid by nature, but it becomes hybrid by modeling
it this way. Whether it makes sense to build a hybrid
model depends not only on the system, but also on the
application and the purpose of the model. For example,
it would be possible to describe the behavior of on/off
valves by a continuous relation between the opening ra-
tio and the control voltage. But in most situations it is
sufficient to consider on/off valves as discrete switching
elements. And if these valves interact with a process in
which continuous phenomena are of interest, a hybrid
model would be appropriate. In other words, it depends
on the level of abstraction which is needed to solve a par-
ticular problem, whether the model should be discrete,
continuous or hybrid.

As a consequence of this definition, hybrid systems
arise in processing systems whenever both abstraction
levels—continuous and discrete—have to be considered.
The main source of such problems are constellations in
which discrete (or logic) controllers interact with contin-
uous physico-chemical processes. The need for the dis-
crete abstraction level comes from the man-made control
functions (but also from physical constraints), and the
continuous level is necessary to describe the processes
driven by natural laws. However, to stress again the fact
that the appropriate model depends on the purpose: not
every computer-realized controller has to be described by
a discrete model, and not every chemical process needs a
continuous model. If we consider continuous controllers
being implemented on a digital computer, it usually is
sufficient for the design to describe controller and plant
as continuous systems and to abstract from the discrete
implementation. On the other hand, for the analysis
of a logic control function it is customary to use a dis-
crete abstraction of the continuous process (e.g., only
distinguishing between specified and unspecified process
states).

The second example points to a main topic in hybrid
systems research: abstraction methods. Often, it is ei-
ther not possible or not appropriate to analyze a hy-
brid model. In this case it is often helpful to discretize
the continuous part and solve the problem using discrete
analysis techniques. So, hybrid systems research is not
only concerned with hybrid models and their analysis,
but also with the problem how to map hybrid problems
into spaces where they can be solved better. This will be
discussed in more detail in the section Analysis of Hy-
brid Systems. The section Hybrid Systems Problems will
present examples for hybrid problems in the design and
analysis of processing systems. There we will see that
it is not only discrete logic but also the human distinc-
tion between certain modes (e.g., safe, unsafe, or toler-
able process states; start-up, production, or shut-down
phases; specified, unspecified, or possibly deviated pro-
cess behaviors) which leads to hybrid models.

Modeling of Hybrid Systems

Two Different Starting Points and Directions

Modeling frameworks for hybrid systems were introduced
independently in control theory and computer science.
Since the original domains of interest in these two fields
were on both ends of the hybrid dynamics spectrum—
purely continuous dynamic systems in control theory,
discrete state systems in computer science—the model-
ing approaches moved in opposite directions:

• In control theory, the starting point was continuous
models which were then extended by discrete mech-
anisms like switching or resetting. The resulting
models consist of differential equations, algebraic
equations and/or inequalities with continuous and
binary variables. The later are used to activate and
deactivate terms by multiplication, e.g. to switch
the right hand side of the state equation. This class
of systems is often refered to as switched continuous
systems.

• The computer scientists came the other way. They
extended discrete formalisms (most prominently fi-
nite automata, but also Petri nets and logics) by
continuous variables which evolve according to dif-
ferential equations associated with discrete states.
Discrete transitions can switch between continuous
modes, and the continuous variables can be reset
when a transition takes place. The resulting frame-
work is called hybrid automata.

In principle, both modeling approaches are equivalent
in the sense that the models are equally expressive1. In
the following, we will focus our attention on the hybrid
automata paradigm from computer science and discuss
their potential in process control and automation. For
more information about the “control theory approach”
to hybrid systems the reader is referred to the literature,
in particular to recent special issues on hybrid systems
in various control journals (e.g., Antsaklis and Nerode,
1998; Morse et al., 1999; Antsaklis, 2000), or to Lemmon
et al. (1999).

It should be mentioned that timed discrete event sys-
tems (i.e. models which consist of a discrete transition
system and time as the only continuous variable) are of-
ten not regarded as hybrid systems but rather classified
as discrete event systems. If this distinction is made,
systems are called hybrid only when more complex dif-
ferential equations than ẋ = 1 are involved. In this sur-
vey we will include the application of timed models as
part of the general discussion of hybrid systems, because
time is a continuous variable, and in many cases, timed
models are a sufficient abstraction of hybrid dynamics.

1Of course, certain assumptions have to be made. For example,
the value sets of the discrete variables in the switched continuous
model have to be finite because the discrete state space of a hybrid
automaton is finite by definition.

Hybrid Systems in Process Control: Challenges, Methods and Limits 123

FIS
801

LIS
501

QIS

TI

502

503

LIS
701

TIS
702

T1

T2

K1

P1

V13

V12

V15

V17

V16

V18

Cooling
agent

Heating

Figure 1: Example.

An Example

To introduce hybrid automata we will use a simple
example which illustrates that this modeling approach
arises naturally for certain classes of process control
or automation problems. The example is taken from
Kowalewski et al. (2001) and has been used as a bench-
mark case for instance in the European Union research
projectVerification of Hybrid Systems (VHS, 2000).

Figure 1 shows the piping and instrumentation dia-
gram of the example plant. It is a batch evaporator
in which the following production sequence takes place.
First, a solution is filled into tank T1 and the solvent is
evaporated until a desired concentration of the dissolved
substance is reached. During the evaporation stage, the
condenser K1 is in operation and collects the steam com-
ing from T1. When the desired concentration is reached,
the material is drained from T1 into T2 as soon as T2
is available (i.e., emptied from the previous batch). A
post-processing step then takes place in T2, before the
material can be pumped out of T2 to a downstream part
of the plant.

We focus our attention on the problem of an appro-
priate reaction of the controller to a cooling breakdown
in the condenser. This failure will lead to a temperature
and pressure increase in the condenser tube K1 and the
evaporator tank T1, if the evaporation process is con-
tinued. It must be avoided that the pressure in K1 will
rise above a dangerous upper limit. To achieve this, the
heating in T1 has to be switched off before the safety
pressure valve is triggered. This, in turn, causes a de-
crease of the temperature of the material in T1. When
the temperature in T1 becomes too low, a crystalliza-
tion effect leads to precipitation of solids, which spoils
the batch. This, of course, is an undesired situation,
too. Thus, the timespan between the cooling failure and
switching-off of the heating is critical: it has to be short

Evaporating

RD
t#5m

S

S

S

Stop heating

Start pump 1

Open valve 18

Open valve 15

V18

V15

P1

Heating

T2empty

Flow2low
Concen-

tration

OK

T1empty

Draining T2,
switching off
the heating

Draining T1

Safe
shut-down

Normal
operation
sequence

Emergency
shut-down
sequence

Figure 2: Sequential function chart.

enough such that the pressure increase is limited but on
the other hand as long as possible such that crystalliza-
tion will not occur. Any given control program for this
process has to be checked against this specification.

Figure 2 shows a suggestion for a controller which shall
realize the required behavior. The representation in Fig-
ure 2 is a Sequential Function Chart (SFC) according to
the IEC 1131 standard (IEC, 1992). In particular, action
blocks are used to specify the control actions performed
in each step. An action block consists of a qualifier,
an action name, and a manipulated variable. The left
branch of Figure 2 represents the normal operation se-
quence. In the undisturbed case, the system will leave
the step Evaporating when the desired concentration is
reached. The part branching to the right describes the
control actions during an emergency shut-down as a re-
action on a cooling breakdown. There is a waiting time
implemented between the cooling failure and stopping
the heater. As discussed above, the controller will open
valve 18 and start pump 1 to drain T2 as soon as the
flow of cooling agent is too low. The corresponding ac-
tions are labeled with the qualifier “S”, which means
that the variables V18 and P1 are set to TRUE and that
they will remain TRUE after the step was left. The label
“RD t#5m” on the third action in the step Draining T2,
switching off the heating symbolizes that the heating is
switched off with a delay of 5 minutes, even if the step
has become inactive in the meantime. As soon as T2 is
empty, the SFC will switch to the subsequent step and

124 Stefan Kowalewski

is empty

filling

evaporating

emptying

ready

emergency
draining

heating off

solidified

Figure 3: Finite automaton model of the evaporator
tank T1.

open valve 15. When T1 is empty and the heating is
switched off, the controller assumes the system to be in
a state of safe shut-down.

Hybrid Automata

When we want to analyze whether the controller in the
example from the previous subsection meets the require-
ments (i.e., the pressure will never become too high and
crystallization will not occur), a model of the plant is
needed which represents the relevant behavior. Obvi-
ously, a large part of this behavior is discrete because
the interaction between controller and plant is specified
in discrete terms. Figure 3 shows a corresponding finite
automaton model of tank T1 of the evaporator. The
discrete states represent the discrete steps during the
evaporation cycle (is empty, filling, evaporating, ready,
and emptying) as well as three important modes in the
case of a cooling failure (emergency draining, heating off,
and solidified). When the failure occurs, T1 will be in
the state evaporation. The controller will then empty
tank T2 and start the clock. This is not captured by the
model of Figure 3 but happens in the environment (which
would have to be modeled for a formal analysis, too). If
T2 is empty before the waiting time is elapsed, the sys-
tem will move to emergency draining, stop the heating,
and safely go back to is empty. The more interesting case
is when the waiting time is elapsed before T2 becomes
empty. In the model of Figure 3 this means that the
system moves to the state heating off. In this state the
temperature in T1 decreases while the controller waits
for T2 to become empty. Now the question is whether
T2 will become empty before the temperature drops be-
low the crystallization threshold. If this is the case, the
transition to emergency draining will be taken and the

is empty

"reset"

discrete states,
"locations"

discrete transitions

continuous variables

"activity"

"invariant"

"guard"

filling

T := 100°C

T 30°C

 T < 35°C

_

>_

. .T = T TK ()env

evaporating

emptying

ready

emergency
draining

heating off

solidified

Figure 4: Example of a hybrid automaton.

system is safe. If not, the state solidified will be reached,
representing that the crystallization has started.

Obviously, a purely discrete model like the one above
is not able to answer this question. What is needed here
is the information about how fast the temperature in T1
decreases. Thus, a hybrid model is necessary. Figure 4
shows how the additional information can be added to
the discrete model by using a hybrid automaton (Alur
et al., 1995). Roughly speaking, the hybrid automaton
model complements finite automata by continuous vari-
ables. These variables can be reset by discrete transi-
tions (here: the temperature is defined to be 100◦ Cel-
cius when the heating is switched off). While the system
is in a certain discrete state (called location), the contin-
uous variables evolve according to differential equations,
called activities (here: a linear first order ODE). Con-
ditions can be formulated which have to be true while
the system remains in a discrete state. They are called
invariants. Finally, so-called guards represent conditions
for transitions between discrete states. In the example
the invariant and the guard together express that the
transition to solidified will occur between 35◦ and 30◦

Celcius.
Figure 5 shows an important special class of hybrid

automata, a so-called timed automaton (Alur and Dill,
1990). Here, the continuous variable is a clock which can
only be reset to zero and the value of which increases by
the rate of one. Such a description is useful for exam-
ple when detailed continuous models are not available or
not necessary, but information about process durations
is known.

Analysis of Hybrid Systems

The major analysis procedure for hybrid automata is the
reachability analysis. It answers the question whether for
a given hybrid automaton a certain hybrid state (discrete
location and region in the continuous space) is reachable
from the initial state. This problem is so important be-
cause many problems can be reduced to a reachability
problem. For instance in the example above, the ques-
tion whether the controller is correct is mapped into the

Hybrid Systems in Process Control: Challenges, Methods and Limits 125

empty

filling

x := 0

x 8

x 6

<_

>_

.
x = 1

evaporating

emptying

ready

emergency
draining

heating off

solidified

Figure 5: Example of a timed automaton.

T

T

1

2

y = 100

x = 100

y := 0
:= 0,
:= [0, 25]

x

y
x := 0

L2
. .

= 2 = 1x , y

<

_
_

_
_

0 < < 100x

0 < < 100y

L1
. .

= 1 = 2x , y

<

_
_

_
_

0 < < 100x

0 < < 100y

Figure 6: Example for reachability analysis.

problem whether the state solidified is reachable in the
plant model.

However, the application of reachability analysis for
hybrid automata is restricted due to computational is-
sues. We will illustrate the basic computational prob-
lem by the small example in Figure 6 which is taken
from Preußig (2000). It is a very simple hybrid au-
tomaton with only two locations and two continuous
variables, x and y. In both locations, the invariants
restrict the values of x and y to a square of the size
(0 ≤ x ≤ 100 ∧ 0 ≤ y ≤ 100). In location L1, x grows
by a rate of 1 and y by a rate of 2. In location L2

it is vice versa. The transition T1 can only be taken
when the guard y = 100 is true. When it is taken, y
is reset to 0. Transition T2 is guarded by the condition
x = 100, and the reset is x := 0. Since the invariants,
guards and resets are linear expressions and the solu-
tions of the differential equations for the activities are
linear functions, this example belongs to the class of lin-
ear hybrid automata (Alur et al., 1995). It is the largest
class for which tools for exact reachability analysis exist.
The most prominent is Hytech (Henzinger et al., 1997).
Hytech uses polyhedra as the data structure for repre-
senting, manipulating and storing regions in the con-
tinuous state space during the exploration. The basic
reachability algorithm is the following:

0. Initialize hybrid automaton (location l := initial lo-
cation, polyhedron P := initial continuous region

90

80

70

60

50

40

30

20

10

0
0 10 20 30 40 50 60 70 80 90 100

100

y

x

100

P P
0 11
=

Figure 7: Situation after step 1 of the reachability
analysis algorithm.

P0).

1. Intersect P with the invariant of l.

2. Let P increase with time according to the activity
of location l.

3. Intersect P with the invariant of l.

4. Stop, if l was visited before with P .

Else: For all transitions T from l do:

5. Intersect P with the guard of T .

6. Reset P according to the reset expression of T .

7. Set l := target location of T , go to step 1.

Figure 7 shows the result of the steps 0 and 1 of the
algorithm: The initial values of x and y are (x = 0∧ 0 ≤
y ≤ 25). Step 1 determines which of these values are
possible in location L1. In this case the set is unchanged
and represented by the polyhedron P11 (the dark grey
bar in Figure 7) The subscripts symbolize iteration 1
and step 1. In step 2, the region of the continuous state
space is computed which can be reached while the system
is in l, without considering the invariant (or, in other
words, assuming that the system remains in L1 forever).
The result is P12 in Figure 8. Obviously, not all of this
region is actually reachable, because the invariant will
force the system to leave L1 as soon as it is violated.
Step 3 determines the part which is in accordance with
the invariant, i.e. P13 in Figure 9.

At this stage, the algorithm would take the list of pre-
viously visited regions and check whether P13 (or a sub-
set of it) had been computed for L1 before. If this is case,

126 Stefan Kowalewski

90

80

70

60

50

40

30

20

10

0
0 10 20 30 40 50 60 70 80 90 100

100

y

x

100

P
12

Figure 8: Result of step 2.

90

80

70

60

50

40

30

20

10

0
0 10 20 30 40 50 60 70 80 90 100

100

y

x

100

P
13

Figure 9: Result of step 3.

it would abort the current search branch. If not, the al-
gorithm has to determine the possible transitions from
L1. In our example, there is only T1. To find out whether
it is possible, we have to check whether the guard can
become true for the reachable values of x and y in L1.
This is computed in step 5 by the intersection. If it is
empty, the transition is not possible. Here, the result is
P15 in Figure 10. When the transition is taken, the reset
leads to P16. This is the possible region with which the
system can enter location L2. Now, the second iteration
starts. Figure 11 shows the resulting polyhedra P25 and

90

80

70

60

50

40

30

20

10

0
0 10 20 30 40 50 60 70 80 90 100

100

y

x

100
P

15

P
16

Reset

y:=0

Figure 10: Results of step 5 and 6.

90

80

70

60

50

40

20

10

0
0 10 20 30 40 50 60 70 80 90 100

100

y

x

100

P
25

P
26

Figure 11: Result of iteration 2.

P26 (the light grey parts represent the already visited
region).

If we continue the algorithm, it will become apparent
that after each iteration the reachable set is increased
by a polyhedron which becomes smaller and smaller. In
fact, the length of the horizontal and vertical boundary
lines is half of the length of the previous iteration. This
converges asymptotically to the reachable set given in
Figure 13. The consequence is that the algorithm will
not terminate. This is not only true for this example—it
was proven that reachability for linear hybrid automata
is not decidable, which means that there does not exist

Hybrid Systems in Process Control: Challenges, Methods and Limits 127

90

80

70

60

50

40

30

20

10

0
0 10 20 30 40 50 60 70 80 90 100

100

y

x

100

P
24

P
34

Figure 12: Results of iterations 3 and 4.

90

80

70

60

50

40

30

20

10

0
0 10 20 40 50

5
0

60 70 80 90 100

25

33 1/333 1/3

33 1/3

3
3

1
/3

100

y

x

100

Figure 13: Reachability set.

an algorithm which will terminate for every linear hybrid
automaton (Alur et al., 1995).

In practice, this undecidability result is not the only
problem. Since HyTech is performing its computations
by integer arithmetic, memory overflows for the integer
variables are a common problem. A further shortcom-
ing of this approach is the exponential complexity of
the algorithm with the number of continuous variables
(which adds to the discrete state space explosion prob-
lem). These shortcomings are the motivation for a very
active area in hybrid systems research which is concerned
with abstraction techniques for hybrid systems. The idea

is to build a substitute model which is more abstract than
the hybrid system under investigation (that is, it omits
some details but includes the behavior of the original
system), which belongs to a class of systems for which
reachability is easier to solve (e.g., timed automata or
purely discrete systems). A collection of papers follow-
ing this approach can be found in Engell (2000). Alur
et al. (2000) provided a survey on fundamental theoreti-
cal results in discrete abstractions of hybrid systems. A
slightly different approach is not to do the abstraction
for the whole dynamics first and then analyse reachabil-
ity, but to apply approximation techniques during each
single iteration step of the reachability analysis. Main
representatives of this work are for instance Chutinan
and Krogh (1999), Dang and Maler (1998), Greenstreet
and Mitchell (1999), Raisch and O’Young (1998), and
Preußig et al. (1999).

Hybrid Systems Problems

In this section we identify a list of process control prob-
lems (or in a wider sense, process automation problems)
which pose challenges to formal methods for hybrid sys-
tems. The problems are presented in the order in which
they arise during the life cycle of a processing plant.
The project management for processing plants is built
on the following life cycle model. Starting with a mar-
ket analysis, the early phases take place in laborato-
ries and pilot plants to increase the knowledge, iden-
tify the optimal chemical or physical processes for re-
alising the desired product and estimate the economic
prospects. After that, the so-called basic engineering
begins during which the unit operations (e.g. reactions,
separations) are fixed, the corresponding types of equip-
ment are chosen, and the basic means for controlling
the plant are specified. The major resulting document
of this phase is the so-called Piping and Instrumenta-
tion Diagram (P&ID). This is a flowsheet representing
all pieces of processing equipment like tanks, valves, re-
actors etc., all the pipes, the measurement points, as
well as the continuous control loops and the safety trips
(the latter two being represented roughly as connections
between the initiating sensor and the corresponding ac-
tuator). Following the basic engineering is the detail en-
gineering phase. Here, the information of the P&ID is
specified and refined to obtain the necessary documents
for erection (e.g., pipe routing, equipment sizes, choice
of materials etc.) and commissioning (choice of sensors
and control systems, configuration/programming of the
controllers, design of operator panels, etc.). Often the
boundaries between these phases are fuzzy. It is not
uncommon, for example, that the programming of the
control system has to be finished on site while the plant
is being put into operation. After the commissioning,
operation and maintenance is the next phase, and de-
commissioning and dismantling is regarded as a phase

128 Stefan Kowalewski

of its own which finishes the life cycle of a processing
plant. Refering to this life cycle model, the following
tasks with the potential for the application of hybrid
systems methods can be identified.

• safety analysis of plant instrumentations (basic en-
gineering)

• design and analysis of discrete controllers, e.g.,
interlocks, trips, switching of continuous control
modes, sequence control (detail engineering, com-
missioning)

• generation and analysis of control recipes for batch
processes (operation)

• event-based fault diagnosis (operation and mainte-
nance)

In the remainder of this section, the four tasks will be
discussed in more detail.

Safety Analysis of Plant Instrumentations

Task Description. Many processing plants repre-
sent a potential danger for the life and health of the
people working in the plant and those living in their
vincinity and for the environment. Therefore, in most
countries the national authorities demand a thorough
and systematic analysis of the possible hazards and the
safety concept of a new plant. This procedure has to take
place at the end of the basic engineering phase because
it is important to identify safety-related design faults in
an early stage of the project, so that modifications can
be done with little effort. The aim of the safety analysis
is to discover potential sources of hazards and to check
that the proposed safety devices are capable of handling
these hazards in an appropriate way.

Clearly, many safety problems are of a hybrid na-
ture. It often depends on the interaction between dis-
crete safety devices (e.g., limit switches, relief valves)
and the continuous dynamics (e.g., an exothermal reac-
tion) whether dangerous situations can occur or whether
the instrumentation can prevent them.

Current Practice. In practice, the safety analysis
is carried out by a team of experts coming from differ-
ent disciplines involved in the plant design. These ex-
perts get together and discuss the safety concept based
on the P&ID diagram. They literally start at one end
of the plant and move from one piece of equipment to
the other. Disturbances and equipment failures are as-
sumed and the consequences are estimated. The results
are documented thoroughly. This procedure can take
weeks.

To provide guidelines for these discussions, companies
and authorities have developed a handful of systematic
methods for safety analyses. Among those the Hazard
and Operability Studies (HAZOP) methodology (Law-
ley, 1974) is now established as the most popular one. In
HAZOP, a list of guidewords (e.g., “none”, “more than”,

or “reversed”) is applied to each piece of equipment and
each relevant physical variable such that all possible de-
viations of the nominal values can be determined. How-
ever, even for a medium sized plant it is still impossible
to consider all cases being brought up by the HAZOP
method. The experts have to select what they think are
the most important cases. This bears the danger of miss-
ing a possible hazard. Another problem is that hazard
analyses are based on the “one failure at a time” assump-
tion. This is also done to keep the number of considered
cases manageable. However, hazards caused by combi-
nations and sequences of failures will not be discovered
this way. Finally, the consequences of the interaction
between continuous and discrete dynamics can only be
estimated. This can be problematic because responses
of hybrid systems are much less predictable than purely
continuous systems.

State of Research. Since at the time of the safety
analysis the available information about the plant behav-
ior is rough, a model-based analysis will have to build
on qualitative models which abstract from the continu-
ous dynamics. First approaches in this direction were
presented by Vaidhyanathan and Venkatasubramanian
(1995), Yang and Chung (1998) and Graf and Schmidt-
Traub (1998). In all cases, the idea is to follow the HA-
ZOP methodology and to provide an automated checker
for the guideword questions which uses a quantitative
plant model. In Vaidhyanathan and Venkatasubrama-
nian (1995) and Yang and Chung (1998) the model is
built on signed directed graphs, in Graf and Schmidt-
Traub (1998) state transition systems are used which are
specified and simulated using the tool Statemate (Harel
and Naamad, 1996). In the latter case, the HAZOP
method essentially is mapped to a reachability problem
for discrete state transition systems. This points to the
similarity of the safety analysis for qualitative models
and formal verification of data processing systems (see
next section). It can be expected that more approaches
from this field will be applied to hazard identification
and safety analysis in the future, including the applica-
tion of the hybrid analysis method presented in the first
part of this paper.

Discussion. From the description of the currently
applied procedures for hazard and safety analysis it be-
comes clear that there is a potential for improving the
current practice by applying formal methods in the sense
of an automated, rigorous model-based safety analysis
which could then overcome the problem of overlooked
hazards as well as the single failure assumption.

The approaches mentioned in the previous section are
promising because they provide a means to automatically
check the consequences of large numbers of deviations
or failures and combinations of them. Already during
the modeling step, valuable insight will be gained about

Hybrid Systems in Process Control: Challenges, Methods and Limits 129

the safety of the plant design. And when reachability
analysis algorithms are applied, it is guaranteed that ev-
ery hazard being considered in the model—explicitly or
implicitly—will be discovered. However, before these ap-
proaches can be applied in practice, two problems have
to be solved. First, the modeling effort is very high
and for the practitioner it is often not apparent whether
it will pay off during the analysis. Second, the auto-
mated analysis will result in a large number of scenarios
leading to dangerous states differing only in small de-
tails which would have been considered as one hazard
in a manual analysis. Also, due to the intrinsic non-
determinism of qualitative models, many “dangerous”
trajectories are physically impossible. To overcome these
problems, methods for filtering the analysis results be-
fore they are presented to the user have to be developed.

Design and Analysis of Discrete Controllers

Task Description. In the process industries, dis-
crete controllers are realized by programmable logic con-
trollers (PLCs) or distributed control systems (DCSs).
They perform basic control functions, e.g., process super-
vision to avoid unwanted or even dangerous states of the
process or damage to the equipment, sequence control,
startup and regular or emergency shutdown procedures,
switching the mode of operation of PID controllers, or
supervision of sensor inputs and outputs to actuators.
A significant part of this discrete control logic is critical
for the safe operation of the process. The correctness of
the logic control system often depends on the interaction
between the discrete control function and the continuous
process.

Current Practice. In practice, discrete control logic
is still very seldom produced in a systematic manner.
Usually, rough and often incomplete specifications lead
to a first design and direct implementation which is then
improved by testing onsite. The support of the software
design is restricted to programming environments and a
standard for programming languages and common stan-
dard software elements (IEC (1992), see Maler (1999)
for a critical analysis). This situation seems to be inap-
propriate in particular for the citical parts of the logic
control software.

State of Research. The research on a more system-
atic and reliable design for logic controllers in processing
systems follows a number of approaches. Among those,
the following three can be regarded as the most impor-
tant methods with a formal basis: verification, synthesis,
and code generation from a formal specification.

Formal Verification. The notion of formal verifica-
tion originates from computer science where, in gen-
eral terms, it means a mathematical proof that a model
of an algorithm fulfills given formal properties. In the

last decades, different representations and methods have
been developed and, in the recent years, some of them
have been applied successfully in the area of hardware
and communication protocol design (see Clarke and Kur-
shan, 1996, for a survey). However, in the field of logic
controllers for processing systems, in particular when
continuous processes are involved as it is the case for
most processing plants, formal verification is currently
not applied in practice and only a few research projects
are described in the literature (see below).

The pioneering work in the verification of logic con-
trollers for industrial and in particular, chemical pro-
cessing systems was done by Powers and his co-workers
(1992) for control programs represented in Relay Lad-
der Logic. They applied the symbolic model checking
method from Burch et al. (1992) in which the system that
has to be verified is modeled as a finite state machine and
the specifications of the desired behavior are represented
by temporal logic expressions. Their approach has been
extended to include plant models and recent work shows
that the formal verification of logic controllers for pro-
cesses of moderate size is possible (Probst et al., 1997).
The continuous dynamics of subsystems of the plant are
discretized in an elementary manner: The range of values
of each continuous variable is partitioned into intervals
and the model simply describes the possible transitions
between these intervals. Timers are incorporated in the
same qualitative fashion by neglecting the timer value
and keeping only two states, running and elapsed. This
suffices if checking real-time constraints is not required,
e.g., whether a controller response to a plant event is fast
enough to avoid unwanted process behavior.

In the last years, the model checking approach has
been extended to incorporate real-time and hybrid spec-
ifications and analysis. This work is mostly based on the
timed or hybrid automata model and it resulted in the
development of analysis tools for such systems (Yovine,
1997; Larsen et al., 1997; Henzinger et al., 1997). Appli-
cations of this framework to the modeling and analysis
of PLC programs are reported, for example, in Mader
and Wupper (1999) and VHS (2000). In Kowalewski
et al. (1999) an approach is presented which integrates a
number of available model checking tools from computer
science with an engineering-oriented modeling interface.
For this purpose, a modular, block-oriented framework
for modeling hybrid systems is introduced which is based
on hybrid automata connected by certain discrete valued
signals. It aims at applications where formal verifica-
tion requires a quantitative analysis of the interaction
between timers or threshold values in the logic control
program and the plant dynamics. Further examples of
verification approaches to PLC programs including time
or hybrid aspects are Herrmann et al. (1998) and Heiner
et al. (1999).

A recent development in the chemical engineering
community is represented by approaches to apply tech-

130 Stefan Kowalewski

niques from optimization, in particular mathematical
programming, to verification problems. For instance, the
same basic problem as in the approach by Moon et al.
(1992), i.e. model checking of Relay Ladder Logic di-
agrams, has been treated by Park and Barton (1997)
using these techniques. Here, the problem of checking
whether a temporal logic formula holds for the model of
the logic controller is mapped into the feasibility prob-
lem for a system of equalities and inequalities for binary
variables. The latter is then solved by integer program-
ming. Application results show that there exist exam-
ples for which this approach generates solutions faster
than classical model checking. The problem of abstract-
ing continuous or real-time information is solved in the
same way as in the first approach.

The use of mathematical programming not only for
checking the control logic but also for the analysis of
switched continuous models has been suggested by Dim-
itriadis et al. (1996, 1997). The reachability problem
is reformulated as an optimization problem in the dis-
crete time domain which can be solved by mixed integer
programming. Basically, the optimization determines
the worst possible behavior, meaning that the system
is most often in an undesired region of the continuous
state space. The approach is general in the sense that
it can be applied to hybrid systems as well as to purely
discrete or purely continuous systems. Its strength lies
in the ability to take advantage of well tested and effi-
cient optimization procedures. A limitation is given by
the fact that the size of the mixed integer program grows
with the product of the number of discrete time steps and
the number of equations and logical expressions describ-
ing the plant and the controller, respectively. A similar
approach has been suggested by Bemporad and Morari
(1999). Here, an iterative scheme is used to perform con-
ventional reachability analysis. This scheme avoids set-
ting up a huge one-step optimization problem which is
most likely not tractable. The verification method is part
of a comprehensive modeling and analysis approach to
hybrid systems, including a scheme for model-predictive
control which is reported in another paper of the CPC
VI.

Synthesis. The synthesis of logic controllers is a trans-
formation of the continuous control synthesis problem to
a discrete event or hybrid setting: Given a model of the
possible plant behavior for arbitrary control inputs and a
specification of the desired process behavior, a controller
has to be designed which guarantees that the closed-loop
system satisfies the requirements. When the term syn-
thesis is used in the research literature for this task, it is
usually understood that the controller is derived from the
plant model and the specifications automatically by an
appropriate algorithm. Due to a traditional and deliber-
ate mutual isolation of the control systems and computer
science research communities, control engineers refer to

the framework set up by Ramadge and Wonham (1989)
whereas computer scientists trace the roots back to early
game theory (Buechi and Landweber, 1969) when the
origins of research on logic controller synthesis are con-
cerned. In both cases, the problem formulation and al-
gorithms are basically equivalent.

In the Ramadge and Wonham framework, the plant
is modeled as a finite state machine in which the transi-
tions represent discrete events. They either can be inhib-
ited by the controller or are uncontrollable in the sense
that their occurence is not under influence of the envi-
ronment. The desired behavior can be specified by a
set of acceptable event sequences, a so-called target lan-
guage (Ramadge and Wonham, 1987b), or a set of un-
desired states which corresponds to the forbidden states
specification mentioned in the previous section on for-
mal verification (Ramadge and Wonham, 1987a). For
both requirements, Ramagde and Wonham present syn-
thesis algorithms with linear complexity refering to the
size of the plant model. However, the size of the plant
model itself increases exponentially with the number of
components from which it is built.

There exist numerous extensions and derivations of
this approach from which only a selection can be men-
tioned briefly here. While in the original approach the
complete controller is computed off-line, Chung et al.
(1992) introduce an on-line synthesis approach using a
limited lookahead horizon. The fact that the controller
can only inhibit plant events but not force them to oc-
cur is often regarded as a shortcoming of the Ramadge
and Wonham framework. In Golaszewski and Ramadge
(1987), Sanchez (1996), Kowalewski et al. (1996), and
Krogh and Kowalewski (1996) synthesis concepts are
investigated where the controller can pre-empt events
by forcing other events. A further line of research is
concerned with Petri nets as an alternative modeling
paradigm. Examples are Hanisch et al. (1997), Li and
Wonham (1993, 1994), and Chouika et al. (1998). A sur-
vey is presented in Holloway et al. (1997). Applications
of formal synthesis approaches for process control prob-
lems can be found, for instance, in Tittus (1995) and
Marikar et al. (1998).

An important extension is the incorporation of quanti-
tative time, such that additional specifications for meet-
ing deadlines or minimal state residence times can be
formulated for the synthesis. This is useful for process
control applications because timers are often used when
information about the evolution of the continuous pro-
cess dynamics is not available from measurements. Two
main approaches can be distinguished: The first one is
based on a discrete time axis and assumes that state
transitions only occur synchronously to clock ticks. This
leads back to the original untimed Ramadge and Won-
ham setting (Brandin and Wonham, 1994). The second
approach is based on timed automata. Here the time
axis is continuous and the problem is formulated as a

Hybrid Systems in Process Control: Challenges, Methods and Limits 131

game between controller and plant (Asarin and Maler,
1999; Wong-Toi, 1997). Any winning strategy can serve
as a specification for a correct controller.

As it was the case for the formal verification, the ap-
plication of the discrete or timed synthesis methods to
process systems requires the substitution of models with
continuous dynamics by discrete or timed models. Sys-
tematic ways to obtain valid approximations for the syn-
thesis of controllers are reported in Chutinan and Krogh
(1999) and Raisch and O’Young (1998).

Code Generation from a Formal Specification. A
more pragmatic approach to systematic design of logic
controllers is represented by top-down design methods
where formal specifications of the control code are auto-
matically translated into control code. In principle, this
procedure does not exclude a step in which the specifi-
cation is checked against problem-specific requirements
by formal verification before it is fed into the code gen-
erator, or a final proof that the generated program is in
accordance with the specification. However, in the per-
tinent research known from the literature this is not yet
done. The PLC code is either generated from the result
of a synthesis (see above, Hanisch et al., 1997; Marikar
et al., 1998) or the specification is set up by hand and
analysed only with respect to general properties which
are not specific to the particular control problem, like
absence of deadlocks or reversibility of the initial state.
The latter approach is mostly based on Petri net repre-
sentations (Frey and Litz, 1999).

Discussion. It is safe to say that in the field of
logic controllers for processing systems, in particular
when continuous processes are involved as it is the case
for most processing plants, the presented academic ap-
proaches for verification or synthesis are currently not
applied in practice. There are several apparent reasons
for this situation. The first one is that PLC or DCS
software is usually developed by engineers and not by
computer scientists. Thus, the developers are not famil-
iar with the available formal methods and tools. Another
reason is that most control software in this area is written
by the PLC or DCS user for one particular application or
a rather small number of similar plants. This is a differ-
ent situation to hardware or protocol design where the
software is part of a mass product and the verification
effort pays off more easily.

Regarding the prospects of the verification approaches
mentioned above, it has to be noted that the application
scope is limited by the computational cost of the analy-
sis and, again, the necessary effort to build the models.
Therefore, more effort has to be invested mainly to in-
crease the efficiency of verification algorithms and to sup-
port the modeling process, possibly by interfaces to al-
ready existing process information (P&ID, data sheets).

Generation and Analysis of Control Recipes for
Batch Processes

Task Description. Batch processes follow a step-
wise production sequence. While in continuous processes
the input and output material is continuously flowing
into and out of the plant, respectively, batch processes
are characterized by the fact that discrete amounts of
material, so-called batches, are processed one after the
other (and possibly in parallel). Often, batch plants are
designed for a flexible production of multiple products.
Each product has its own processing sequence, the so-
called recipe, which can be realized in the batch plant
usually in more than one way. It is also often the case
that multiple batches, possibly of different products, can
be produced in parallel.

For the management and control of such plants, the
concept of recipe control has established itself in industry
and is described in the standard (ISA, 1995). The main
idea is to assign a basic recipe to each product which
specifies the necessary production steps and their se-
quence independently from the specific equipment avail-
able in the particular plant. Each step is described on
the level of process operations like, for instance, mixing,
heating, reaction, or separation. When the production
management decides that a certain amount of a prod-
uct has to be produced, the basic recipe is taken and to
each process operation an appropriate plant unit (e.g.,
mixer, reactor, etc.) is assigned. This leads to the con-
trol recipe, which can be regarded as an executable con-
trol procedure for the realization of the basic recipe on
a particular batch plant.

The problem arising in this procedure is that the as-
signment of specific equipment can lead to undesired con-
sequences which are not easy to predict. While the eli-
giblity of plant units for certain operations (for instance
with respect to size, available heating or cooling capac-
ity, resistance of material etc.) can be checked statically,
interference with other currently running recipes is much
more difficult to analyse. In particular, it is possible that
a ressource is assigned which will not be available when
it is needed, because it is used by another recipe. While
in manufacturing processes this situation usually only
causes a delay, it can lead to the spoiling of the batch in
a processing plant due to chemical and physical effects
during the waiting period (think of cristallization). It is
also possible that deadlocks occur due to bad equipment
allocation.

Current Practice. Due to the broad use of the
recipe control concept in industry, most DCS vendors
offer software packages for the integration of recipe man-
agement and control into DCS applications for batch
plants. These packages support editing of basic recipes,
storage of recipes in data bases, and manual assignment
of equipment from the controlled plant to steps of the
recipes to generate control recipes. However, achieving

132 Stefan Kowalewski

correctness of the control recipe in its environment (con-
sisting of the plant and the already generated parallel
control recipes) with respect to realizability and avoid-
ance of deadlocks and critical waiting situations like the
one described above, is left to the experience and intu-
ition of the user.

State of Research. One solution to the problem de-
scribed above is to simulate the execution of the control
recipes on the corresponding plant. For this purpose, a
discrete or hybrid simulator is necessary. While in princi-
ple any general purpose simulation package with discrete
or hybrid capabilities can be used for this task, there are
simulators available which specificly support simulation
of recipe-driven batch plants. One example is the tool
BaSiP (Fritz et al., 1998) which offers the possibility to
specify recipes using standardized languages and to build
the plant model from pre-defined blocks. For the simula-
tion the user can choose between a discrete and a hybrid
simulator or an interface to the commercial gPROMS
package.

Most of the research in the operation of batch pro-
cesses is concerned with optimization of production
schedules. This problem is situated on a higher level
than the one considered here. For the scheduling it is
assumed that realizable control recipes are available and
the task is to find optimal starting times and sequences to
satisfy certain production goals. In this field mathemat-
ical programming has become one of the most popular
tools. This line of research is mentioned here because
it is possible to take operating requirements (like avoid-
ing excessive waiting) into account as constraints in the
optimization problem.

A lot of research activities addressing specificly the
correctness and realizability of recipes in batch plants is
built on timed Petri nets. Here, the pioneering work goes
back to Hanisch (1992). Later approaches were reported,
for example, in Tittus (1995). To check the correctness,
the plant and the recipes are modeled by means of a Petri
net and the available analysis techniques for this kind of
model are used to determine, for example, deadlocks, re-
versibilty, or execution times of recipes. Meanwhile these
approaches have been extended to incorporate the con-
tinuous aspect using so-called hybrid Petri nets (David
and Alla, 1992).

A new approach to analyse or generate recipes takes
advantage of the model checking tools for timed au-
tomata (see the previous section in this paper enti-
tled Design and analysis of discrete controllers and also
Fehnker (1999) and Niebert and Yovine (1999)). Here
the idea is to model the recipe and the plant by non-
deterministic timed automata. The composition will
then yield a model representing any possible allocation
of plant units to recipe steps and any conceivable se-
quence of recipe execution. Using the available reach-
ability analysis algorithms, it is then possible to check

whether certain states representing successful execution
of a pre-defined number of recipes are reachable within
a desired time. This approach can be used for optimiza-
tion by an iterative procedure during which the desired
time is decreased until no more realizable schedules can
be found. However, these approaches are in their in-
fancy and currently only applicable to downsized exam-
ples with a handful of recipes running in parallel.

Discussion. In the domain of batch processes, a lot
of research is carried out and the extent to which research
results have been transfered to industrial applications is
larger than in the previous cases. However, this applies
mostly to the optimization of schedules. The problem of
finding a realizable and proper control recipe for a basic
recipe and a plant is currently solved manually and not
supported by formal methods. The two main reasons are
the same as in the case of logic control design: modeling
effort and tool performance. Usually, the companies al-
ready spent a lot of time to model the batch plant and
specify the recipes. And since the mentioned simulation
tools require different representations as their input, this
means double effort for the industrial users. This is not
regarded as worth it, in particular because experienced
operators of batch plants often perform a rather good job
in creating control recipes and schedules. However, con-
sidering the increasing complexity of batch plants, this
situation may change and the incentive to automatically
generate and analyze recipes and schedules may become
stronger.

To make the academic tools more attractive to prac-
tioners, interfaces to model representations already ex-
isting for the DCS are certainly desirable. Also, the per-
formance of the tools has to be increased. Here, the
timed automata approach could gain importance if it will
be possible to extend existing compositional reachability
algorithms like Lind-Nielsen et al. (1998) to a timed set-
ting.

On the methodological side, it could be fruitful to in-
vestigate the similarity between the generation of a con-
trol recipe from a basic recipe for a particular plant to
the compilation of computer programs written in a high-
level language to machine code executable on particular
hardware. Concepts from computer science could then
be used, for example, to analyze whether a control recipe
is a valid “refinement” of the basic recipe, where refine-
ment means adding more detailed information without
violating the originally specified behavior.

Event Based Fault Diagnosis

Task Description. If the process variables deviate
from their nominal values, usually a step-wise procedure
starts before a safety device is actually triggered: First a
warning is sent to the operator console, and if the value
deviates further, an alarm is generated. This leaves some
time to the operating personnel to identify the cause of

Hybrid Systems in Process Control: Challenges, Methods and Limits 133

the fault and to get the process back into nominal be-
havior. In practice, discovering the cause of an alarm
(or a warning) is based solely on the message associated
to an alarm and on the experience and knowledge of the
operators. In most cases, this is sufficient. However, it is
possible that an alarm already represents an effect of a
not directly determinable cause. And it is also often the
case that one fault successively causes further deviations
which results in a fast and long sequence of alarms on
the operator screen. To determine the original fault and
act correspondingly in a short time and under stress con-
ditions may become an impossible task for the operator
then.

Current Practice. The DCS supports the operat-
ing personnel in situations as described above only by
identifying the plant unit and process variables which
initiated the alarm, and possibly by displaying the cur-
rent values or recent trends of related process variables.
The analysis of these data is left to the operator.

State of Research. Methods for event-based fault
diagnosis that automatically (and more or less instantly)
determine the possible causing failure events are avail-
able from the field of discrete event systems research.
Fundamental notions in this context are observability, in-
vertibility, testability, and diagnosability of discrete event
systems. A comprehensive, tool-supported approach for
fault diagnosis of discrete event systems is presented in
Sampaath et al. (1996) where a diagnoser can be gener-
ated which derives the set of the currently possible (and
partly unobservable) plant behavior from the observable
events.

Discussion. Tools to automatically determine
causes of alarms or estimations of the current discrete
plant state can be very helpful to minimize the time of
plant shutdowns due to alarm trips and to reduce the
risk of wrong interference of the operating personnel
in an alarm situation. While these tools are available,
their acceptance in industry can be achieved only if
appropriate modeling environments will be integrated
into the DCSs.

With respect to process systems, it is also desirable
that the approaches are extended from a purely discrete
to a timed or hybrid setting. This would make it possible
to take the process dynamics into account and, for ex-
ample, determine that certain variables change too fast
or too slow by checking whether a limit switch event will
occur before or after a certain time threshold.

Conclusions

This paper presented an introduction to formal methods
for hybrid systems and discussed their potential with re-
spect to problems in process control or automation. Four
application fields were identified in the design and oper-

ation of processing systems where hybrid systems meth-
ods represent promising tools for a better support of the
engineering process. The selection was made by the au-
thor, and it is likely that more tasks can be identified
which can be supported in the same or similar way.

To summarize, it can be said that for each of these
tasks appropriate methods and tools have been made
available from academic researchers. However, they are
currently not applied in industry. The reasons are the
same for each task: First, the existence of the meth-
ods is unknown to many practitioners. And if a pro-
cess engineer gets in touch with a formal method, the
often inaccessible nature of its semantics and nomencla-
ture will probably prevent her or him from applying it.
If, however, this could not scare her or him away, the
huge modeling effort and limited tool performance will
destroy the remaining illusions. Of course, this picture is
painted excessively bleak and there certainly are promis-
ing developments, but it clearly points to the open prob-
lems which have to be solved to make formal methods
for hybrid systems a well established tool in the process
industries.

Acknowledgments

The views presented in this survey were developed while
I was a member of the Process Control Laboratory of
the Chemical Engineering Department at the Univer-
sity of Dortmund. They are the result of many discus-
sions with colleagues and partners in several research
projects. I am grateful to Nanette Bauer, Paul Chung,
Sebastian Engell, Holger Graf, Hans-Michael Hanisch,
Oded Maler, Bruce Krogh, Yassine Lakhnech, Ange-
lika Mader, Peter Niebert, Jörg Preußig, Olaf Sturs-
berg, and Heinz Treseler who helped to understand the
sometimes very different worlds of process engineering,
logic control design and computer science. The re-
search projects on this topic in which I could partic-
ipate have been funded by the European Commission
in the ESPRIT LTR project Verification of Hybrid Sys-
tems (VHS), by the German Research Council (DFG) in
the focussed research program Analysis and Synthesis of
Technical Systems with Continuous-Discrete Dynamics
(KONDISK) and the temporary graduate school (“Gra-
duiertenkolleg”) Modelling and Model-Based Design of
Complex Technical Systems, and by the German Aca-
demic Exchange Service (DAAD) in the exchange pro-
grams British-German Academic Research Collaboration
(ARC) with the British Council and Project-related Ex-
change of Personnel with the NSF.

References

Alur, R. and D. Dill, “A theory of timed automata,” Theoretical
Computer Science, 126, 183–235 (1990).

Alur, R., C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-
H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The

134 Stefan Kowalewski

algorithmic analysis of hybrid systems,” Theoretical Computer
Science, 138, 3–34 (1995).

Alur, R., T. A. Henzinger, G. Lafferiere, and G. J. Pappas,
“Discrete Abstractions of Hybrid Systems,” Proceedings of the
IEEE, 88(7), 971–984 (2000).

Antsaklis, P. and A. Nerode, editors, Special Issue on Hybrid Con-
trol Systems, volume 43 of IEEE Trans. Auto. Cont. (1998).

Antsaklis, P., editor, Special Issue on Hybrid Systems: Theory
and Applications, volume 88, no. 7 of Proceedings of the IEEE
(2000).

Asarin, E. and O. Maler, As soon as possible: time optimal con-
trol for timed automata, In Vaandrager, F. W. and J. H. van
Schuppen, editors, Hybrid Systems: Computation and Control,
Proc. 2nd Int. Workshop, HSCC’99, Berg en Dal, The Nether-
lands, March 1999, volume 1569 of Lecture Notes in Computer
Science, pages 19–30. Springer (1999).

Bemporad, A. and M. Morari, Verification of hybrid systems using
mathematical programming, In Vaandrager, F. W. and J. H. van
Schuppen, editors, Hybrid Systems: Computation and Control,
Proc. 2nd Int. Workshop, HSCC’99, Berg en Dal, The Nether-
lands, March 1999, Lecture Notes in Computer Science 1569,
pages 31–45. Springer (1999).

Brandin, B. A. and W. M. Wonham, “Supervisory control of timed
discrete event systems,” IEEE Trans. Auto. Cont., 39, 329–342
(1994).

Buechi, J. R. and L. H. Landweber, “Solving sequential conditions
by finite state operators,” Trans. AMS, 138, 295–311 (1969).

Burch, J. R., E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang, “Symbolic model checking: 1020 states and beyond,”
Inform. and Comput., 98(2), 142–170 (1992).

Chouika, M., B. Ober, and E. Schnieder, Model-based control syn-
thesis for discrete event systems, In Proc. IAESTED Int. Conf.
on Modeling and Simulation, Pittsburgh, USA, 1998, pages
276–280 (1998).

Chung, S. L., S. Lafortune, and F. Lin, “Limited lookahead policies
in supervisory control of discrete event systems,” IEEE Trans.
Auto. Cont., 37(12), 1921–1935 (1992).

Chutinan, A. and B. H. Krogh, Computing approximating au-
tomata for a class of linear hybrid systems, In Hybrid Systems
V: Proc. Int. Workshop, Notre Dame, USA, Lecture Notes in
Computer Science 1567, pages 16–37. Springer (1999).

Clarke, E. M. and R. P. Kurshan, “Computer-aided verification,”
IEEE Spectrum, pages 61–67 (1996).

Dang, T. and O. Maler, Reachability Analysis via Face Lifting,
In Henzinger, T. A. and S. Sastry, editors, Hybrid Systems:
Computation and Control, Proc. 1st Int. Workshop, HSCC’98,
Berkeley, USA, March 1998, Lecture Notes in Computer Sci-
ence 1386, pages 96–109. Springer (1998).

David, R. and H. Alla, Petri nets and Grafcet. Prentice Hall, New
York (1992).

Dimitriadis, V. D., N. Shah, and C. C. Pantelides, “A case study
in hybrid process safety verification,” Comput. Chem. Eng., 20,
Suppl., S503–S508 (1996).

Dimitriadis, V. D., N. Shah, and C. C. Pantelides, “Modelling and
safety verification of dicrete/continuous processing systems,”
AIChE J., 43(4), 1041–1059 (1997).

Engell, S., editor, Special Issue on Discrete Event Models of Con-
tinuous Systems, volume 6, no. 1 of Mathematical and Computer
Modelling of Dynamical Systems (2000).

Fehnker, A., Scheduling a steel plant with timed automata (1999).
Technical Report CSI-R9910, Computing Science Institute Ni-
jmegen.

Frey, G. and L. Litz, Verification and validation of control algo-
rithms by coupling of interpreted Petri nets, In Proc. IEEE
SMC, October 1998, San Diego, USA, pages 7–12 (1999).

Fritz, M., K. Preuß, and S. Engell, A framework for flexible sim-
ulation of batch plants, In Zaytoon, J., editor, Proc. 3rd Int.

Conf. ADPM’98, Reims, France, March 1998, pages 263–270
(1998).

Golaszewski, C. H. and P. J. Ramadge, Control of discrete event
processes with forced events, In Proc. 26th Conf. Decision and
Control, pages 247–251 (1987).

Graf, H. and H. Schmidt-Traub, A model-based approach to pro-
cess hazard identification, In Proc. 13th Int. Congress of Chem-
ical and Process Engineering, CHISA’98, Prague, 1998 (1998).

Greenstreet, M. and I. Mitchell, Reachability Analysis Using
Polygonal Projections, In Vaandrager, F. W. and J. H. van
Schuppen, editors, Hybrid Systems: Computation and Control,
Proc. 2nd Int. Workshop, HSCC’99, Berg en Dal, The Nether-
lands, March 1999, Lecture Notes in Computer Science 1569,
pages 103–116. Springer (1999).

Hanisch, H.-M., A. Lüder, and M. Rausch, “Controller synthesis
for net condition/event systems with a solution to incomplete
state observation,” Euro. J. Cont., 3, 280–291 (1997).

Hanisch, H.-M., “Coordination control modeling in batch produc-
tion systems by means of Petri nets,” Comput. Chem. Eng.,
16(1), 1–10 (1992).

Harel, D. and A. Naamad, “The STATEMATE Semantics of State-
charts,” ACM Transactions on Software Engineering and Tech-
nology, 4(5), 293–333 (1996).

Heiner, M., P. Deussen, and J. Spranger, “A case study in design
and verification of manufacturing system control software with
hierarchical Petri nets,” Advanced Manufacturing Technology,
15, 139–152 (1999).

Henzinger, T. A., P. S. Ho, and H. Wong-Toi, “HyTech: A model
checker for hybrid systems,” Software Tools for Technology
Transfer, 1(1,2), 110–122 (1997).

Herrmann, P., G. Graw, and H. Krumm, Compositional specifica-
tion and structured verification of hybrid systems in cTLA, In
Proc. 1st IEEE int. Symposium on Object-Oriented Real-Time
Distributed Computing, Kyoto, Japan (1998).

Holloway, L. E., B. H. Krogh, and A. Giua, “A survey of petri net
methods for controlled discrete event systems,” J. Disc. Event
Dyn. Sys., 7, 151–190 (1997).

IEC, International Standard 1131: Programmable logic controllers.
Part 3: Languages, International Electrotechnical Commission,
Geneva (1992).

ISA, International Standard S88.01: Batch Control, Part 1:
Models and Terminology, Instrumentation Society of America
(1995).

Kowalewski, S., H.-M. Hanisch, and U. Anderssohn, Logic con-
troller synthesis for non c/u-partitionable automata with for-
bidden states, In Preprints IFAC 13th World Congress, San
Francisco, 1996, vol. J, pages 359–364 (1996).

Kowalewski, S., S. Engell, J. Preußig, and O. Stursberg, “Veri-
fication of logic controllers for continuous plants using timed
condition/event system models,” Automatica, 35(3), 505–518
(1999).

Kowalewski, S., O. Stursberg, and N. Bauer, “An Experimental
Batch Plant as a Case Example for the Verification of Hybrid
Systems,” Euro. J. Cont. (2001). To appear.

Krogh, B. H. and S. Kowalewski, “State feedback control of con-
dition/event systems,” Mathematical and Computer Modeling,
23(11/12), 161–174 (1996).

Larsen, K. G., P. Pettersson, and W. Yi, “UPPAAL in a nutshell,”
Software Tools for Technology Transfer, 1(1,2), 134–152 (1997).

Lawley, H. G., “Operability studies and hazard analysis,” Chem.
Eng. Prog., 70, 105–116 (1974).

Lemmon, M., K. He, and I. Markovsky, “Supervisory hybrid sys-
tems,” IEEE Cont. Sys. Mag., 19, 42–55 (1999).

Li, Y. and W. M. Wonham, “Control of vector discrete event sys-
tems: I. the base model,” IEEE Trans. Auto. Cont., 38, 1214–
1227 (1993).

Hybrid Systems in Process Control: Challenges, Methods and Limits 135

Li, Y. and W. M. Wonham, “Control of vector discrete event sys-
tems: II. controller synthesis,” IEEE Trans. Auto. Cont., 39,
512–531 (1994).

Lind-Nielsen, J., H. R. Andersen, G. Behrmann, H. Hulgaard,
K. Kristoffersen, and K. G. Larsen, Verification of large
state/event systems using compositionality and dependency
analysis, In Proc. TACAS’98, Lecture Notes in Computer Sci-
ence 1384, pages 201–216. Springer (1998).

Mader, A. and H. Wupper, Timed automaton models for simple
programmable logic controllers, In Proc. Euromicro Conf. on
Real-Time Systems, York, UK, June 1999 (1999).

Maler, O., On the programming of industrial computers (1999).
Report of the ESPRIT project VHS, see (VHS, 2000).

Marikar, M. T., G. E. Rotstein, A. Sanchez, and S. Macchietto,
Computer aided analysis and synthesis of procedural controllers,
In Proc. Workshop on Discrete Event Systems (WODES’98),
Cagliari, Italy, 1998, pages 420–425. IEE (1998).

Moon, I., G. J. Powers, J. R. Burch, and E. M. Clarke, “Automatic
verification of sequential control systems using temporal logic,”
AIChE J., 38(1), 67–75 (1992).

Morse, A. S., C. C. Pantelides, S. S. Sastry, and J. M. Schumacher,
editors, Special Issue on Hybrid Systems, volume 35, issue 3 of
Automatica (1999).

Niebert, P. and S. Yovine, Computing optimal operation schedules
for multi batch operation of chemical plants (1999). Report of
the ESPRIT project VHS, see (VHS, 2000).

Park, T. and P. I. Barton, “Implicit model checking of logic based
control systems,” AIChE J., 43(9), 2246–2260 (1997).

Preußig, J., O. Stursberg, and S. Kowalewski, Reachability Anal-
ysis of a Class of Switched Continuous Systems by Integrating
Rectangular Approximation and Rectangular Analysis, In Vaan-
drager, F. W. and J. H. van Schuppen, editors, Hybrid Systems:
Computation and Control, Proc. 2nd Int. Workshop, HSCC’99,
Berg en Dal, The Netherlands, March 1999, Lecture Notes in
Computer Science 1569, pages 209–222. Springer (1999).

Preußig, J., Formale Überprüfung der Korrektheit von Steuerun-
gen mittels rektangulärer Automaten, PhD thesis, Department
of Chemical Engineering, University of Dortmund, Germany
(2000). (in German).

Probst, S. T., G. J. Powers, D. E. Long, and I. Moon, “Verification
of a logically controlled solids transport system using symbolic
model checking,” Comput. Chem. Eng., 21(4), 417–429 (1997).

Raisch, J. and S. O’Young, “Discrete approximation and supervi-
sory control of continuous systems,” IEEE Trans. Auto. Cont.,
43(4), 569–573 (1998).

Ramadge, P. J. and W. M. Wonham, “Modular feedback logic for
discrete event systems,” SIAM J. Cont. Optim., 25, 1202–1218
(1987a).

Ramadge, P. J. and W. M. Wonham, “Supervisory control of a
class of discrete event processes,” SIAM J. Cont. Optim., 25,
206–230 (1987b).

Ramadge, P. J. and W. M. Wonham, “The control of discrete event
systems,” Proc. IEEE, 77, 81–98 (1989).

Sampaath, M., R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, “Failure diagnosis using discrete event models,”
IEEE Trans. Cont. Sys. Tech., 4(2), 105–124 (1996).

Sanchez, A., Formal specification and synthesis of procedural con-
trollers for process systems, Lecture Notes in Control and In-
formation Sciences 212. Springer (1996).

Tittus, M., Control synthesis for batch processes, PhD thesis,
Chalmers University of Technology, Göteborg, Sweden (1995).

Vaidhyanathan, R. and V. Venkatasubramanian, “Digraph-based
models for automated HAZOP analysis,” Reliability Engineer-
ing and Systems Safety, 50, 33–49 (1995).

VHS, ESPRIT project Verification of Hybrid Systems (2000).
http://www-verimag.imag.fr/VHS/main.html.

Wong-Toi, H., The synthesis of controllers for linear hybrid au-
tomata, In Proc. Conf. Decision and Control. IEEE (1997).

Yang, S. and P. W. H. Chung, “Hazard analysis and support tool
for computer-controlled processes,” J. Loss Prevention in the
Process Industries, 11, 333–345 (1998).

Yovine, S., “KRONOS: a verification tool for real-time systems,”
Software Tools for Technology Transfer, 1(1,2), 123–133 (1997).

