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Abstract
Chromatographic separations are an expanding technology for the separation of Life Science products, such as pharma-
ceuticals, food, and fine chemicals. The simulated moving bed (SMB) process as a continuous chromatographic separation
is an interesting alternative to conventional batch chromatography, and gained more and more impact recently. The SMB
process is realized by connecting several single chromatographic columns in series. A countercurrent movement of the
bed is approximated by a cyclic switching of the inlet and outlet ports in the direction of the fluid stream. Because
of its complex dynamics, the optimal operation and automatic control of SMB processes is a challenging task. This
contribution presents an integrated approach to the optimal operation and automatic control of SMB chromatographic
separation processes. It is based on computationally efficient simulation models and combines techniques from mathe-
matical optimization, parameter estimation and control theory. The overall concept and the realization of the elements
are explained, and the efficiency of the proposed approach is shown in a simulation study for the separation of fructose
and glucose on an 8-column SMB plant.
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Introduction

The chemical process industry is currently undergoing
a substantial restructuring: the classical bulk business
is more and more substituted by Life Science products
with higher profit margins. In this area, particularly in
the development and production of pharmaceuticals, it is
of the utmost importance to be ahead of the competitors
in the race to the market. This requires a detailed and
integrated process design already in the product devel-
opment phase. In this context, product separation and
purification is the critical element in many cases.

Chromatographic processes provide a versatile tool
for the separation of substances which have different
adsorption affinities. They are especially suitable for
temperature-sensitive compounds and substances with
similar molecular structure and physico-chemical prop-
erties. Chromatography is well established in the field
of the chemical analysis, but in recent years it gained
more and more importance on the preparative scale
as a highly efficient, highly selective separation pro-
cess. Due to their origin and the close relation to the
instruments from chemical analysis (i.e. HPLC and
gas chromatographic analyzers), chromatographic sep-
aration processes are mainly operated in the classical
batch elution mode. To improve the economic viability,
a continuous countercurrent operation is often desirable,
but the real countercurrent of solids—such as the ad-
sorbent in chromatographic processes—leads to serious
operating problems. Therefore, the simulated moving
bed (SMB) process is an interesting alternative since it
provides the advantages of a continuous countercurrent
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unit operation while avoiding the technical problems of
a true moving bed.

The SMB process was first realized in the family of
SORBEX processes by UOP (Broughton and Gerhold,
1961) and is increasingly used in a wide range of in-
dustries. Currently, the main applications of continu-
ous chromatographic separations can be divided into two
groups: the large-scale industrial production of relatively
cheap specialty products, like xylene production or sugar
separation, and the separation of high-value products in
small amounts, which very often exhibit separation fac-
tors near unity (e.g. enantiomer separations in the phar-
maceutical industry). The separation costs in both cases
are very high in relation to the overall process costs and
easily dominate those. An optimal design and opera-
tion might therefore be the only possibility to exploit
the economic potential of the process and to make its
application feasible.

In practice, the SMB process is nowadays mainly
realized by connecting several single chromatographic
columns in series. The countercurrent movement is then
approximated by a cyclic switching of the feed stream
and the inlet and outlet ports in the direction of the
fluid flow. Thus, the process shows mixed continuous
and discrete dynamics with complex interactions of the
corresponding process parameters. If the SMB process is
operated close to its economic optimum, high sensitivi-
ties to disturbances and changes in the operating param-
eters result. Furthermore, concentration measurements
are expensive and can only be installed at the outlet of
the separation columns. Therefore, the control of SMB
chromatographic separation processes in order to ensure
a safe and economical operation while guaranteeing the
product specifications at any time is a challenging task.
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Currently, most processes are operated at some distance
from the optimum to avoid off-spec production and to en-
sure sufficient robustness margins. In order to exploit the
full economic potential of this increasingly applied tech-
nology, model-based optimization and automatic control
of SMB processes are required.

Several publications on both process optimization and
feedback control of SMB processes can be found in the
literature but they predominantly do not treat optimiza-
tion and control in an integrated manner. The purpose
of this contribution is to propose such an integrated ap-
proach based on a rigorous dynamic process model. The
overall concept and the realization of the elements are ex-
plained in the remainder of this paper. In each section,
we review the state of the art and refer to related work
of other authors. We start from a short description of
chromatographic separations and SMB chromatography
in particular, and then explain the generation and im-
plementation of sufficiently accurate and computation-
ally efficient process models, which are the essential pre-
requisite for model-based optimization and control. We
proceed with the issue of determining the optimal oper-
ating regime of the process, followed by the description of
the overall control concept and its components. The fea-
sibility and the capabilities of the proposed approach are
then demonstrated on an application example, the sepa-
ration of fructose and glucose on an 8-column SMB lab-
oratory plant. We finalize with some conclusions, high-
lighting unresolved issues and future research directions.

Process Description

Chromatography is a separation technique which is
based on the preferential adsorption of one component.
In adsorption, the solutes are transferred from a liquid
or gas mixture to the surface of a solid adsorbent, where
they are held by intramolecular forces. Desorption is the
reverse process whereby the solute, called adsorbate, is
removed from the surface of an adsorbent. By the use
of a suitable stationary phase, components that are dif-
ficult to separate by other methods can be obtained in
very high purities. In comparison to other thermal sepa-
ration methods, e.g. distillation, less energy is consumed.
Chromatography is particularly useful for the separation
of temperature-sensitive components because it can of-
ten be performed at room temperature (Hashimoto et al.,
1993; Adachi, 1994).

The classical implementations of chromatographic sep-
arations are batch processes in elution mode (see Fig-
ure 1). A feed pulse, containing the components to be
separated, is injected into a chromatographic column
filled with a suitable adsorbent, alternating with the sup-
ply of pure solvent. On its way along the column, the
mixture is gradually separated and the products can be
fractionated at the column outlet. One of the major
drawbacks of this method is the high amount of solvent
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Figure 1: Batch elution chromatography.
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Figure 2: Simulated moving bed chromatography.

needed to perform the separation. This also leads to a
high dilution of the products. During the migration of
the components along the column, only a small part of
the adsorbent is used for the separation. Another disad-
vantage is the batch operation mode of the process. In
industrial applications, processes with continuous prod-
uct streams are preferred.

These drawbacks led to the development of continuous
countercurrent adsorption processes. The main advan-
tage of such an arrangement is the countercurrent flow,
as in heat exchangers or distillation columns, that max-
imizes the average driving force. Thus, the adsorbent
is used more efficiently. However, the movement of the
solid particles is very difficult to realize. One reason is
the inevitable back-mixing of the solid that reduces the
separation efficiency of the columns. Another problem
is the abrasion of the particles which is caused by the
movement.

The invention of the Simulated Moving Bed process
overcame these difficulties, providing a profitable alter-
native mainly for the separation of binary mixtures. The
countercurrent movement of the phases is approximated
by sequentially switching the inlet and outlet valves of in-
terconnected columns in the direction of the liquid flow.
According to the position of the columns relative to the
feed and the draw-off nodes, the process can be divided
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Figure 3: Cyclic steady state of the simulated moving
bed process. Top: axial concentration profile (end of
period), Bottom: elution profiles.

into four different sections (see Figure 2). The flow rates
are different in every section and each section has a spe-
cific function in the separation of the mixture. The sep-
aration is performed in the two central sections where
component B is desorbed and component A is adsorbed.
The desorbent is used to regenerate the adsorbent by
desorption of component A in the first section, and com-
ponent B is adsorbed in the fourth section to regenerate
the desorbent. The net flow rates of the components
have different signs in the central sections II and III,
thus component B is transported from the feed inlet up-
stream to the raffinate outlet with the fluid stream and
component A is transported downstream to the extract
outlet with the “solid stream”.

The stationary operating regime of the SMB process
is a cyclic steady state (CSS), in which in each section
an identical transient takes place during each period be-
tween two valve switches. This periodic orbit is practi-
cally reached after a certain number of valve switches.
The upper part of Figure 3 represents the axial concen-
tration profile at the end of a switching period while
operating in cyclic steady state. The resulting elution
profiles below represent the time history of the product
concentrations and highlight the periodic nature of the
process dynamics.

Modeling and Simulation

Modeling of the SMB Process

The modeling and simulation of SMB processes has been
a topic of intensive research in recent years. An overview
can be found e.g. in Ruthven and Ching (1989), Ganet-
sos and Barker (1993), Zhong and Guiochon (1998) and
Klatt (1999). The modeling approaches can be divided
into two classes. In the first class, a rigorous SMB model

is assembled from dynamic process models of the single
chromatographic columns under explicit consideration of
the cyclic switching operation. Alternatively, an equiva-
lent solid velocity is deduced from the switching time and
the balance equations for the corresponding true moving
bed (TMB) are used.

By neglecting the cyclic port switching, the model is
distinctly simplified, and can be solved very efficiently.
It can be shown that the steady state solution of a de-
tailed TMB model reproduces the concentration profile
of a SMB model reasonably well in case of three or more
columns per zone and linear adsorption behavior, which
justifies the use of this type of model for the design of
such units (Storti et al., 1988; Lu and Ching, 1997; Pais
et al., 1998). However, many of the recent applications
of the SMB process, especially in the area of fine chemi-
cals and pharmaceuticals, are operated with less columns
per zone and at higher concentrations with nonlinear
adsorption equilibrium for economic reasons. In these
cases, the accuracy of the TMB approximation becomes
poor. Furthermore, only the dynamic SMB model cor-
rectly represents the complete process dynamics, which
is essential for an optimization of the operating policy
and for model-based control.

The rigorous dynamic SMB model is closely related to
the real process and directly describes the column inter-
connection and the switching operation. It mainly con-
sists of two parts: the node balances to describe the con-
nection of the columns combined with the cyclic switch-
ing, and the dynamic simulation models of the single
chromatographic columns. The node balances are used
to calculate the inlet flows and inlet concentrations of
the four zones of the process based on the mass balances
at the corresponding nodes (Ruthven and Ching, 1989):
Desorbent node:

QIV + QD = QI

cout
i,IV QIV + ci,DQD = cin

i,IQI

(1)

Extract node:
QI −QEx = QII

cout
i,I = cin

i,II = ci,Ex

(2)

Feed node:

QII + QF = QIII

cout
i,IIQII + ci,F QF = cin

i,IIIQIII

(3)

Raffinate node:

QIII −QRaf = QIV

cout
i,III = cin

i,IV = ci,Raf

(4)

with Qi being the respective flow rate in each of the
four zones, QD the desorbent flow rate, QF the feed flow
rate, QEx the extract flow rate, and QRaf the raffinate
flow rate. The switching operation can, from a math-
ematical point of view, be represented by shifting the
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Figure 4: Classification of column models.

initial or boundary conditions for the single columns.
Using the node model, the dynamic models of the sin-
gle columns are interconnected. This modular approach
allows the use of different column models which are ap-
propriate for the problem at hand.

Modeling of a Chromatographic Column

Modeling and simulation of chromatographic separation
columns has been a topic of research since the 1950s.
An overview can be found in Guiochon et al. (1994), an
interesting presentation of the phenomenological back-
ground is given by Tondeur (1995). Mostly, apart from
few outdated approaches using a stage model, the model
is formulated by a differential mass balance on a cross
section of the chromatographic column. Many different
modeling approaches can be found in the literature, and
those can be classified by the phenomena which they in-
clude and by their level of complexity (see Figure 4).

The simpler modeling approaches in the bottom of
Figure 4 can partly be solved analytically, and there-
fore they can be evaluated very efficiently (see e.g. Rhee
et al., 1989; Helfferich and Whitley, 1996; Zhong and
Guiochon, 1996; Dünnebier and Klatt, 1998; Dünnebier
et al., 1998). However, the idealistic assumptions on
which they are based are very unrealistic for most real
systems. For optimal operation and control, a model
which is both accurate and computationally efficient is
essential. The more complex process models mainly re-
quire an appropriate numerical solution strategy. The
models consist of a set of partial differential equations of
the convection-diffusion (or hyperbolic-parabolic) type.
Some properties of this type of equations, like shock lay-
ers and almost discontinuous solutions, make the appli-
cation of many standard discretization procedures dif-
ficult. A lot of research has been devoted to the de-
velopment of suitable spatial discretization schemes for
chromatography column models in order to transform
the PDEs to a set of ODEs (see e.g. Kaczmarski et al.,
1997; Kaczmarski and Antos, 1996; Strube and Schmidt-
Traub, 1996; Poulain and Finlayson, 1993; Ma and Guio-
chon, 1991; Spieker et al., 1998). Common to most of the

known approaches is the need for large computational
power which makes it difficult, even with modern com-
puters, to perform simulations substantially faster than
real time.

Therefore, the first objective of our research on model-
based control of chromatography processes was the for-
mulation and implementation of suitable process models.
We followed a bottom up strategy, proceeding from the
ideal model and increasing the complexity as far as nec-
essary in order to achieve sufficient accuracy. From a
mathematical point of view, it is useful to distinguish
chromatographic processes by the type of adsorption
isotherms, which describe the thermodynamic equilib-
rium of the separation system. Processes with a linear
relation between the fluid phase concentration ci and the
solid phase concentration qi (Henry’s law)

qi = KH,i · ci (5)

lead to systems of decoupled differential equations which
are easier to solve than those with coupled nonlinear ad-
sorption behavior, described for instance by competitive
Langmuir isotherms

qi =
ai

1 +
n∑

j=1

bjcj

· ci . (6)

Van Deemter et al. (1956) have shown that in case of a
linear isotherm the effects of axial dispersion and mass
transfer resistance are additive and can be incorporated
into a single parameter, the apparent dispersion coef-
ficient Dap. This results in the following quasi-linear
parabolic partial differential equation for the fluid phase
concentration of each component

γi
∂ci

∂t
+ uL

∂ci

∂x
−Dap,i

∂2ci

∂x2
= 0 (7)

The parameter γ is defined as

γi = 1 +
1− ε

ε
KH,i (i = A,B)

where ε represents the column void fraction, and the in-
terstitial velocity uL is assumed to be constant. Lapidus
and Amundsen (1952) proposed a closed form solution
of this type of equation for a set of general initial and
boundary equations by double Laplace transform. From
this, the dynamic SMB model can be generated by con-
necting the solutions for each single column by the re-
spective node model (see Dünnebier et al., 1998, for
details of the implementation). We denote this imple-
mentation as the DLI model (dispersive model for linear
isotherms). It was shown that simulation times two or-
ders of magnitude below real-time can be achieved while
reproducing both the results obtained with more com-
plex simulation models and experimental results very ac-
curately.
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In order to generate both an accurate and computa-
tionally efficient dynamic model also in the case of gen-
eral nonlinear adsorption isotherms we first followed the
same approach as in the linear case by analyzing a model
where the non-idealities are lumped into a single param-
eter. However, a closed-form solution is no longer possi-
ble in the nonlinear case and the numerical solution using
standard techniques for the spatial discretization did not
improve the computational efficiency substantially. For-
tunately, there exists a very effective numerical solution
for the detailled general rate model

∂ci

∂t
−Dax

∂2ci

∂x2
+ uL

∂ci

∂x
+

3(1− ε)kl,i

εrp
(ci − cp,i(rp)) = 0

(1− εp)
∂qi

∂t
+ εp

∂cp,i

∂t
− εpDp,i

[
1
r2

∂

∂r

(
r2 ∂cp,i

∂r

)]
= 0

(8)
with complex nonlinear isotherms proposed by (Gu,
1995). Here, Dax represents the axial dispersion coef-
ficient, cp,i the concentration within the particle pores,
and qi the solid phase concentration which is assumed
to be in equilibrium with the pore-phase concentration.
rp denotes the particle radius, εp the particle poros-
ity, kl,i the respective mass transfer coefficient, and Dp,i

the diffusion coefficient within the particle pores. A fi-
nite element formulation is used to discretize the fluid
phase, and orthogonal collocation for the solid phase.
We applied this formulation to SMB processes result-
ing in a superb accuracy and simulation times almost
two orders of magnitude below real time (Dünnebier and
Klatt, 2000). Due to the favorable numerical properties,
this certain implementation of the complex general rate
model in terms of computational efficiency even outper-
forms the state of the art simulation models for SMB pro-
cesses (equilibrium transport dispersive model—second
layer of complexity in Figure 4) which follow a linear
driving force approach with a lumped mass transfer rate
(e.g. Strube and Schmidt-Traub, 1996; Kaczmarski and
Antos, 1996; Kaczmarski et al., 1997). Furthermore, in
terms of physical consistency the general rate model is
more exact, because the lumping of the different mass
transfer phenomena is strictly valid only for systems with
linear isotherms and incorrect for substances with large
molecules (as they appear e.g. in bioseparations).

Optimal Operating Regime

State of the Art

Most of the known approaches for the determination of
operating parameters for simulated moving bed separa-
tion processes are not based on mathematical optimiza-
tion methods and rigorous dynamic process models. Two
main approaches can be distinguished: The first is to de-
rive short-cut design methodologies based on the equiva-
lent TMB process. The second type of work uses heuris-
tic strategies combined with experiments and dynamic

simulation of the SMB model.
By transforming the switching time τ into an equiva-

lent solid flow rate

QS =
(1− ε)Vcol

τ
(9)

the operating parameters of a SMB process can be ex-
pressed in terms of the operating parameters of the cor-
responding TMB process. In case of the ideal model
and linear adsorption isotherms according to Equation 5,
the TMB model can be solved in closed form. On the
basis of this solution Nicoud (1992) and Ruthven and
Ching (1989) introduced new operating parameters βi

and stated bounds for which the desired separation can
be achieved:

QF = QS(KH,A/βIII −KH,BβII)
QEx = QS(KH,AβI −KH,BβII)
QD = QS(KH,AβI −KH,B/βIV )

QIV = QS(KH,B/βIV +
ε

1− ε
)

1 ≤ βi ≤

√
KH,A

KH,B
, KH,B < KH,A

(10)

The β-variables were originally intended as slack vari-
ables to formulate the conditions for proper operation of
the separation unit as a set of inequalities. The bounds
on those variables result from retaining the adsorption
and desorption fronts in the appropriate zone of the unit,
i.e. the β’s are safety factors for the ratio of the net mass
flow rate of the solid and the liquid phase. A detailled
exposition of this subject can be found in Zhong and
Guiochon (1998).

As the objective function in this framework, the mini-
mization of the specific desorbent consumption QD/QF

or the maximization of the throughput QF can be used.
Both objective functions lead to the same solution in
the idealistic case, which is QD = QF at the bound-
ary of the feasible region with βi = 1 and QD/QF = 1.
The maximum feed inflow QF is bounded by the maxi-
mum allowed internal flow rates, which are limited by the
pressure drop or the efficiency of the adsorbent. Storti
et al. (1993), Mazzotti et al. (1997), and Migliorini et al.
(1998) derived a graphical short-cut design methodology
based on these ideas, the so-called triangle theory and
extended the theory to systems with nonlinear adsorp-
tion isotherms. This methodology is currently state of
the art and has been applied to a large number of sepa-
rations. Due to the unrealistic assumptions of the ideal
model, the triangle theory can only give initial guesses
for a feasible operating point of the process because it
does not permit a reliable prediction of the product puri-
ties which are the most important operating constraints.

To overcome the limitations of the ideal model, Ma
and Wang (1997) and Wu et al. (1998) presented a stand-
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ing wave design approach based on an equilibrium disper-
sive transport model of the TMB process. However, in
case of systems with dominant mass transfer or diffusion
effects the minimization of the desorbent consumption
and the maximization of the throughput become conflict-
ing. Additionally, as already mentioned, the quality of
the prediction of the TMB model in general is only suffi-
cient for a restricted range of applications. It is therefore
necessary to develop design strategies based on rigorous
dynamic SMB process models. The operating points de-
termined with the triangle theory or the standing wave
design can be used as initial guesses for the computation
of an optimal operating point.

Strube et al. (1999) describe a heuristic design strat-
egy based on the dynamic simulation of a SMB process
model. The optimization objective is formulated in a set
of competing and partly contradictory targets which are
approached by parameter variation based on a heuristic
strategy. The major advantage of this method is the use
of a realistic process model, the disadvantage is the need
for extensive manual simulation without any guarantee
to determine the optimum, and the need for an experi-
enced user.

From the shortcomings and the limitations of the pre-
viously described approaches, a list of desired properties
for a model-based optimization strategy for simulated
moving bed chromatographic processes can be stated as
follows:

1. The algorithm has to be based on a realistic and
efficient dynamic SMB process model.

2. The objectives for the optimization must be formu-
lated in a single objective function avoiding compet-
ing and contradictory targets.

3. The product quality has to be included explicitly
in the formulation since this is the most relevant
constraint for the operation.

4. The strategy has to be based on a mathematical op-
timization procedure. This is the only way to ensure
that, in combination with suitable initial guesses, a
solution at least close to the optimum can be ob-
tained in finite time and without requiring too much
costly expertise.

5. The procedure should be as general as possible, so
that it can be applied to a broad variety of SMB
processes with linear or nonlinear adsorption equi-
librium, any number of columns and any size of
equipment.

A New Model-Based Optimization Strategy

To the best of our knowledge, there are only two ap-
proaches documented in the literature which treat the
calculation of the optimal operating regime in a rigor-
ous mathematical formulation: the strategy suggested
by Kloppenburg and Gilles (1998), and the approach

proposed in the sequel which is explained in detail in
Dünnebier and Klatt (1999); Dünnebier et al. (2000).

We here consider the case where the plant design is
fixed and the feed inflow is pre-specified, e.g. by the
outflow of an upstream unit. In this case, the desorbent
inflow QD constitutes the only variable contribution to
the processing costs. By defining ck as the axial con-
centration profile at the end of a switching period, and
by expressing both the process dynamics between two
switching operations and the switching operation itself
by the operator Φ

ck+1 = Φ(ck) (11)

we can write the following condition for the cyclic steady
state:

‖Φ(ck)− ck‖ ≤ δcss (12)

The purity requirements for the products in the extract
and raffinate stream are formulated as inequality con-
straints. Besides that, the efficiency and functionality of
most adsorbents is only guaranteed up to a maximum
interstitial velocity, which results in a constraint Qmax

for the flow rate in the first section of the process. The
optimization problem can then be stated as follows:

min
Qj ,τ

QD (13)

subject to

‖Φ(ck)− ck‖ ≤ δcss∫ τ

0

cA,Ex(t)
cA,Ex(t) + cB,Ex(t)

dt ≥ PurEx,min∫ τ

0

cB,Raf (t)
cA,Raf (t) + cB,Raf (t)

dt ≥ PurRaf,min

QI ≤ Qmax

Although the values for the optimization variables are
constant during the switching periods, the optimization
problem is inherently a dynamic one, because the oper-
ating regime of a SMB process is a periodic orbit and
not a steady state. From a mathematical point of view,
this is due to the dynamic nature of Equation 12 which is
a system of partial differential equations with switching
initial and boundary conditions, constituting the crucial
constraint of the formulation given in Equation 13.

The natural choices of the degrees of freedom for the
calculation of the optimal operating regime are the desor-
bent flow rate QD, the extract flow rate QEx, the switch-
ing time τ and the recycle flow rate QIV . Due to the
complex interactions, this results in a strongly coupled
system dynamics, since each of the independent variables
affects every zone of the process. Furthermore, it is im-
possible to formulate explicit and independent bounds
on those variables, and the optimization problem is not
well-conditioned from a numerical point of view.
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We therefore exploit the results of the analysis for the
ideal process model in case of linear isotherms. Equa-
tion 10 sets up a transformation where the “natural de-
grees of freedom” QD, QEx, QIV , and τ are replaced by
the variables βi. Due to the physical meaning of the βi

(safety margins for stable process operation), the feasi-
ble region for the optimization problem is well-defined in
terms of the bounds for the transformed variables given
in Equation 10. Furthermore, due to the scaling effect
and based on the feature, that any of the variables βi

mainly affects one zone of the process, the variable trans-
formation results in a more favorably structured opti-
mization problem. In case of nonlinear isotherms, the
slope of the isotherm is concentration dependent and
can no longer be represented by the constant Henry-
coefficient KH . In order to extend Equation 10 to the
nonlinear case, we thus chose a reference concentration
to formulate the transformation:

QS =
QF

∂gA

∂cA
(cF )/βIII −

∂gB

∂cB
(cF )βII

=
(1− εb)AL

τ

QEx = QS

(
∂gA

∂cA
(cF )βI −

∂gB

∂cB
(cF )βII

)
QD = QS

(
∂gA

∂cA
(cF )βI −

∂gB

∂cB
(cF )/βIV

)
QIV = QS

(
∂gB

∂cB
(cF )/βIV +

ε

1− ε

)
(14)

where

gi = εpcp,i + (1− εp)qi(cA, cB) (i = A,B)

and describes the equilibrium isotherm. The feed con-
centration is a simple and suitable choice to calculate the
slopes. The bounds on the variables βi as given in Equa-
tion 10 are based on stability considerations for the ideal
model and linear adsorption equilibrium and can there-
fore not simply be transferred to more complex systems.
In case of nonlinear isotherms the bounds have to be re-
laxed suitably, and in terms of the triangle theory, the
region limited by these bounds can be seen as a hull for
the shaped triangle. However, the transformation Equa-
tion 14 helps to scale, structure and reduce the search
space.

The crucial point in the solution of the optimization
problem (13) is the efficient and reliable computation of
the cyclic steady state. The solution of the associated
fix-point problem given by Equation 12 corresponds to
a mathematically similar formulation for pressure swing
adsorption (PSA), the dynamics of which shows some
similarities to SMB processes. Three main approaches
have been identified and examined in the literature.
Firstly, the solution can be achieved by direct dynamic
simulation (Picard iteration). Alternatively, Equation 12
can be solved by a Quasi-Newton scheme (Unger et al.,
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Figure 5: Optimization algorithm.

1997; Kvamsdal and Hertzberg, 1997; Croft and Le Van,
1994), or by discretizing the equations in space and time
and solving the resulting system of algebraic equations
(Nilchan and Pantelides, 1998; Kloppenburg and Gilles,
1998).

Even though there are many analogies between the
SMB chromatography and PSA processes, the conver-
gence of the direct dynamic simulation approach is much
faster in the SMB case. For realistic SMB chromatogra-
phy processes, the cyclic steady state is reached after a
few hundred switching periods at the latest, whereas in
the PSA case possibly several thousand cycles have to
be evaluated. The inherent dynamics of the process are
therefore much faster. On the other hand, especially for
systems with nonlinear adsorption behavior and reaction
kinetics, the system becomes very stiff and a very fine
grid is needed, which makes the application of a global
discretization approach difficult. We therefore choose
the direct dynamic simulation as the most robust and
efficient way for the calculation of the cyclic steady state
within our optimization algorithm, which is schemati-
cally shown in Figure 5.
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Original Run 1 Run 2
PurEx [%] 99.5 99.5 98.0
PurRaf [%] 98.3 98.3 98.0
rel. QD [%] 100 60.9 41.7
QD [cm3/s] 0.8275 0.5043 0.3452
QF [cm3/s] 0.2500 0.2500 0.2500
QEx [cm3/s] 0.77989 0.4683 0.3489
QIV [cm3/s] 0.2695 0.1489 0.1423

τ [s] 1337.4 2096.7 2675.2

Table 1: Optimization results for the separation of
phenylalanine and tryptophan.

We follow a staged sequential approach for the solu-
tion of the dynamic optimization problem. The degrees
of freedom βi are chosen by the optimizer in an outer
loop and are then transformed back into flow rates and
switching times according to Equation 14. In the inner
loop, the cyclic steady state is then calculated by direct
dynamic simulation of the rigorous SMB process model.
The purity constraints are evaluated by integration of
the elution profiles for the cyclic steady state. The non-
linear program in the outer loop is small and can be
solved by a standard SQP algorithm, while the required
gradients are evaluated by perturbation methods. The
results of the optimization are the optimal cyclic oper-
ating trajectory (CSS), the minimum desorbent inflow
for the specified product purities, and the corresponding
operating parameters.

The optimization algorithm was tested for a number
of different separation systems with both linear and non-
linear adsorption equilibrium. One impressive example
is shown in Table 1, the separation of phenylalanine and
tryptophan. Estimated model parameters and the ref-
erence operating conditions were taken from Wu et al.
(1998), where the original operating point was optimized
by a standing wave design. Because of the nonlinear ad-
sorption equilibrium (Langmuir isotherms), the general
rate model was used within our optimization algorithm.
The convergence to the cyclic steady state was achieved
after 75 switching periods in the average, and the SQP
solver in the outer loop converged after 12-15 steps de-
pending on the initial point. This resulted in approx. 6-8
hours CPU time for each run on a 400 MHz PentiumII
PC. In the first run, the purities for the operating point
obtained by Wu et al. (1998) were taken as constraints.
It can be seen, that compared to the operating regime
determined by the standing wave design technique, the
desorbent requirement was cut down by almost 40% us-
ing the proposed optimization approach. Furthermore,
the purity requirements can be directly specified. The
results for run 2 show the economical impact of a reduc-
tion of the purity specifications to 98% each.

Control Concept

In real applications, plant/model mismatch and distur-
bances will lead to more or less pronounced deviations
from the optimal trajectory. However, the online op-
timization under real-time requirements is not possi-
ble with the computational power currently available.
Therefore, a feedback control strategy based on suitable
dynamic models and on-line measurement information is
required in order to keep the process close to the optimal
trajectory.

Only few publications can be found in the open lit-
erature which treat the automatic control of simulated
moving bed chromatographic processes. Ando and Tan-
imura (1986), Cohen et al. (1997), Hotier and Nicoud
(1996), and Hotier (1998) deal with the basic control of
the internal flow rates, which itself is a difficult task and
forms the basis for the more advanced control strate-
gies. The concepts described in Holt (1995), Cansell
et al. (1996), and Couenne et al. (1999) propose feed-
back control for certain operating variables (e.g. prod-
uct purity, system yield) based on some concentration
measurements. They are predominantly applied to the
separation of aromatic hydrocarbons where on-line Ra-
man spectroscopy (Marteau et al., 1994) can be utilized
to measure the specific concentration of the compound
at the outlet of the chromatographic columns. Those
as well as the geometric nonlinear control concepts de-
scribed in Kloppenburg and Gilles (1999) and Benthabet
et al. (1997) are mainly based on a model for the cor-
responding true moving bed (TMB) process, where the
cyclic port switching is neglected, and thus rely heavily
on the applicability of the TMB model as a simplified
model for the SMB process. This is particularly critical
for SMB processes with a low number of columns—which
are more and more utilized in industrial applications in
order to reduce the investment costs—where the core-
spondence between the SMB dynamics and the TMB
approximation may become poor. In a recent publica-
tion, Natarajan and Lee (2000) suggest to apply repet-
itive model predictive control on a reduced order linear
state space model of the SMB process. They optimize
the product yield for a given constraint on the purities
using the reduced linear model for the control calcula-
tions. This approach definitely follows the right objec-
tive, i.e. the control of the process in the vicinity of an
optimal operation point. However, in case of the SMB
process, yield optimization even when considering the
purity constraints does neither generically imply the eco-
nomic optimum nor guarantee a stable process operation
in the long run. Furthermore, the range of validity for
the linear approximation and its impact on the control
performance is not explicitly considered.

In order to overcome some of the shortcomings and
limitations mentioned above, we proposed a two-layer
control architecture which is shown schematically in Fig-
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Figure 6: Control concept for SMB processes.

ure 6 (Klatt et al., 2000). The top layer features the
off-line calculation of the optimal operating trajectory
as described in the previous section, combined with an
on-line estimation of the respective model parameters
based on inline concentration measurements. The pur-
pose of this estimation algorithm is twofold: It provides
actual and reliable values for the model parameters, and
together with the dynamic simulation model, it enables
the monitoring of the complete axial concentration pro-
file which is not directly measurable in the interior of the
separation columns. If there is a too large discrepancy
between the actual parameters and the parameter values
used in the trajectory optimization (e.g. caused by ag-
ing of the adsorbent material), a new optimization run is
initiated. The remaining control task then is to keep the
process along the calculated nominal trajectory despite
disturbances and plant/model mismatch, caused e.g. by
small and non-persistent perturbations of the system pa-
rameters. This task is performed by the bottom layer
where identification models based on simulation data of
the rigorous process model along the optimal trajectory
are combined with a suitable local controller. The real-
ization of the remaining elements of the proposed control
structure is explained below.

The model-based parameter estimation utilizes on-line
measurement data from measurement devices located in
the product outlets or in the connecting pipelines be-
tween the columns. Because of the high costs of on-
line concentration measurements, measurements located
after each single column will generally not be feasible.
Typically, up to four measurement points can be found
in real plants, if online measurement is employed at all.
The devices are system specific and use either spectro-
scopic methods or combined measurement techniques to
determine the concentration of each single species.

Starting from a complete set of model parameters de-
termined in a priori experiments, the objective of the
online estimation is to fit the model to the real process.
The model parameters can be categorized in kinetic pa-
rameters (describing mass transfer, diffusion, dispersion)

and adsorption parameters (constituting the adsorption
isotherms). Due to the limited measurement informa-
tion available, we solve a reduced parameter estimation
problem, where one crucial parameter per class and com-
ponent is adapted by optimizing a quadratic cost func-
tional

min J =
∫ t2

t1

(ci,meas(t)− ci,sim(t))2dt, i = A,B

(15)
where the measured outlet concentrations ci,meas are
compared to the outlet concentrations ci,sim which are
determined by the solution of the simulation model. The
number and arrangement of the measurement devices
depend on the mixture to be separated. In Zimmer
et al. (1999) a measurement setup and estimation algo-
rithm was proposed for systems with linear adsorption
isotherms which is briefly sketched in the application ex-
ample below.

The rigorous dynamic SMB model, consisting of PDEs
(eqs. (7) and (8)) with switching initial and boundary
conditions, is not well suited for a standard controller
design. Thus, we base the trajectory control on a lo-
cal model. In order to get rid of the hybrid system
dynamics in the bottom layer of the control concept,
we consider the reduced model as a discrete time model
with the sampling interval equal to one switching period.
The model predicts one characteristic parameter of the
concentration profile per switching period, and therefore
does not require the consideration of the discontinuities
introduced by the switching operation.

Because of the favorable properties of the nonlinear
transformation of the input space (14) which is utilized
in the trajectory optimization, the variables βi, resp. the
deviations from their values on the nominal trajectory,
are also chosen as inputs of the reduced model. This al-
lows a variable switching time which is essential in case of
inflow disturbances because feed flow-rate changes can be
completely compensated only by a corresponding adap-
tation of the virtual solid stream. Furthermore, with an
appropriate choice of outputs, the nonlinear transforma-
tion helps to create a nearly decoupled system dynamics,
particularly for SMB separation processes with linear ad-
sorption equilibrium.

One characteristic indicator of the separation perfor-
mance of a SMB unit is the axial position of the adsorp-
tion and desorption fronts of the two components at a
certain moment, e.g. at the end of a switching period (see
Figure 3). They are referred to as front positions pi in
the sequel. Extensive simulation studies showed that the
front positions do not only provide a suitable indicator
for the long term stability of the system, but addition-
ally exhibit an excellent correspondence with the product
purities which are the relevant output variables. How-
ever, from a system dynamics point of view, the product
concentrations are ill-suited as controlled variables due
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to their strongly delayed response and their lack of sen-
sitivity to changes in the manipulated variables. Thus,
the deviations of the front positions from their nominal
values on the optimized trajectory are chosen as outputs
of the local model.

The axial concentration profile is not directly mea-
surable, but assuming an on-line concentration measure-
ment at the end of each column, an approximation of
the complete axial concentration profile can be obtained
by connecting all measurements of the elution profiles
during one switching period. We call this representation
the Assembled Elution Profile (AEP). If the system is at
its cyclic steady state, the AEP can also be obtained by
using the information of a single measurement over ncol

switching periods. In case of a disturbed system, the
AEP obtained from a system with less than ncol mea-
surements becomes in some respect time variant, since
the parts of the AEP are recorded at different instants
during the transition, and the AEP constructed depends
on the location of the measurements in the loop. Nev-
ertheless, a reduction of the number of measurements
below ncol is possible to a certain extent, and the ef-
fect on the AEP is comparable to a low pass filter. The
required number and the exact location of the measure-
ment devices depend on the specific system dynamics.

Three different methods for the calculation of the front
positions from the AEP were evaluated:

I. Functional approximation of the fronts, followed by
the calculation of the inflection point of this func-
tion.

II. Surface quadrature to calculate the center of gravity
of the fronts.

III. Wavelet analysis to determine the inflection points
of the fronts.

For method I, a variation of the Gauss error function
proved to supply a good approximation for the fronts
of SMB separation processes with linear and moderately
nonlinear adsorption isotherms. The desorption fronts
are approximated by

f(t) =
1
2

[
1 +

2√
π

∫ k(t−z)

0

e−θ2
dθ

]
, (16)

the adsorption fronts by

f(t) =
1
2

[
1− 2√

π

∫ k(t−z)

0

e−θ2
dθ

]
. (17)

The two parameters of the function, k and z are calcu-
lated by a least-squares fit to the available measurements
which is updated in each switching period, and the in-
flection point of the function which represents the front
position is determined analytically afterwards.

In the second method, an upper and lower bound for
the concentration front is assumed first. Then the front

upper bound

lower bound

front position

A1

A2

Figure 7: Evaluation by surface quadrature.

position is defined as the point where A1 = A2 (see Fig-
ure 7). The integration is approximated by a summation
over the available measurement points.

Wavelet analysis (III) is based on scale and position
dependent coefficients of the form

C(a, k) =
∫ ∞

−∞
f(t)Ψ(a, k, t)dt (18)

and allows the multi-scale analysis and representation
of arbitrary time series. It also enables the direct iden-
tification of inflection points from noisy data (see, e.g.
Daubechies, 1992). The method of choice mainly de-
pends on the characteristics of each different separation
process, i.e. the shape and the position of the adsorp-
tion and desorption fronts. The different methods have
to be evaluated trading off the computational require-
ments for the calculation, the robustness against noise,
and the physical meaning of the calculated positions.

Having defined the inputs and outputs, the structure
of the local model and the input signal for the identifica-
tion need to be specified. In our work, we utilize the
Matlab System Identification Toolbox (Ljung, 1995)
to perform the necessary computations. To obtain the
necessary data for identification, the rigorous simulation
model is excited around the nominal operation regime
with a random binary signal. For MIMO identification,
non-correlated signals in the different channels are to be
preferred, which can be achieved with a slight modifica-
tion of the Pseudo Random Binary Signal, the Pseudo
Random Multistep Signal (Isermann, 1992). We tested
prediction error models as well as subspace state space
identification methods and found both approaches suit-
able for the SMB separation processes we have investi-
gated so far.

After identification of the local linear model any stan-
dard linear control design approach or linear model pre-
dictive control can be used to realize the controller on
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Figure 8: Structure of the trajectory control loop.

System Parameters
dcol 2.6 cm L 53.6 cm
ε 0.38 dp 0.0325 cm
ρ 1 g/cm3 η 0.0058

KA 0.54 KB 0.28
Nominal Operating Parameters

Concentration of feed cF 0.5 g/cm3

Feed flow rate QF 0.02 cm3/s
Desorbent flow rate QD 0.0414 cm3/s
Extract flow rate QEx 0.0348 cm3/s
Recycle flow rate QIV 0.0981 cm3/s
Switching time τ 1552 s
Purity fructose 99.95%
Purity glucose 99.95%
β [ 1.1371 1.0993 1.1164 1.1220 ]

Table 2: System and operating parameters for the
separation of fuctose and glucose on an 8-column
SMB laboratory plant.

the bottom layer. At a glance, the structure of the tra-
jectory control loop is depicted in Figure 8. The vari-
ables represent deviations from the nominal trajectory:
four input variables ui = ∆βi, and deviations of the
four front positions (normalized to the scaled length of
all interconnected columns between 0 and 1) as outputs
yi = ∆pi.

Application Example

As an application example, we consider the separation
of a fructose/glucose mixture on an 8-column laboratory
scale SMB plant. Performing the proposed optimization
algorithm, the plant was optimized for a product purity
of 99.95% both in the extract and the raffinate stream.
From a practitioner’s point of view, this is an excep-
tionally high purity requirement for a sugar separation.
Those are normally operated with a purity specification
of at most 99%. However, the higher the purity specifi-
cation the more challenging the control problem, because
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Figure 9: Axial profile (CSS, end of period) of the
SMB fructose/glucose separation and its sensitivity
to parameter perturbations.

the system is operated much closer to the stability mar-
gins. Furthermore, in pharmaceutical separations the
purity requirements are generally very high. Thus we
decided to operate the sugar separation under these high
purity requirements to demonstrate the feasibility of the
proposed approach.

The system and operating parameters are shown in
Table 2. The plant is operated at 60 ◦C. The liquid
density can be considered as constant for the given feed
concentration, and the adsorption isotherms are well de-
scribed by Henry’s law (5). Thus, the DLI model (7) is
utilized within the optimization and control framework.
The optimal operating trajectory and parameters were
determined using the optimization algorithm described
above. Here, convergence to the cyclic steady state was
achieved after 65 switching periods on the average, and
the SQP solver in the outer loop converged after 10-15
steps depending on the initial point. This resulted in ap-
prox. 4 hours CPU time on a 400 MHz PentiumII PC.
Because of the complex hybrid system dynamics, steady
state multiplicities are possible in principle. We therefore
tested different initial points within the feasible region,
but for the separation task at hand they all converged to
the optimal solution reported in Table 2. However, this
is of course system dependent and has to be thoroughly
inspected for each individual separation task.

Figure 9 shows the axial concentration profile for the
optimal operation mode and its sensitivity against varia-
tions of the adsorption isotherm parameters, caused e.g.
by a varying feed quality. We here perturbed the system
into the direction where the separation becomes more
difficult, i.e. decreasing KA and increasing KB . Table
3 depicts the corresponding product purities. It is obvi-
ous, that the optimal operating regime is quite sensitive
against parameter variations and thus the results of the
trajectory optimization illustrated above essentially de-
pend on a reliable determination of the model parame-
ters.

In Zimmer et al. (1999) an on-line parameter esti-
mation algorithm for systems with linear adsorption
isotherms based on concentration measurements only
in the product outlets was proposed. A combination
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Nominal KA -5% KA -10%
KB +5% KB +10%

Extract 99.95% 99.50% 97.04%
Raffinate 99.95% 99.61% 96.71%

Table 3: Product purities corresponding to the con-
centration profiles shown in Figure 9.

of a polarmeter and a densimeter is used to determine
the specific concentrations of fructose and glucose (Al-
tenhöhner et al., 1997). Assuming the validity of the
DLI model (7), the system has, in the case of a binary
separation, four parameters describing the physical be-
havior, which are γi and Dap,i(i = A,B). γ incorporates
the column void fraction ε and the respective adsorp-
tion parameter, the apparent dispersion coefficient Dap

lumps the kinetic effects. Thus, no further reduction of
the parameter space is necessary in this case.

A linear adsorption isotherm implies that the com-
ponents do not interact with regard to their adsorption
behavior. Therefore, the two parameter sets (γA, Dap,A)
and (γB , Dap,B) can be determined seperately by solv-
ing the least-squares problem posed by Equation 15. The
simulated axial concentration profile ci,sim is determined
by solving the PDE (7) for each column and each compo-
nent. Unfortunately, the boundary and initial concentra-
tions for each switching period are only partly available
from the measurements. Therefore, a special approxima-
tion strategy was developed using the concentration of
fructose and glucose in the extract and raffinate outflow
in two consecutive switching periods. This parameter es-
timation additionally supplies an approximation of the
non-measurable concentration profiles in the interior of
the columns prior to the measurement. Because the mea-
surement devices are located in the product outlets which
are periodically switched downstream, the complete ax-
ial concentration profile can be reconstructed within a
complete cycle (i.e. 8 switching periods).

The major task of the parameter estimation is to sup-
ply a set of actual model parameters which can be used
for the trajectory optimization. Also they indicate if
there is too large a deviation from the original set of
parameters and thus a new optimization run has to be
performed. However, as online optimization is not possi-
ble for the time being, smaller deviations and other dis-
turbances have to be adjusted by the trajectory control
loop.

For the fructose/glucose separation, a linear time in-
variant model of the ARX type was chosen as the local
dynamic model:

A(q)y(t) = B(q)u(t) + e(t) (19)

where A and B are 4 × 4 matrices containing polyno-
mial functions of the discrete time shift operator q in

Figure 10: Model validation.

each element. The amplitude of the input signal ∆βi

for excitation of the rigorous DLI model was chosen to
be 10% of the nominal β-value. This input range covers
nearly the whole range of practically reasonable operat-
ing conditions. A first estimate of the necessary system
order was obtained by the evaluation of step responses
of the DLI model, which was then adapted based on the
performance of the identified model. For the elements
of the matrices A and B, polynomials of at most sec-
ond order proved to be sufficient. The performance of
the model was tested with a second validation data set.
The prediction of the front positions (desorption front
of glucose (component B) as one example) of the rigor-
ous and of the reduced model are compared in Figure 10.
The prediction horizon is infinite here, i.e. the simulation
models are reconciled only for initialization and then run
independently. The approximation is very good, only in
regions far from the nominal trajectory, where the as-
sumption of linearity is violated, slight deviations occur.

As postulated, the system dynamics are diagonally
dominant in the vicinity of the optimal operating tra-
jectory. As mentioned above, in principle, any standard
linear controller design method could be applied. For
this example, we transformed the ARX model (19) to
a z-domain transfer function representation and applied
internal model control following the guidelines proposed
in Zafiriou and Morari (1985) to design a discrete time
SISO controller for each channel (i.e. the control of each
single front position by manipulating the respective β-
value). The design of the internal model controllers is
very straightforward for the system at hand and allows
the direct integration of the system dynamics into the
controller.

In the conventional feedback representation, the inter-
nal model controller is of the form

C(z) =
F (z)GC(z)

1− F (z)GC(z)GM (z)
(20)
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where GC is the internal model controller, GM is the
transfer function of the respective model, and F is a
first order filter

F (z) =
z(1− α)
z − α

(21)

where α has to be suitably chosen in the range 0 ≤ α <
1. After a cancellation of numerically induced pole/zero
pairs, we obtained the following transfer functions for
the respective input-output channels

GM
1 =

0.0349 · z2

(z − 0.145)(z − 0.8011)

GM
2 =

0.0256 · z2

(z − 0.7058 + 0.1106j)(z − 0.7058− 0.1106j)

GM
3 =

−0.0365 · z2

(z − 0.6967 + 0.2277j)(z − 0.697− 0.2277j)

GM
4 =

−0.0143 · z2

(z − 0.5743)(z − 0.8270)
(22)

In this case, direct inversion of GM is possible and the
internal model controller is realized by

GC
i =

1
z
· 1
GM

i (z)
(23)

The filter parameters were selected from simulation stud-
ies as

α1 = 0.4, α2 = 0.4, α3 = 0.6, α4 = 0.6

and the range of the trajectory controller was chosen as a
±10% deviation from its value at the optimal operating
regime for each of the βi.

In the following, some simulation studies are presented
in order to demonstrate the capabilities of the proposed
trajectory control. For the simulation scenarios, the gen-
eral rate mode according to Equation 8 is used to repre-
sent the real plant. This introduces a structural devia-
tion between the DLI model on which the control design
is based and the simulation model for the validation ex-
periments. The scenarios depicted below were performed
both without and with noise added to the concentration
measurements. White noise with a standard deviation of
1% of the maximum concentration value was assumed.

Flow-Rate Disturbance

In this scenario it is assumed that a step disturbance
in each of the internal flow rates occurs one at a time
to analyze the effect on all front positions and possible
coupling. Under practical considerations, these distur-
bances may be caused by an irregularity in the pumping
and piping system or by an offset in the basic control
layer. Each of the subplots in Figure 11 shows the ma-
nipulated variable and controlled variable moves result-
ing from the disturbance in the respective input channel,
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Figure 11: Closed loop reaction on input disturbance
scenario.

where a 10% variation in terms of the β-variable corre-
sponds to a 10-20% variation of the internal flow rates.

As can be clearly seen, the closed loop reacts in a
mostly decoupled manner. The front position deviation
is suppressed quickly by the controller, the maximum
value of the deviation being about 0.01 in terms of scaled
length. Though minor effects of coupling can be seen
for disturbances in channels 2 and 3, the effects remain
small. As expected, the results of the same sequence
under noisy measurements show less smooth control ac-
tions and a slight wiggling of the front positions due to
the noise’s influence on the calculation of the inflection
points. However, the results are principally the same
with no major deterioration as compared to the noise-
free setting. The corresponding plot is omitted here for
the sake of brevity.

Feed Batch Change

In real-world applications a separation process follows
prior production steps which might be continuous or dis-
continuous, a typical example in the Life Science context
being a fermenter or a batch reactor. Thus a continuous
SMB chromatography has to face changes in the feed
batch quality. In Table 3 and in Figure 9 we already
considered this scenario, which corresponds to a change
of the characteristic adsorption parameters, and its im-
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Figure 12: Closed loop response to change of feed
batch.
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Figure 13: Closed loop response to change of feed
batch in the presence of measurement noise.

pact on the axial concentration profile and the product
purities within the cyclic steady state operating regime.

Starting form the optimal operating regime, after five
periods we again perturbed the characteristic adsorption
parameters by ±5%, but now with the feedback control
loop closed. The results are shown in Figure 12 for the
case of noise-free concentration measurements. The tra-
jectory controller quickly suppresses the disturbance and
drives the corresponding front positions (controlled vari-
ables) back to their nominal values without any offset.
The axial concentration profile therefore does not change
its position as in the scenario without feedback control,
but is kept in the immediate vicinity of the optimal pro-
file. As a result, the product concentrations which are
the essential quality parameters are thus indirectly con-

trolled and kept close to their optimal values. Figure 13
shows the same scenario under noisy measurements. The
results are qualitatively the same and the effect on the
product concentrations remains very small compared to
the noise-free setting.

Conclusions and Further Research

Simulated moving bed chromatographic separation pro-
cesses pose a challenging control problem because of their
complex hybrid dynamics. In this contribution, we pro-
posed an integrated, model-based approach for the op-
timal operation and advanced control of a SMB chro-
matographic process. To our knowledge, it is the first
approach which is based solely on a rigorous dynamic
process model and does not utilize the simplified TMB
model in any of its elements. Furthermore, the proposed
strategy explicitly aims at controlling the process close
to its economic optimum.

The control architecture features two cascaded lay-
ers where in the top layer the optimal operating trajec-
tory is calculated off-line by dynamic optimization. Due
to the associated computational complexity, online op-
timization based on a rigorous dynamic process model
is currently not possible. The respective model param-
eters are determined by an online estimation algorithm
which, in addition to providing actual and reliable model
parameters for the trajectory optimization, enables the
online monitoring of the non-measurable concentration
profile within the separation columns. If the discrep-
ancy between the actual parameters and the parameter
values on which the trajectory optimization was based
on becomes significant, a new optimization run should
be initiated. The task of the second layer of the control
architecture is to keep the process along the optimized
trajectory. This trajectory control is based on a local
linear model which is identified from simulation data of
the rigorous dynamic process model along the optimized
trajectory.

The capabilities of the proposed control concept could
be demonstrated in a set of simulation studies for the
separation of fructose and glucose on an eight column
SMB plant which is currently operated manually in the
Plant Design Laboratory at the University of Dortmund.
Due to the particular choice of the inputs and outputs,
the dynamics of the local ARX model are approximately
decoupled in the vicinity of the optimal operating tra-
jectory, and thus a simple decentralized internal model
controller could be used for the trajectory control. It
performs satisfactorily, rejecting different types of dis-
turbances both in a noise-free setting and with noisy
measurements.

The overall control architecture is currently being im-
plemented in an industrial standard control system. It
consists of a decentralized control system (DCS) of the
SIEMENS S7-400 series (CPU S7-414-2DP) and the
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Windows Control Center (WinCC) as human machine
interface. The algorithms and programs of the compo-
nents of the control structure are integrated via the C-
script interface, Global Script. Due to the fact, that the
trajectory optimization is performed off-line, this task
can be swapped out to another machine.

The experimental verification of the proposed ap-
proach on the laboratory SMB plant is planned for the
near future, followed by the extension of the concept
to a real pharmaceutical separation. However, for this
latter task, some open issues have to be addressed be-
cause pharmaceutical separations may show a very com-
plex nonlinear adsorption behavior and not all of the
components of the proposed concept are currently com-
pletely adapted to this challenge. The off-line trajectory
optimization can be performed for arbitrary complex
isotherms, the successful extension to reactive adsorp-
tion processes was recently reported in Dünnebier et al.
(2000). The online parameter estimation concept is cur-
rently realized only for systems with negligible coupling
of the adsorption isotherms. This has to be extended in
order to get a reliable online estimate for the interaction
parameters of the adsorption isotherm in case those have
a significant impact on the system dynamics. Due to the
limited measurement information, a reduced parameter
estimation problem has to be posed in the case of com-
plex nonlinear isotherms, restricting the online adapta-
tion to the most significant model parameters only. The
design strategy for the inner control loop is also subject
to revision because the range of validity for the local
linear model may be too small for very nonlinear and
strongly coupled systems. Currently, the combination
of NARX models based on neural networks and nonlin-
ear model predictive control as an alternative to realize
the trajectory control loop for this type of separations is
investigated. Furthermore, the correspondence between
the characteristic points used for control and the product
purities—which is excellent in case of the sugar separa-
tion example—has to be validated for different types of
substances and the need for alternative calculation meth-
ods or even different characteristics to represent the re-
spective fronts has to be inspected.

The above mentioned issues are addressed in current
research projects and we expect a medium term solu-
tion for most of the problems. However, in the long run
also the cascaded control structure is under discussion.
A real time optimization based on a dynamic process
model redundantizing the inner loop would be desirable.
To achieve this goal, the computational efficiency of the
dynamic optimization has to be enhanced by at least one
order of magnitude. For this, both the numerical solu-
tion of the model equation as well as the calculation of
the cyclic steady state have to be improved. Adaptive
gridding for the solution of the model equations in com-
bination with the direct solution of the sensitivity equa-
tions seems to be a promising approach and provides an

interesting area for the cooperation between engineers
and applied mathematicians.
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