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A nonlinear control law is presented for stable, multiple-input, multiple-output processes, whether their delay-free part is
minimum- or non-minimum-phase. It is derived by exploiting the connections between continuous-time model-predictive

control and input-output linearization.

The differential-geometric, control law induces a linear closed-loop response

approximately. It has a few tunable parameters (one for each controlled output), and thus, is easily tuned.
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During the past decade, the problem of analyt-
ical (non-model-predictive) control of non-minimum-
phase, nonlinear processes without deadtime has re-
ceived considerable attention, leading to several solutions
(Doyle III et al., 1996; Kravaris et al., 1998; Morari and
Zafiriou, 1989; Isidori and Byrnes, 1990; Devasia et al.,
1996; Isidori and Astolfi, 1992; van der Schaft, 1992;
Isidori, 1995). These methods are applicable to a very
small class of nonlinear processes, their application re-
quires solving partial differential equations, or are not
applicable to the class of general, nonlinear, stable, mul-
tivariable processes with time delays. More on advan-
tages and disadvantages of these methods can be found
in Kanter et al. (2000).

In the framework of model-predictive control, it is
well known that large prediction horizons are needed for
non-minimum-phase processes. For example, Hernandez
and Arkun (1992) developed a p-inverse (long prediction
horizon) control law for nonlinear, single-input single-
output (SISO), non-minimum-phase, discrete-time pro-
cesses with arbitrary order and relative order.

An objective of this work is to derive a nonlinear con-
trol law for MIMO, stable, nonlinear, continuous-time
processes, whether their delay-free part is non-minimum-
phase or minimum-phase. This builds upon the single-
input single-output controllers presented in Kanter et al.
(2001), leading to the derivation of a continuous-time,
differential-geometric control law that is approximately
input-output linearizing (Allgéwer and Doyle III, 1998).

The paper is organized as follows. The scope of the
study and some mathematical preliminaries are given
in Section 2. Section 3 presents a method of nonlinear
feedforward/state-feedback design. A nonlinear feedback
control law with integral action is given in Section 4.
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Scope and Mathematical Preliminaries

Consider the class of MIMO, nonlinear processes of the
form:

T = Sl 0) =2 } "
yz(t) hz[‘(tfﬁz)]erZ, Z:L"' ,m
where # = [z1---Z,]T € X is the vector of the pro-

cess state variables, u = [u; -+ - uy,]T € U is the vector
of manipulated inputs, § = [1 - - - ¥m]T is the vector of
process outputs, 01, -- - , 6, are the measurement delays,
d = [dy---dy,])T € D is the vector of constant unmea-
sured disturbances, f(.,.) is a smooth vector field on
X xU, and hy(.), -+, hm(.) are smooth functions on X.
Here X C R"™ is a connected open set that includes T
and Tg, U C R™ is a connected open set that includes
uss, and D C R™ is a connected set, where (T, uss) de-
notes the nominal steady-state (equilibrium) pair of the
process; that is, f[Zss, uss] = 0.

The system:
dz(t) _ _ _
T2 = Je@.u) 2(0) = 7o } )
git) = hfz®)]+di, i=1,---,m

is referred to as the delay-free part of the process.
The relative orders (degrees) of the controlled outputs
Y1, ,Ym With respect to u are denoted by 71, -
respectively, where r; is the smallest integer for which
d;;f’; explicitly depends on u for every = € X and every
u € U. The relative order (degree) of a controlled output
y; with respect to a manipulated input u; is denoted by
rij (t=1,---,m, j=1,---,m), where r;; is the small-
dii g

est integer for which —=7 explicitly depends on u; for
every x € X and every u € U. The set-point and the set
of acceptable set-point values are denoted by ys, and Y/,
respectively, where Y C R™ is a connected set.

The following assumptions are made:

?Tm7

(A1) For every ysp, € Y and every d € D, there exists
an equilibrium pair (Zss, uss) € X X U that satisfies
Ysp — d = h(Tss) and f[Tss, uss] = 0.
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(A2) The nominal steady-state (equilibrium) pair of the
process, (Tss, Uss), is hyperbolically stable; that is,
all eigenvalues of the open-loop process evaluated at
(Zss,uss) have negative real parts.

(A3) For a process in the form of (1), a model in the
following form is available:

dx(t)
ZE = 0] 2(0) = } )
yi(t) = hifz(t—10;)], i=1,---,m
where © = [11---2,]T € X is the vector of model
state variables, and y = [y1,- - ,¥m]T is the vector

of model outputs.
(A4) The relative orders, rq, - - -

The following notation is used:

,T'm, are finite.

dy?
Kl = i
o) = &
_ d ity
ri—1 - )
hi (.’L‘) - dtri—1
. d"y;
B = . 4
Tz, w) g (4)
. dhitly
hil+1(x,u(0),u(1)) = dtritl
‘ dpiy*
RP (,u @ (D i)y = -
i (x7u YU, U ) dtpi

where p; > 7; and u®) = d‘u/dt’.

Input-Output Linearization

For a process in the form of Equation 1, responses of
the closed-loop process outputs are requested, having the
linear form:

(e1D+ 1)1 (t + 61)
= Ysp» (5)

(emD + 1) Gy (t + O,)
where D is the differential operator (i.e., D = %), and
€1, -+ ,€n are positive, constant, adjustable parameters
that set the speed of the response of the closed-loop pro-
cess outputs 41, - - - , U respectively. Substituting for the
process output derivatives from the model in Equation 5,
one obtains:

hy(Z) + (rll)elh}(a:) +ot (”)4%;1 (z, )

1

hon(T) + (rin)emh}n(x) + e (rm)e:nm KT (%, )

'm
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:ysp_d

() = mamwr

Under the assumption of the nonsingularity of the char-
acteristic (decoupling) matrix:

where

R (Z,u
o 1z, u)
ou

e (z,u)

on X x U, Equation 6 represents a feedforward/state
feedback. When the process delay-free part exhibits non-
minimum-phase behavior, the input-output behavior of
the closed-loop system under the feedforward/state feed-
back of Equation 6 is governed by the linear response
of Equation 5, but the internal dynamics (unobservable
modes) of the closed-loop system are unstable.
The dynamic feedforward/state feedback

D, (Z,u,U) =ysp — d (7)
where the ith component of ®,(z, u, U):

[@p(Z,u, )], = hi(T) + IT) ehi(Z) + -+

(e h @)

ri—1/"1

(M) (1)t )
NI (z’)eihhfz (i‘, u,u(l), . ’u(pqz—n))

(8)
T

U= {uu)...u(max[m—n,---,pm—w)} . p=I[p1 - pm]

with

a(I)p/a |:qunaX(plirllym >pm*""m1)7 Ty

umax(pl —T1im;s " Pm _rm7n):|
m

nonsingular, Vo € X, also induces a linear, closed-loop,
output response of the form:

(e1D + 1)Pryy (t + 61)
= Ysp> (9)
(emD + 1)Pm g, (t + 6,,)

Similarly, the dynamic feedforward/state feedback of
Equation 7 cannot ensure asymptotic stability of the
closed-loop system when the delay-free part of the pro-
cess exhibits non-minimum-phase behavior.  Conse-
quently, an objective of this study is to design a feed-
back control law that ensures asymptotic stability of the
closed-loop system, whether the delay-free part of the
process is minimum- or non-minimum-phase.
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Nonlinear Feedforward/State Feedback
Design

Assume that for every z € X, every d € D, and every
Ysp € Y, the algebraic equation:

Op(ZT,u) = ysp — d (10)

where
Op(Z,u) = ®p(Z,u,0) (11)
has a real root inside U for u, and that for every z € X
and every u € U, MZU) is nonsingular. The corre-
sponding feedforward /state feedback that satisfies Equa-
tion 10 is denoted by
u=V,(Z,ysp — d) (12)
Note that the preceding feedforward/state feedback was

obtained by setting all the time derivatives of u in Equa-
tion 7 to zero.

Theorem 1 For a process in the form of Equation 1, the
closed-loop system under the feedforward/state feedback
of Equation 12 is asymptotically stable, if the following
conditions hold:

(a) The nominal equilibrium pair of the process,
(Zss, uss), corresponding to ys, and d, is hyperboli-
cally stable.

(b) The tunable parameters py,- - -
sufficiently large.

, Pm are chosen to be

(¢) The tunable parameters €1, -+ , €, are chosen such
that for every £ = 1,---,m, all eigenvalues of
€0dor = €o[ 2 f(2,0)](z.. u..) lie inside the unit circle
centered at (—1,07).

Furthermore, as p1,--+ ,pm — 00, the state feedback
places the n eigenvalues of the Jacobian of the closed-
loop system evaluated at the nominal equilibrium pair at
the n eigenvalues of the Jacobian of the open-loop process
evaluated at the nominal equilibrium pair.

The proof can be found elsewhere (Kanter et al., 2000).
Condition (c) states that €,--- €, should be cho-
sen such that for every ¢y (¢ = 1,--- ,m) and for every
Ai (i =1,---,n), |leed; + 1] < 1, where A\, -+, A, are
the eigenvalues of J,. For an overdamped, stable pro-

cess, €1, , €, should be chosen such that for every e,
€

£=1,--- ,m,and forevery 7;, i=1,--- ,n, 0< b < 2,
Ti

where 7, --- , 7, are the open-loop time constants of the

process. In other words, €y, - , €, should be chosen to
be less than 27,,,, where 7,,;, is the smallest time con-
stant of the process [i.e., Tynin = min(m, - ,7,)].

Note that the feedforward/state feedback of Equa-
tion 12 does not induce the linear, closed-loop response
of Equation 9, since in the derivation of the feedfor-
ward/state feedback the time derivatives of u were set

P )\1<Jcl) )\Z(Jcl) )\S(Jcl)

1 7.28 -20.00 -10.00

2 64.75 -13.19 -7.14

3 -4.34 | -15.69+2.13i | -15.69-2.13i
4 -3.16 | -11.184-3.251 | -11.18-3.251
5 -2.60 -9.634-2.251 | -9.63-2.251
6 -2.28 -8.764+0.961 | -8.76-0.961
7 -2.10 -9.63 -6.74

10 | -1.86 -9.97 -4.45

20 | -1.78 -10.00 -2.38

30 | -1.55 -10.00 -2.02

40 | -1.31 -10.00 -2.00

o0 | -1.18 -9.70 -2.00

Table 1: Closed-loop eigenvalues of Example 1 for
several values of py = p2 = P.

to zero. The nonlinearity of the resulting delay-free out-
put response is the price of ensuring closed-loop stability
for processes with a non-minimum-phase delay-free part.

Example 1 Consider a linear process without deadtime
in state space form with

9 5 -3 9 5
A=lo -1 3|.B=15 07(}:{(1)(1)8}
0 0 -10 9 99

It is non-minimum-phase (has a right-half plane [RHP]
transmission zero at s = 7.28) and hyperbolically stable
(has three left-half plane [LHP] eigenvalues at s = —1,
s=—2ands = —10). Its relative ordersry = 1 andry =
1. With e = 0.1 and e5 = 0.05, the eigenvalues of €1 A
are -0.2, -0.1 and -1, while the eigenvalues of e2 A are -
0.5, -0.1 and -0.05. These eigenvalues are inside the unit
circle centered at (-1,0i), so p(etA+1) =0.9 <1 and
pleaA+ 1) = 0.95 < 1. The location of the closed-loop
eigenvalues, A\1(Je,), A2(Jar,) and A3(Ja,), for several
values of p1 = pa = P are given in Table 1; the closed-

loop eigenvalues converge to the open-loop eigenvalues
(s=-1,s=-2,s=-10), as P — oo.

Nonlinear Feedback Controller Design

The feedforward/state feedback of Equation 12 lacks in-
tegral action, and thus, it cannot induce offset-free re-
sponse of the process output when process-model mis-
match exists. To resolve this problem, the feedfor-
ward/state feedback of Equation 12 is implemented with
a disturbance estimator, leading to the derivation of the
feedback control law with integral action, given in The-
orem 2.

Theorem 2 For a process in the form of Equation 1
with incomplete state measurements, the closed-loop sys-
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tem under the error-feedback control law

dx
E = f[CL',’LL]

hl[(E(t — 91)] (13)
u = ¥, |z,e+ :

o [2(t — 0]

where e = ysp, — Y, s asymptotically stable, if the follow-
ing conditions hold:

(a) The nominal equilibrium pair of the process,
(Zss, Uss), corresponding to ys, and d, is hyperboli-
cally stable.

(b) The tunable parameters py,- - -
sufficiently large.

, Pm are chosen to be

(¢) The tunable parameters €1, -+ , €, are chosen such
that for every £ = 1,---,m, all eigenvalues of
eedor = eg[a%f(x, )] (3..,u.,) lie inside the unit circle
centered at (—1,07).

Furthermore, the error-feedback control law of Equa-
tion 13 has integral action.

The proof can be found elsewhere (Kanter et al., 2000).
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