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Abstract
A nonlinear control law is presented for stable, multiple-input, multiple-output processes, whether their delay-free part is
minimum- or non-minimum-phase. It is derived by exploiting the connections between continuous-time model-predictive
control and input-output linearization. The differential-geometric, control law induces a linear closed-loop response
approximately. It has a few tunable parameters (one for each controlled output), and thus, is easily tuned.
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During the past decade, the problem of analyt-
ical (non-model-predictive) control of non-minimum-
phase, nonlinear processes without deadtime has re-
ceived considerable attention, leading to several solutions
(Doyle III et al., 1996; Kravaris et al., 1998; Morari and
Zafiriou, 1989; Isidori and Byrnes, 1990; Devasia et al.,
1996; Isidori and Astolfi, 1992; van der Schaft, 1992;
Isidori, 1995). These methods are applicable to a very
small class of nonlinear processes, their application re-
quires solving partial differential equations, or are not
applicable to the class of general, nonlinear, stable, mul-
tivariable processes with time delays. More on advan-
tages and disadvantages of these methods can be found
in Kanter et al. (2000).

In the framework of model-predictive control, it is
well known that large prediction horizons are needed for
non-minimum-phase processes. For example, Hernández
and Arkun (1992) developed a p-inverse (long prediction
horizon) control law for nonlinear, single-input single-
output (SISO), non-minimum-phase, discrete-time pro-
cesses with arbitrary order and relative order.

An objective of this work is to derive a nonlinear con-
trol law for MIMO, stable, nonlinear, continuous-time
processes, whether their delay-free part is non-minimum-
phase or minimum-phase. This builds upon the single-
input single-output controllers presented in Kanter et al.
(2001), leading to the derivation of a continuous-time,
differential-geometric control law that is approximately
input-output linearizing (Allgöwer and Doyle III, 1998).

The paper is organized as follows. The scope of the
study and some mathematical preliminaries are given
in Section 2. Section 3 presents a method of nonlinear
feedforward/state-feedback design. A nonlinear feedback
control law with integral action is given in Section 4.
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Scope and Mathematical Preliminaries

Consider the class of MIMO, nonlinear processes of the
form:

dx̄(t)
dt

= f [x̄(t), u(t)], x̄(0) = x̄0

ȳi(t) = hi[x̄(t− θi)] + di, i = 1, · · · ,m

}
(1)

where x̄ = [x̄1 · · · x̄n]T ∈ X is the vector of the pro-
cess state variables, u = [u1 · · ·um]T ∈ U is the vector
of manipulated inputs, ȳ = [ȳ1 · · · ȳm]T is the vector of
process outputs, θ1, · · · , θm are the measurement delays,
d = [d1 · · · dm]T ∈ D is the vector of constant unmea-
sured disturbances, f(., .) is a smooth vector field on
X ×U , and h1(.), · · · , hm(.) are smooth functions on X.
Here X ⊂ <n is a connected open set that includes x̄ss

and x̄0, U ⊂ <m is a connected open set that includes
uss, and D ⊂ <m is a connected set, where (x̄ss, uss) de-
notes the nominal steady-state (equilibrium) pair of the
process; that is, f [x̄ss, uss] = 0.

The system:

dx̄(t)
dt

= f [x̄(t), u(t)], x̄(0) = x̄0

ȳ∗i (t) = hi[x̄(t)] + di, i = 1, · · · ,m

}
(2)

is referred to as the delay-free part of the process.
The relative orders (degrees) of the controlled outputs
y1, · · · , ym with respect to u are denoted by r1, · · · , rm,
respectively, where ri is the smallest integer for which
dri ȳ∗i
dtri

explicitly depends on u for every x ∈ X and every
u ∈ U . The relative order (degree) of a controlled output
yi with respect to a manipulated input uj is denoted by
rij (i = 1, · · · ,m, j = 1, · · · ,m), where rij is the small-
est integer for which drij ȳ∗i

dtrij explicitly depends on uj for
every x ∈ X and every u ∈ U . The set-point and the set
of acceptable set-point values are denoted by ysp and Y ,
respectively, where Y ⊂ <m is a connected set.

The following assumptions are made:

(A1) For every ysp ∈ Y and every d ∈ D, there exists
an equilibrium pair (x̄ss, uss) ∈ X ×U that satisfies
ysp − d = h(x̄ss) and f [x̄ss, uss] = 0.
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(A2) The nominal steady-state (equilibrium) pair of the
process, (x̄ss, uss), is hyperbolically stable; that is,
all eigenvalues of the open-loop process evaluated at
(x̄ss, uss) have negative real parts.

(A3) For a process in the form of (1), a model in the
following form is available:

dx(t)
dt

= f [x(t), u(t)], x(0) = x0

yi(t) = hi[x(t− θi)], i = 1, · · · ,m

}
(3)

where x = [x1 · · ·xn]T ∈ X is the vector of model
state variables, and y = [y1, · · · , ym]T is the vector
of model outputs.

(A4) The relative orders, r1, · · · , rm, are finite.

The following notation is used:

h1
i (x) .=

dy∗i
dt

...

hri−1
i (x) .=

dri−1y∗i
dtri−1

hri
i (x, u) .=

driy∗i
dtri

hri+1
i (x, u(0), u(1)) .=

dri+1y∗i
dtri+1

...

hpi

i (x, u(0), u(1), . . . , u(pi−ri)) .=
dpiy∗i
dtpi

(4)

where pi ≥ ri and u(`) = d`u/dt`.

Input-Output Linearization

For a process in the form of Equation 1, responses of
the closed-loop process outputs are requested, having the
linear form: (ε1D + 1)r1 ȳ1(t + θ1)

...
(εmD + 1)rm ȳm(t + θm)

 = ysp, (5)

where D is the differential operator (i.e., D
.= d

dt ), and
ε1, · · · , εm are positive, constant, adjustable parameters
that set the speed of the response of the closed-loop pro-
cess outputs ȳ1, · · · , ȳm respectively. Substituting for the
process output derivatives from the model in Equation 5,
one obtains:

h1(x̄) +
(

r1

1

)
ε1h

1
1(x̄) + · · ·+

(
r1

r1

)
εr1
1 hr1

1 (x̄, u)

...

hm(x̄) +
(

rm

1

)
εmh1

m(x̄) + · · ·+
(

rm

rm

)
εrm
m hrm

m (x̄, u)


(6)

= ysp − d

where (
a

b

)
.=

a!
b!(a− b)!

.

Under the assumption of the nonsingularity of the char-
acteristic (decoupling) matrix:

∂

∂u

 hr1
1 (x̄, u)

...
hrm

m (x̄, u)


on X × U , Equation 6 represents a feedforward/state
feedback. When the process delay-free part exhibits non-
minimum-phase behavior, the input-output behavior of
the closed-loop system under the feedforward/state feed-
back of Equation 6 is governed by the linear response
of Equation 5, but the internal dynamics (unobservable
modes) of the closed-loop system are unstable.

The dynamic feedforward/state feedback

Φp(x̄, u, U) = ysp − d (7)

where the ith component of Φp(x̄, u, U):

[Φp(x̄, u, U)]i
.= hi(x̄) +

(
pi

1

)
εih

1
i (x̄) + · · ·+(

pi

ri−1

)
εri−1
i hri−1

i (x̄)

+
(

pi

ri

)
εri
i hri

i (x̄, u) +
(

pi

ri + 1

)
εri+1
i hri+1

i (x̄, u, u(1))

+ · · ·+
(

pi

pi

)
εpi

i hpi

i (x̄, u, u(1), · · · , u(pi−ri))

(8)

U =
[
u(1) · · ·u(max[p1−r1,··· ,pm−rm])

]T

, p = [p1 · · · pm]

with

∂Φp/∂
[
u

max(p1−r11,··· ,pm−rm1)
1 , · · · ,

umax(p1−r1m,··· ,pm−rmm)
m

]T

nonsingular, ∀x ∈ X, also induces a linear, closed-loop,
output response of the form: (ε1D + 1)p1 ȳ1(t + θ1)

...
(εmD + 1)pm ȳm(t + θm)

 = ysp, (9)

Similarly, the dynamic feedforward/state feedback of
Equation 7 cannot ensure asymptotic stability of the
closed-loop system when the delay-free part of the pro-
cess exhibits non-minimum-phase behavior. Conse-
quently, an objective of this study is to design a feed-
back control law that ensures asymptotic stability of the
closed-loop system, whether the delay-free part of the
process is minimum- or non-minimum-phase.
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Nonlinear Feedforward/State Feedback
Design

Assume that for every x ∈ X, every d ∈ D, and every
ysp ∈ Y , the algebraic equation:

φp(x̄, u) = ysp − d (10)

where
φp(x̄, u) .= Φp(x̄, u, 0) (11)

has a real root inside U for u, and that for every x̄ ∈ X

and every u ∈ U , ∂φp(x̄,u)
∂u is nonsingular. The corre-

sponding feedforward/state feedback that satisfies Equa-
tion 10 is denoted by

u = Ψp(x̄, ysp − d) (12)

Note that the preceding feedforward/state feedback was
obtained by setting all the time derivatives of u in Equa-
tion 7 to zero.

Theorem 1 For a process in the form of Equation 1, the
closed-loop system under the feedforward/state feedback
of Equation 12 is asymptotically stable, if the following
conditions hold:

(a) The nominal equilibrium pair of the process,
(x̄ss, uss), corresponding to ysp and d, is hyperboli-
cally stable.

(b) The tunable parameters p1, · · · , pm are chosen to be
sufficiently large.

(c) The tunable parameters ε1, · · · , εm are chosen such
that for every ` = 1, · · · ,m, all eigenvalues of
ε`Jol

.= ε`[ ∂
∂xf(x, u)](x̄ss,uss) lie inside the unit circle

centered at (−1, 0j).

Furthermore, as p1, · · · , pm −→ ∞, the state feedback
places the n eigenvalues of the Jacobian of the closed-
loop system evaluated at the nominal equilibrium pair at
the n eigenvalues of the Jacobian of the open-loop process
evaluated at the nominal equilibrium pair.

The proof can be found elsewhere (Kanter et al., 2000).
Condition (c) states that ε1, · · · , εm should be cho-

sen such that for every ε` (` = 1, · · · ,m) and for every
λi (i = 1, · · · , n), |ε`λi + 1| < 1, where λ1, · · · , λn are
the eigenvalues of Jol. For an overdamped, stable pro-
cess, ε1, · · · , εm should be chosen such that for every ε`,
` = 1, · · · ,m, and for every τi, i = 1, · · · , n, 0 <

ε`

τi
< 2,

where τ1, · · · , τn are the open-loop time constants of the
process. In other words, ε1, · · · , εm should be chosen to
be less than 2τmin, where τmin is the smallest time con-
stant of the process [i.e., τmin = min(τ1, · · · , τn)].

Note that the feedforward/state feedback of Equa-
tion 12 does not induce the linear, closed-loop response
of Equation 9, since in the derivation of the feedfor-
ward/state feedback the time derivatives of u were set

P λ1(Jcl) λ2(Jcl) λ3(Jcl)
1 7.28 -20.00 -10.00
2 64.75 -13.19 -7.14
3 -4.34 -15.69+2.13i -15.69-2.13i
4 -3.16 -11.18+3.25i -11.18-3.25i
5 -2.60 -9.63+2.25i -9.63-2.25i
6 -2.28 -8.76+0.96i -8.76-0.96i
7 -2.10 -9.63 -6.74
10 -1.86 -9.97 -4.45
20 -1.78 -10.00 -2.38
30 -1.55 -10.00 -2.02
40 -1.31 -10.00 -2.00
50 -1.18 -9.70 -2.00

Table 1: Closed-loop eigenvalues of Example 1 for
several values of p1 = p2 = P .

to zero. The nonlinearity of the resulting delay-free out-
put response is the price of ensuring closed-loop stability
for processes with a non-minimum-phase delay-free part.

Example 1 Consider a linear process without deadtime
in state space form with

A =

−2 5 −3
0 −1 3
0 0 −10

 , B =

2 5
5 0
2 22

 , C =
[
1 0 0
0 1 0

]
.

It is non-minimum-phase (has a right-half plane [RHP]
transmission zero at s = 7.28) and hyperbolically stable
(has three left-half plane [LHP] eigenvalues at s = −1,
s = −2 and s = −10). Its relative orders r1 = 1 and r2 =
1. With ε1 = 0.1 and ε2 = 0.05, the eigenvalues of ε1A
are -0.2, -0.1 and -1, while the eigenvalues of ε2A are -
0.5, -0.1 and -0.05. These eigenvalues are inside the unit
circle centered at (-1,0i), so ρ(ε1A + I) = 0.9 < 1 and
ρ(ε2A + I) = 0.95 < 1. The location of the closed-loop
eigenvalues, λ1(Jclp), λ2(Jclp) and λ3(Jclp), for several
values of p1 = p2 = P are given in Table 1; the closed-
loop eigenvalues converge to the open-loop eigenvalues
(s = −1, s = −2, s = −10), as P →∞.

Nonlinear Feedback Controller Design

The feedforward/state feedback of Equation 12 lacks in-
tegral action, and thus, it cannot induce offset-free re-
sponse of the process output when process-model mis-
match exists. To resolve this problem, the feedfor-
ward/state feedback of Equation 12 is implemented with
a disturbance estimator, leading to the derivation of the
feedback control law with integral action, given in The-
orem 2.

Theorem 2 For a process in the form of Equation 1
with incomplete state measurements, the closed-loop sys-
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tem under the error-feedback control law

dx

dt
= f [x, u]

u = Ψp

x, e +

 h1[x(t− θ1)]
...

hm[x(t− θm)]




 (13)

where e = ysp − ȳ, is asymptotically stable, if the follow-
ing conditions hold:

(a) The nominal equilibrium pair of the process,
(x̄ss, uss), corresponding to ysp and d, is hyperboli-
cally stable.

(b) The tunable parameters p1, · · · , pm are chosen to be
sufficiently large.

(c) The tunable parameters ε1, · · · , εm are chosen such
that for every ` = 1, · · · ,m, all eigenvalues of
ε`Jol

.= ε`[ ∂
∂xf(x, u)](x̄ss,uss) lie inside the unit circle

centered at (−1, 0j).

Furthermore, the error-feedback control law of Equa-
tion 13 has integral action.

The proof can be found elsewhere (Kanter et al., 2000).
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