
Recent Developments in Controller Performance
Monitoring and Assessment Techniques

Thomas J. Harris ∗

Department of Chemical Engineering
Queen’s University

Kingston, ON, K7L 3N6, Canada

Christopher T. Seppala
Automation Engineering
Equilon Enterprises LLC

Houston, TX 77251

Abstract
In the past several years there has been considerable commercial and academic interest in methods for analyzing the
performance of univariate and multivariate control systems. This focus is motivated by the importance that control
systems have in enabling companies to achieve goals related to quality, safety and asset utilization. Control system
performance cannot be adequately described by simple statistics, such as the mean and variance of manipulated and
controlled variables, the percentage of time that constraints are satisfied, and the on-stream time. Although these are
important performance measures, a comprehensive approach for controller performance monitoring usually includes the
following elements: i) determination of the capability of the control system, ii) development of suitable statistics for
monitoring the performance of the existing system, and iii) development of methods for diagnosing the underlying causes
for changes in the performance of the control system. In this paper, recent developments related to these items will be
reviewed for both univariate and multivariate systems. Some multivariate time series methods helpful in supporting these
controller performance assessment techniques in practice will be discussed, and an industrial example will be provided.
Finally, the future direction of commercial applications of controller performance assessment will be briefly discussed, as
will the issue of whether controller performance assessment is destined to be offered as a product or a service.
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Introduction

Early interest in theory and methods for the on-line anal-
ysis of control systems can be traced to papers by Åström
(1967) and De Vries and Wu (1978). Since that time
work in this area has continued, with considerable de-
velopment taking place during the 1990s. Reviews and
critical analyses of several approaches for assessing con-
trol loop performance can be found in Huang and Shah
(1999), Harris et al. (1999), and Qin (1998). Control
system capability statistics based on the performance
benchmark of minimum variance control for single-input
single-output (SISO) systems were the initial underlying
concept for much of this work. Regulation of stochas-
tic and deterministic disturbances, setpoint tracking, ex-
tensions to multiple-input-single-output (MISO) systems
(i.e., single output systems with feedforward variables)
are readily accommodated in this framework, and these
aspects have been described in the aforementioned ref-
erences. Recently, Ko and Edgar (2000a) have extended
these ideas to evaluate cascade control systems. Horch
and Isaksson (1999) have proposed a modification to
the basic performance measures to more closely connect
the monitoring and control objectives. Thornhill et al.
(1999) provide comprehensive guidelines for the applica-
tion of control loop assessment and Miller and Desbor-
ough (2000) describe a commercial product/service for
control loop assessment.

Extensions of minimum variance performance as-
sessment techniques to multiple-input-multiple-output
(MIMO) systems for general time delay systems was ini-
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tially considered by Harris et al. (1996), and Huang et al.
(1997b). The challenges in evaluating a multivariate con-
trol system (as opposed to analyzing single loops in a
complex control system) are considerable. These chal-
lenges arise primarily from: i) the requirement for a pri-
ori knowledge of the time delay structure of the process,
ii) the time-varying nature of control loops which arises
from the constraint handling requirements of multivari-
ate controllers, and iii) the requirement to use sophisti-
cated identification methods to obtain meaningful esti-
mates of the closed loop impulse weights. There are a
considerable number of challenges, both theoretical and
practical, in the assessment of multivariate schemes.

The purpose of this paper is to provide: i) a concise
summary of results in univariate performance monitor-
ing, ii) an overview of challenges and recent develop-
ments in the assessment of multivariate control systems,
and iii) a brief discussion on the future direction of indus-
trial applications of controller performance assessment,
including the role of supporting technologies (including
an industrial example), and the consumer’s perspective
on commercial performance assessment solutions—are
they products or services?

Univariate Performance Assessment

Process Description

To introduce the concepts of control performance moni-
toring and assessment, consider a process whose behav-
ior about a nominal operating point can be modeled by

208



Recent Developments in Controller Performance Monitoring and Assessment Techniques 209

a linear transfer function with an additive disturbance:

Yt =
ω(q−1)q−b

δ(q−1)
Ut +Dt (1)

where Yt denotes the difference between the process vari-
able and a nominal operating point. Ut denotes the dif-
ference between the manipulated variable and its nom-
inal value, and ω(q−1) and δ(q−1) are polynomials in
the backshift operator, q−1. b whole periods of delay
elapse between making a change in the input and first
observing its effect on the process output. The process
disturbance, Dt, is represented by an Autoregressive-
Integrated-Moving-Average (ARIMA) time series model
of the form:

Dt =
θ(q−1)

∇dφ(q−1)
at (2)

where θ(q−1) and φ(q−1) are stable polynomials in the
backshift operator, and ∇ is a shortcut notation for
(1 − q−1). The integer d denotes the degree of differ-
encing (0 ≤ d ≤ 2 in most applications). at denotes
a sequence of independently and identically distributed
random variables with mean zero and variance σ2

a. This
disturbance structure is capable of modeling commonly
occurring stochastic and deterministic disturbances.

The process is controlled by a linear feedback con-
troller of the form:

Ut = Gc(q−1)(Ysp − Yt) (3)

where Gc(q−1) is the controller transfer function and
Ysp denotes the deviation of the setpoint from its refer-
ence value. We will assume that these values are equal;
the general case is considered in Desborough and Harris
(1992). With these assumptions, the closed loop is given
by:

Yt =

 1

1 + ω(q−1)q−b

δ(q−1) Gc(q−1)

Dt (4)

Substituting Equation 2 for Dt in Equation 4 and sim-
plifying allows the closed-loop to be written in rational
transfer function form as follows:

Yt =
α(q−1)
β(q−1)

at = ψ(q−1)at (5)

The closed-loop impulse response coefficients are given
by:

ψ(q−1) = 1 + ψ1q
−1 + ψ2q

−2 + · · · (6)

Convergence of the series in Equation 6 is guaranteed if
the closed-loop is stable; the expansion is valid for com-
putation of the impulse weights, ψj . Tyler and Morari
(1996) present a useful discussion on the duality between
the impulse weights ψj and other classic measures of con-
troller performance including settling time, decay rate,
and desired reference trajectories.

Minimum Variance Performance Bounds and
Performance Measures

If one were to design a controller to minimize the variance
of the output, the impulse response coefficients beyond
the process deadtime, ψj , j = b, b + 1, . . . , would equal
zero. The output variance would equal (Åström, 1967,
1970; Box and Jenkins, 1976):

σ2
y = σ2

mv = (1 + ψ2
1 + · · ·+ ψ2

b−1)σ
2
a. (7)

If the minimum variance performance fails to meet the
controller’s design objectives, then reductions in the out-
put variance can only be achieved by modifying the pro-
cess to change the disturbance characteristics or by re-
ducing the deadtime. Because σ2

mv provides a funda-
mental lower bound on performance, simply retuning the
controller, or implementing a more sophisticated linear
controller with the same manipulated variable and con-
trol interval, will not reduce process variability. This
bound depends only on the process delay and is other-
wise independent of the dynamic characteristics of the
controller.

Implementation of a minimum variance controller that
achieves the bound described in Equation 7 requires that
the polynomials ω(q−1) and δ(q−1) and be stable. When
these conditions are not satisfied, it is still possible to
design a controller that minimizes the variance of the
output subject to stability of both the closed-loop and
manipulated variable. The output variance will, by ne-
cessity, exceed that described by Equation 7. This topic
is discussed further in a subsequent section.

Desborough and Harris (1992), Stanfelj et al. (1993),
Kozub and Garcia (1993) and Kozub (1996) have intro-
duced a number of performance indices to provide an
indication of the departure of the current performance
from minimum variance control. Typical performance
measures are:

ξ(b) =
σ2

y

σ2
mv

(8)

and

η(b) = 1−
1 + ψ2

1 + · · ·+ ψ2
b−1

1 + ψ2
1 + · · ·+ ψ2

b−1 + ψ2
b + · · ·

= 1− σ2
mv

σ2
y

(9)

where ξ(b) ≥ 1 and 0 ≤ η(b) ≤ 1. The performance
index ξ(b) corresponds to the ratio of the actual vari-
ance to that which could theoretically be achieved under
minimum variance control. The normalized performance
index, η(b), is a number between 0 (minimum variance
performance) and 1 (far from minimum variance perfor-
mance) that reflects the inflation of the output variance
over the theoretical minimum variance bound. As indi-
cated in Desborough and Harris (1992), it is more useful
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to replace σ2
y by the mean square error of yt, thereby

accounting for offset.
Note that the normalized performance index is in-

dependent of the magnitude of the disturbance driving
force (at in Equation 2). It may happen that η(b) = 0,
i.e., the system is operating at minimum variance con-
trol performance, yet σ2

y still exceeds process or product
requirements. In this case the process—not the control
system—is not capable.

Estimation of Minimum Variance Performance
Bounds and Performance Measures

It is possible to calculate the minimum variance perfor-
mance bound, σ2

mv, by estimating a process plus dis-
turbance model obtained from a designed experiment.
This performance bound can then be used to determine
the process capability. If the performance bound fails to
meet process specifications, then the process modifica-
tion remedies described above must be sought to rectify
the situation. Such an approach would severely limit the
usefulness of this bound because obtaining a process and
disturbance model is labour intensive and intrusive, i.e.,
it requires a perturbation signal to be introduced. Fur-
thermore, the disturbance structure may change during
the period of data collection, potentially changing the
results of the analysis.

Why then, has the minimum variance performance
benchmark in Equation 7 proven to be so useful in prac-
tice? Its usefulness stems from two important properties:

1. Autocorrelation Test: Under minimum variance
control, the autocorrelations of the y’s are zero be-
yond lag (b−1) since the closed-loop is a moving av-
erage process of order (b−1), or an ARIMA(0, 0, b−
1) process (Åström, 1967, 1970; Box and Jenkins,
1976). Conversely, if any (stable) controller results
in a closed-loop, which is an ARIMA(0, 0, b−1) pro-
cess, then the controller is a minimum variance con-
troller. If the controller is unstable, except for the
presence of p integrators, then the observed closed-
loop may appear to be a moving average process of
order less than (b−1), (Foley and Harris, 1992). Ex-
cept in these rare cases, the sample autocorrelation
function of the y’s, or a portmanteau test on the au-
tocorrelations of y can be used to provide a simple,
convenient, and useful method for testing whether
any SISO controller is giving minimum variance per-
formance (Harris, 1989; Stanfelj et al., 1993; Kozub
and Garcia, 1993; Kozub, 1996).

2. Invariance Property: σ2
mv can, under mild con-

ditions, be estimated from routine operating data
when the time delay is known (Harris, 1989). It
is straightforward to show that the first (b − 1) ψj

coefficients of the closed-loop equal the first (b− 1)
impulse coefficients of the disturbance transfer func-
tion. The remaining coefficients are functions of the

controller, process, and disturbance transfer func-
tions. Since the first (b − 1) ψj coefficients are not
affected by any feedback controller they can collec-
tively be interpreted as a system invariant (Harris,
1989; Tyler and Morari, 1996). These can be esti-
mated by fitting a time series model to the closed
loop error:

α(q−1)(yt − ȳ) = β(q−1)at (10)

where α(q−1) and β(q−1) are stable polynomials in
the backshift operator, of order na and nb, respec-
tively. The term ȳ accounts for non-zero mean data.
The coefficients of the polynomials and their orders
can be estimated using standard time series analysis
techniques. Once these parameters have been esti-
mated, the impulse weights are calculated by long
division of α(q−1) into β(q−1). Computational de-
tails, and variants, are discussed in Harris (1989),
Desborough and Harris (1992) and Huang et al.
(1997b).

It is important to note that the calculation of σ2
a and

σ2
mv does not require separate identification of the pro-

cess transfer function and disturbance transfer functions
since η(b) corresponds to the fraction of the output vari-
ance reduction that can be achieved by implementing a
minimum variance controller. As a result of the above
properties, σ2

mv and η(b) can be estimated from routine
operating data if the delay is known.

Exact distributional properties of the estimated per-
formance indices are complicated, and not amenable to a
closed-form solution. Desborough and Harris (1992) ap-
proximated first and second moments for the estimated
performance indices and resorted to a normal theory to
develop approximate confidence intervals. Asymptoti-
cally, the performance indices are ratios of correlated
quadratic forms, and as such the distributions of the per-
formance indices are non-symmetric. Refinements to the
confidence intervals developed in Desborough and Harris
(1992) can be obtained with little extra computational
effort, by resorting to the extensive statistical literature
on the distributional properties of quadratic forms (Har-
ris, 2001).

Extensions and Modifications

The development thus far has been based on the simple
process description given by Equation 4. Performance
monitoring and assessment methods have been extended
to include variable setpoints (Desborough and Harris,
1992), feedforward/feedback systems (Desborough and
Harris, 1993; Stanfelj et al., 1993), processes with inter-
ventions (Harris et al., 1999), and cascade systems (Ko
and Edgar, 2000a).

The performance bounds described above have been
presented under idealized assumptions. The actual, as
opposed to lower bound on performance, is also lim-
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ited by the presence of non-invertible zeros, the require-
ment for smooth-manipulated variable movement, and
the presence of hard constraints on the manipulated vari-
able. A number of modifications have been proposed to
accommodate these issues, and these will be reviewed in
the following paragraphs.

Non-invertible systems. When the process trans-
fer function is non-invertible, it is possible to design a
modified minimum variance controller using spectral fac-
torization methods (Bergh and MacGregor, 1987; Harris
and MacGregor, 1987). This modified minimum vari-
ance controller has the lowest variance among all stable
controllers. The following identities hold:

σ2
a ≤ σ2

mv ≤ σ2
mv? ≤ σ2

Ȧström
(11)

where σ2
mv? denotes the variance of the modified mini-

mum variance controller and σ2
Ȧström

denotes the closed-
loop variance of a simple pole placement algorithm pro-
posed by (Åström, 1970). This latter controller is par-
ticularly easy to design; the limitation being that the
non-invertible zeros of the process transfer function can-
not be canceled. With this design the process output is
a moving average process of order (b− 1+n?), where n?

is the number of zeros of ω(q−1), in q, outside the unit
circle. When the location of the non-invertible zero is
known, in addition to the time delay, σ2

mv? can be esti-
mated from routine operating data (Harris et al., 1996;
Tyler and Morari, 1995; Huang and Shah, 1999). These
latter results use linear-quadratic-control theory to de-
termine the achievable performance bound. The perfor-
mance results can be sensitive to the location of the non-
invertible zero (Tyler and Morari, 1995). Estimation of
σ2

mv? requires considerably more process knowledge than
is required to estimate σ2

mv. Although not as rigorous,
a number of alternate approaches, which retain the sim-
plicity of the minimum variance bounds and calculations,
can be used. These are discussed in subsequent sections.
Recently, Ko and Edgar (2000c,b) have used fundamen-
tal results of Furuta and Wongsaisuwan (1993, 1995) to
show how algorithms such as Dynamic Matrix Control
(DMC) can be used to obtain several different perfor-
mance bounds. This approach will be discussed further
in the multivariate performance assessment section.

Excessive control action and robustness con-
cerns. Minimum variance controllers may call for un-
acceptably large changes in manipulated variable action.
This happens when the process is sampled “quickly” rel-
ative to its dominant time constant. In these circum-
stances minimum variance controllers (or deadbeat con-
trollers) may be sensitive to process model mismatch
(Åström, 1970; Bergh and MacGregor, 1987). In these
instances, it has been found useful to modify the per-
formance indices so that the latter more closely reflects
the controller design requirements. Two modified con-
troller performance indices have been proposed to deal

with these issues: The extended horizon performance in-
dex and the user-defined benchmark performance index.

Extended-horizon performance index. Desbor-
ough and Harris (1992, 1993), Kozub (1996), Harris et al.
(1996), and Thornhill et al. (1999) utilize an extended
horizon performance index defined as:

η(b+h) = 1−
1 + ψ2

1 + · · ·+ ψ2
b−1 + · · ·+ ψ2

b+h−1

1 + ψ2
1 + · · ·+ ψ2

b−1 + ψ2
b + · · ·

(12)

This normalized performance index gives the proportion
of the variance arising from non-zero impulse coefficients
ψj , j > b + h. η(b + h) can also be interpreted as the
square of the correlation between the current error and
the least squares estimate of the prediction made (b+h)
control periods in the past (Harris et al., 1999). The
extended horizon predictor closely matches control ob-
jectives of model based control strategies, such as Dy-
namic Matrix Control (DMC). It is important to note
that when h > 0, the prediction error variance is af-
fected by the structure and tuning of the feedback con-
troller (in contrast to the case when h = 0). The use of
the extended horizon performance index indirectly ac-
knowledges the fact that minimum variance control may
not be desirable or feasible. One obvious advantage of
using η(b+h) instead of η(b) is that the former does not
require a precise estimate of the process delay. Kozub
(1996) and Thornhill et al. (1999) indicate that many
problems in diagnosing the performance of controllers
can be solved by estimating both η(b) and η(b+ h).

User-defined benchmark performance index.
Recently, Horch and Isaksson (1999) have introduced a
normalized performance index:

ξmod(b) =
σ2

y

σ2
mod

(13)

where:

σ2
mod =

(
1 + ψ2

1 + · · ·+ ψ2
b−1 + ψ2

b−1

υ2

1− υ2

)
σ2

a (14)

and 0 ≤ υ < 1. The motivation for this modified per-
formance index is very simple; a minimum variance con-
troller can be interpreted as a requirement that all of
the closed-loop system poles be placed at the origin. If
instead, one of the closed-loop poles is moved to a loca-
tion specified by the designer, then the variance of the
closed-loop is given by σ2

mod in Equation 13. Horch and
Isaksson (1999) show that this design is equivalent to
a requirement that the closed-loop have an exponential
decay to target rather than the dead-beat response re-
quired of minimum variance control. With this interpre-
tation, specification of υ is not difficult. Horch and Isaks-
son call the modified performance index a user-defined
benchmark. They point out that the basic simplicity of
the original performance index is retained, while offer-
ing greater flexibility. The authors do not require that
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the controller be designed using this technique; rather
they point out that the analysis of closed-loop data is fa-
cilitated by the choice of υ. Statistical properties of the
performance index are proposed, and the relationship be-
tween the modified index and specifications on the au-
tocorrelation function (suggested in Kozub and Garcia
(1993) Huang and Shah (1998)) are also discussed.

Note the following properties of this modified con-
troller performance index: i) if the process is operating
at the desired user-defined benchmark, ξmod(b) = 1 ii) if
the performance is “better” than the user-defined bench-
mark, ξmod(b) < 1, iii) if the process variance exceeds
the user-defined benchmark, then ξmod(b) > 1, and iv)
ξmod(b) ≥ 1− υ2. These properties provide a convenient
“normalization” for the performance index.

Hard constraints. When the manipulated variable
is at a hard constraint, the closed-loop is no longer de-
scribed by Equation 4. However, it is possible to es-
timate σ2

mv from routine data by including inputs and
outputs in the time series model (Desborough and Har-
ris, 1992). It is necessary to keep record of when the
constraints are active, so that the model structure prop-
erly reflects the status of the control system. Manipu-
lated variable constraints usually result in offset between
controlled variables and their setpoint. Under such con-
ditions, controller performance assessment can still be
possible if the output(s) of interest are part of a mul-
tivariate predictive control scheme. A working solution
in this case is to substitute the reachable target asso-
ciated with the constrained output, say Y ?

sp,t, for the
setpoint in the calculation of the closed-loop error, i.e.,
yt = Y ?

sp,t − Yt. The reachable target is internally cal-
culated by the control algorithm and is simply a feasible
value for the output of interest conditional on the ac-
tive constraints. The estimates of σ2

mv derived under
such conditions may be suspect due to the influences
of other input variables. In this situation, inspection
of the closed-loop impulse response coefficients, which
provide dynamic information on the output’s tracking
of the reachable target is recommended. In any case,
when a controller is regularly switching between differ-
ent sets of active constraints, benchmarking the dynamic
performance may not be as important as monitoring how
well the controller is meeting its overall design objectives,
e.g., output prioritization and the distribution of offset.

Performance assessment with fixed controller
structure. Most controllers employ a fixed structure,
i.e., a Proportional-Integral-Derivative (PID) controller.
It is of interest to develop performance monitoring and
performance assessment methods for these widely used
systems. Isaksson (1996), Ko and Edgar (1998) and Har-
ris et al. (1999) have investigated these topics. Perfor-
mance limitations arising from a fixed controller struc-
ture can only be determined if a process model is avail-
able. If opportunities for significant performance im-
provements are indicated using the minimum-variance

methods, then one can determine the achievable limita-
tions that arise from using a particular controller struc-
ture only by identifying a process and disturbance model.
The use of previously identified models for assessment in
a predictive control environment is discussed in a later
section.

Detection of oscillations, valve stiction and
other maladies. A number of researchers and prac-
titioners have indicated that more realistic estimates of
the achievable performance are obtained when one de-
tects, diagnoses and “removes” the effect of oscillations
(Owen et al., 1996; Owen, 1997; Horch, 2000). Meth-
ods for detecting oscillation and stiction are described in
Hãgglund (1995), Bittanti et al. (1997), Horch and Isaks-
son (1998, 1999), Seborg and Miao (1999), and Forsman
(2000). Oscillations and valve stiction can be viewed as
faults. There are other faults that beset control loops;
the purpose of this paper is not to review this exten-
sive literature (Isermann and Ballé, 1997). Rather, we
indicate that automated procedures for control loop as-
sessment using the methods proposed here, or descriptive
statistics, must have proper data segmentation so that
the presence of faults do not lead to improper interpre-
tations or conclusions.

Nonlinear and time varying processes. In de-
riving the minimum variance controller, we assumed
the process admits the description given in Equations 1
and 2. When the process is described by a nonlinear
difference equation, either for the dynamics or distur-
bances, development of the nonlinear minimum variance
controller may be very difficult or essentially impossi-
ble. This of course depends upon the structural form of
the nonlinearity. For those descriptions which admit a
nonlinear description and closed-form expressions for the
minimum variance control law, it is possible to construct
examples that show that the feedback invariance prop-
erty does not exist. To ascertain performance bounds
from routine operating data, one must assume that the
process admits a local linear representation. The perfor-
mance assessment results are “locally” valid. If changes
in operating point cause changes in the process model,
then the data must be properly segmented prior to anal-
ysis. Methods for detecting changes in model structure
are discussed in Basseville (1998). If the disturbances
are time-varying or consist of a mixture of stochastic
and deterministic type disturbances, which is often the
case, then the process description in Equations 1 and 2
must be expanded to account for this behavior. Again,
methods for detecting these interventions must be part
of the data analysis. The performance assessment tech-
niques reviewed in this paper can then be applied to
these types of processes (Harris et al., 1999).

Discussion

We point out that σ2
mv may often not be a realizable

performance bound due to the practical limitations de-
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scribed above. It has been pointed out by a number
of authors (Desborough and Harris, 1992; Huang et al.,
1997b,c) that if σ2

mv < σ2
y there may be opportunities to

reduce the output variance. However, a diagnosis of the
control system is required to investigate the cause(s) of
variance inflation. If it suspected that non-invertible ze-
ros or restrictions on the manipulated variables are limit-
ing performance, then a process plus disturbance model
must be identified to calculate σ2

mv? , σ2
Ȧström

, or any
other performance measure which requires knowledge of
the process dynamics and disturbances. Alternatively,
a number of the modified performance indices described
above can be used to aid in the diagnosis of performance
and detect changes in performance from a specified tar-
get value (Kozub, 1996).

Although the performance bounds and performance
measures described in this section were originally intro-
duced to ascertain how far the current performance was
from minimum variance, they have found widespread
use as a component of a more comprehensive perfor-
mance monitoring and assessment methodology. Typi-
cally, industrial controller performance monitoring pack-
ages include some minimum variance-based performance
statistics but also elementary descriptive statistics (such
as mean, standard deviation, % uptime), histograms,
power spectra, autocorrelation functions, impulse re-
sponse functions and even non-linear valve diagnostics.
Continuous performance monitoring applications also
have significant information technology requirements
such as access to historized data, dedicated servers,
scheduling algorithms, and rule-based event notification
and exception reporting (Jofriet et al., 1996). Guide-
lines for implementing univariate performance monitor-
ing methods in practice are discussed in the references
contained in Harris et al. (1999), Vishnubhotla et al.
(1997), Thornhill et al. (1999), and Miller and Desbor-
ough (2000).

Multivariate Performance Assessment

The extension of performance assessment to multivari-
able systems has been studied by Harris et al. (1996),
Huang et al. (1997a,b,c), and Huang and Shah (1998,
1999). Assessment of minimum variance performance
bounds arising from deadtimes in MIMO systems re-
quires knowledge of the interactor matrix. The inter-
actor matrix allows a multivariate transfer function to
be factored into two terms; one having its zeros located
at infinity and another containing the finite zeros. To
introduce this concept, consider a linear time-invariant
process with n outputs and m inputs having transfer
function T (q−1). The interactor is a square matrix poly-
nomial having the following properties (Dugard et al.,
1984):

lim
q →∞ ξ(q)T (q−1) = K (15)

and
|ξ(q)| = qB (16)

where K is a non-singular matrix and B is the number
of zeros of the transfer function located at infinity. In
the univariate case, ξ(q) = qb and B = b. Other prop-
erties of the interactor matrix are discussed in Dugard
et al. (1984), Goodwin and Sin (1984), Tsiligiannis and
Svoronos (1988), Mutho and Ortega (1993), and Mutho
(1995). It is important to note that the interactor matrix
is not unique, and that it cannot always be constructed
solely from knowledge of the delay structure. The in-
teractor matrix can be constructed using linear alge-
bra techniques from the process transfer function in the
aforementioned references and Rogozinski et al. (1987).
Huang et al. (1997a) have shown that the interactor ma-
trix can be estimated from the Markov parameters of the
process transfer function.

It is convenient to define the inverse-interactor matrix
as follows:

ξ−1(q−1) = [ξ(q)]−1 = ξkq
−k + · · ·+ ξdq

−d (17)

where k is the minimum delay in the first row of the pro-
cess transfer function, and d is not less than the maxi-
mum delay in the transfer function. Note that the bound
on k shows that the interactor matrix is not unique; it
can be altered by re-ordering the inputs and outputs.

Using the inverse interactor matrix, the process may
be represented in right matrix fraction form as follows:

Yt = L(q−1)R−1(q−1)Ut +Dt

= ξ−1(q−1)L̃(q−1)R−1(q−1)Ut +Dt

(18)

where ξ−1(q−1) represents the inverse interactor matrix
and Dt represents the process disturbance, which can
often be modeled by a multivariate ARIMA process.

Once the interactor matrix is known, the multivari-
ate extension of the univariate performance bounds can
be established. Several methods can be used, all lead-
ing to equivalent results. Harris et al. (1996) define the
performance bound:

η = 1− E[Y T
mvWYmv]

E[Y T
t WYt]

(19)

where E[·] denotes mathematical expectation and
E[Y T

mvWYmv] denotes the weighted multivariate min-
imum variance performance. W is a positive definite
weighting matrix, which allows for differential weights
on specific outputs. Determination of the multivariate
minimum variance control performance requires that
an all-pass representation of the interactor matrix be
constructed. There are two general approaches for
performing this: spectral factorization and construction
of a spectral interactor.
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Spectral Factorization

The spectral factor of the interactor matrix, γ(q−1), is
defined as the solution to the spectral factor equation:

γT (q)Wγ(q−1) = ξ−T (q)Wξ−1(q−1). (20)

Since ξ−1(q−1) is unimodular, the spectral factor γ(q−1)
is also unimodular. A property of a unimodular spec-
tral factor is that γ−1(q−1) exists, and is a finite poly-
nomial in q−1. Efficient methods for the construction
of the spectral factor involve solution of a bilinear set
of equations, for which iterative application of Cholesky
decompositions are very efficient (Kucera, 1979; Harris
and Davis, 1992). These algorithms have quadratic con-
vergence in a finite number of iterations when the poly-
nomial matrix for which the spectral factor is to be ob-
tained is unimodular.

Construction of the Spectral Interactor Matrix

Huang et al. (1997b) exploit the fact that the interactor
matrix is not unique. They use a spectral interactor,
ξ̃−1(q−1) , introduced by Peng and Kinnaert (1992) and
Bittanti et al. (1994) having the property:

ξ̃−T (q)ξ̃−1(q−1) = I. (21)

Linear algebra techniques can be used to construct the
spectral interactor from the process transfer function or
Markov parameters.

Once the all-pass filter representation has been ob-
tained, it is possible to express the closed-loop system
in the following form (Harris et al., 1996; Huang et al.,
1997b):

St = Ψ1(q−1)at + q−(d−1)Ψ2(q−1)at (22)

where St is a filtered output, having the property that
E[ST

t WSt] = E[Y T
t WYt]. The terms Ψ1(q−1)at and

q−(d−1)Ψ2(q−1)at are uncorrelated. The first term on
the right hand side of Equation 22 is a function only of
the disturbance and the all-pass interactor matrix, and
is otherwise independent of the dynamics of the process.
This term is the multivariate equivalent of the system
invariant, (1 + ψ1q

−1 + · · · + ψb−1q
−(b−1))at, encoun-

tered in univariate performance assessment. The term
Ψ1(q−1)at represents the dynamics of the multivariate
minimum variance controller. The second term in Equa-
tion 22 is a function of the controller, the process trans-
fer function and the disturbances. In the derivation of
Equation 22, it was assumed that a linear time-invariant
controller was used.

Once the decomposition in Equation 22 has been af-
fected, it is possible to calculate the performance index
from Equation 19 as follows:

η = 1−
Tr

(
W

∑d−1
j=0 ΨjΣAΨT

j

)
Tr

(
W

∑∞
j=0 ΨjΣAΨT

j

) (23)

The two important properties encountered in the uni-
variate case, namely the autocorrelation test and the
invariance property, are also found in the multivariate
extension. Once the spectral factor is obtained, one can
also construct a portmanteau test for multivariate mini-
mum variance control that is similar to the autocorrela-
tion function (Harris et al., 1996). Performance bounds
can be determined regardless of the number of inputs and
outputs; there is no need that the process be “square”. In
the multivariate case it can also be shown that the min-
imum variance performance can be estimated from rou-
tine operating data if the interactor matrix is known, and
there are several different methods for calculating the
minimum variance performance bounds (Harris et al.,
1996; Huang et al., 1997b). In the process of calculating
the performance bound, it is necessary to fit a multi-
variate time series to the observations (when a linear
controller is used). When constraints are active it is nec-
essary to fit a predictive model to both the inputs and
outputs. Haarsma and Nikolaou (2000) tested several
identification methods in an application of multivariate
performance assessment in the food processing industry.
Other examples of the application of multivariate perfor-
mance assessment and monitoring are given Harris et al.
(1996), Huang et al. (1997a,b,c), Huang and Shah (1998,
1999), Miller and Huang (1997), and Huang et al. (2000).

The minimum variance controller described in Good-
win and Sin (1984) Dugard et al. (1984) is a sequential
minimum variance controller that is dependent on the
order of the inputs and outputs and choice of interactor
representation. The construction of the all-pass filter
representation of the interactor matrix leads to a “true”
minimum variance controller, which is independent of
these factors.

Remarks

1. Univariate and multivariate performance assess-
ment are conceptually similar, however in the lat-
ter case knowledge of the time delay structure alone
does not guarantee that the performance bounds can
be calculated. Knowledge of the interactor matrix
is an impediment to using multivariate techniques.
Huang et al. (1997a) have shown that the interac-
tor matrix may be calculated from the impulse co-
efficients of the process transfer function and have
proposed a technique to estimate this from process
data. This is akin to estimating the delay in an on-
line fashion for SISO systems. However, this method
requires that a dither signal be added to the process
during the period of data collection. Furthermore,
the method assumes that a linear, time-invariant
controller be used during the period of data collec-
tion.

2. In the SISO case, an extended prediction horizon
can be used for performance monitoring (Equa-
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tion 12). This extended horizon serves two purposes:
i) it provides an indication of the sensitivity of the
performance index to the selection of delay, and ii)
it indirectly addresses the issue that minimum vari-
ance control may not be the desired control objec-
tive. In multivariate analysis, one can also use a
similar concept (Harris et al., 1996). Essentially, one
replaces the interactor matrix by the term ξp+hI,
where p is an estimate of the maximum order of the
inverse-interactor matrix and h > 0. This approach
does not enable calculation of the lower bound on
performance; rather it is more useful in monitoring
changes in the predictive structure of the process.

3. The performance bounds calculated using the inter-
actor matrix are not restricted to those processes
for which there are an equal number of inputs and
outputs. In most cases, multivariable controllers are
used where constraints are a factor. In these cases,
the structure of the time-series model changes as
constraints are engaged. One can adapt the struc-
ture of the time series model to reflect the evolv-
ing constraint set structure. There can be rather
dramatic changes in the minimum variance perfor-
mance bound when the set of constraint variables
changes. The utility of the minimum variance per-
formance bounds in these instances has yet to be de-
termined. One can imagine that other performance
measures may be more appropriate.
Ko and Edgar (2000c,b) have proposed several
methods to address performance assessment in the
presence of constraints. Their work is based on the
fundamental results of Furuta and Wongsaisuwan
(1993, 1995) who show that a receding horizon con-
troller, with input and output weightings, i.e., soft
constraints, can be used to obtain the solution to the
infinite horizon linear quadratic controller. In these
papers, Furuta and Wongsaisuwan use the Markov
parameters of the controller and disturbance (i.e.,
the impulse coefficients) to design the controller. Ko
and Edgar (2000c,b) have used these results to pro-
vide a number of performance bounds. The method
requires that an input/output model relating Y and
U be available; a step response model used in the de-
sign of a predictive controller would suffice for this
purpose. As usual, it is assumed that this model
adequately describes the process. Given a record of
{Yt, Ut}, t = 1..N , the process disturbance can be
reconstructed from the measurements as follows:

Dt = Yt − T (q−1)Ut. (24)

A time series model is then fit to the D’s. Once this
time-series model has been determined, a number
of performance bounds can be determined using the
results of Furuta and Wongsaisuwan (1993, 1995).
By applying zero weight to the inputs, Ko and Edgar

(2000c,b) demonstrate that the minimum variance
performance bound that corresponds to solution of
the unconstrained linear quadratic minimum vari-
ance bound discussed in Harris et al. (1996) can be
estimated. This bound equals the bound obtained
from using the interactor matrix when the process
transfer function has no non-invertible zeros, other
than those associated with the time delay.
By using a time series model for the disturbance,
it is possible to simulate a generalized predictive
controller, over the data set used to estimate the
disturbance. By applying the same inputs and out-
put constraints used in the actual controller, as well
as the same prediction horizons for the inputs and
outputs, an estimate of the performance using the
identified disturbance structure is obtained. Recall
that most receding horizon controllers assume that
the disturbance is adequately modeled by a multi-
variate random walk. This bound correctly accounts
for the presence of constraints.
Both of these approaches, and other variations
which can be derived from this approach, enable one
to use a previously identified process model as part
of the multivariate performance assessment process.
A fundamental assumption is that this model is ac-
curate, and that the disturbance model identified
from Equation 24 has no model mismatch compo-
nent.

4. When a more comprehensive model identification is
undertaken it is possible to use more sophisticated
performance measures. Kendra and Çinar (1997)
have developed a frequency domain identification
and performance assessment procedure for closed-
loop multivariable systems. A priori information,
such as design stage transfer function specifications,
can be incorporated into the analysis. This allows
model mismatch to be assessed, and makes possi-
ble comparisons of current operating performance
to design specifications for the sensitivity and com-
plementary sensitivity functions. External excita-
tion must be provided in the form of a dither sig-
nal to enable identification of the sensitivity func-
tions. Gustafsson and Graebe (1998) have devel-
oped a procedure to ascertain whether changes in
closed-loop performance arise from changes in dis-
turbance structure or changes in the process trans-
fer function. A test signal must be applied for this
analysis.

5. Intervention analysis provides a framework to incor-
porate variable setpoint changes, feedforward vari-
ables and deterministic disturbances in the univari-
ate case. Analogous methods for the multivariable
case have not been developed extensively.

One possible criticism of recent research developments
in controller performance assessment is that too much
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Figure 1: A time series plot showing the CV errors
for the feed flow loop, the bottoms flow loop, the
reboiler level loop, and the reflux level loop for the
industrial distillation column. The trend plots show
roughly five-thousand samples of one-minute data for
each variable.

effort has been focused on estimating system invariants.
While this is certainly one of the most interesting and
challenging problems from an academic perspective, it is
really only one of the many tools that an engineer might
effectively use to monitor and/or analyze control system
performance. The use of system invariants for multivari-
ate performance assessment is a significant barrier to use
due to the information requirements and the level of ex-
pertise needed to apply the methodology and interpret
the results. Comprehensive methods for analyzing the
interaction structure of the closed-loop are essential for
diagnosing multivariate systems. In the next section we
will demonstrate some analysis methods that can be de-
rived using multivariable time series methods.

Example of Multivariate Process Analysis

In this section we will apply multivariate time series tech-
niques to analyze an industrial data set. The objective
of the analysis is to provide a qualitative and quanti-
tative analysis of the closed-loop behavior. Our inter-
est extends beyond the question as to whether or not
the control system is operating at a desired performance
benchmark.
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Figure 2: Univariate CV error impulse response func-
tions. Clockwise, from the top left: the bottoms flow,
the reboiler level, the feed flow, and the reflux drum
level.

Process Description

In this example, multi-output impulse response analysis
will be used to study the dynamic relationships between
four controlled variable (CV) error variables sampled
from an industrial distillation column. The CV error
vector was calculated from setpoint and output observa-
tions sampled at one-minute intervals from the following
control loops on the column: the feed flow controller,
the bottoms flow controller, the reboiler level controller,
and the reflux drum level controller. Time series plots of
these variables are shown in Figure 1. It is assumed that
no prior information is available concerning the multi-
variable delay structure. Note, all of the modeling meth-
ods used in this section are standard results that have
been adapted from the multivariate time series analysis
literature (Hamilton, 1994; Lütkepohl, 1991).

Univariate Impulse Response Analysis

The first step was to estimate the closed-loop impulse
weights, Equation 6, for each of the process variables.
This was accomplished by fitting a univariate autore-
gressive model (using a least squares approach) to each
variable and calculating the impulse weights by long di-
vision. The estimated impulse response plots are shown
in Figure 2. The time horizon for the plots has been
set to twenty minutes for the flow controllers (column
one), and seventy minutes for the level controllers (col-
umn two).

Some deductions regarding the dynamic performance
of each of these control loops can be made from the uni-
variate impulse response functions. For example, strong
cyclical behavior is observed in all the tracking error vari-
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ables except for the feed flow. There is a one hour cycle
in the reflux drum level, a seven minute cycle in the
bottoms flow, and a seven minute cycle combined with
another, slower, response in the reboiler level. The feed
flow controller seems reasonably well tuned; it is free
from overshoot or cycles, and damps out quickly. These
are all valid observations, but no information regarding
possible interactions between these loops can be made
unless a multivariate analysis is performed. With the ex-
ception of the feed flow, none of the variables is close to
their individual minimum variance performance bounds.

Multi-Output Impulse Response Analysis

An impulse response plot is simply a graphical rep-
resentation of a time series model in moving average
form. The displayed impulse response coefficients are the
weights that describe the dynamic relationship between
the input and the output. When the input is assumed
to be a unit impulse, the impulse response plot shows
the predicted output response. In the multi-output case,
the (i, j)th entry in the (n× n) impulse response matrix
gives the model weights between input driving force j
and output i.

Note that in the current context of analyzing CV error
dynamics, the multi-output impulse response estimates
are based on routine operating data. In contrast, step
response data to be used for identification is collected
under experimental conditions where input variables are
manipulated. So while models based on the latter ap-
proach can be considered causal, the same is not true
for the former. If the underlying data has not been col-
lected during an experiment, the tracking error impulse
response plots simply help the analyst interpret the cor-
relation structure between the tracking error trends, not
the true causal relationships.

Modeling Control Error Trends—Vector Time
Series Approach

Multi-output control error trends can be considered a
group of univariate control error trends of equal length
that all share the same time stamp. Rather than being a
scalar at time t, a multi-output control error trend is an
n dimensional vector at time t, with one element for each
of the n controlled variable (CV) error trends. Define the
following vector time series:

yt = Ysp,t −Yt (25)

where yt, Ysp,t, and Yt are vectors representing the
control error, the output, and the setpoint, respectively.
In practice, one would typically be working with y, an
(N × n) array of CV error data, based on N samples of
n CV error trends.

Treating the dynamic analysis of multi-output control
error trends as an endogenous estimation problem with
no a priori information has been explored by Seppala
(1999). Linear dynamic approximations of endogenous

system behavior with no a priori information and no as-
signed input/output structure had been previously used
in the field of applied econometrics. The simplest multi-
variate dynamic model that can represent yt is a vector
autoregressive (VAR) model which is written as follows:

Φ(q−1)yt = at (26)

where at is a vector of driving forces, and Φ(q−1) is an
autoregressive matrix polynomial defined as:

Φ(q−1) = In + Φ1q
−1 + · · ·+ Φpq

−p (27)

where each Φi is an (n × n) coefficient matrix. The ex-
panded form of Equation 26 is clearly analogous to a
scalar autoregressive model; each variable in yt is ex-
pressed as a function of lagged values of itself and the
other (n− 1) variables in yt:

yt = −Φ1yt−1 − · · · − Φpyt−p + at (28)

where p is the autoregressive model order. The driving
force covariance matrix, Σa, is given by:

Σa = E[ataT
t ]. (29)

The diagonal elements of Σa are the driving force vari-
ances, and the off-diagonal elements are the driving force
covariances.

To find the multi-output impulse responses, one pro-
ceeds in much the same fashion as in the univariate case.
If the autoregressive matrix polynomial in Equation 27
is stable, then the VAR model for yt may be expressed
in vector moving average (VMA) form:

yt = Θ(q−1)at

= (1 + Θ1q
−1 + · · ·+ Θrq

−r)at

=
r∑

i=0

Θiat − i

(30)

where Θ(q−1) is the vector moving average matrix poly-
nomial, defined such that Φ(q−1)Θ(q−1) = In . The Θi’s
can be found using the recursion:

Θi =
i∑

j=1

Θi−jΦj (31)

where i = 1, 2, . . . , and Θ0 = In. The Θi coefficient
matrices contain the multi-output impulse response co-
efficients.

The VMA model for yt in Equation 30 is not unique;
a property of many types of multivariate models. To
illustrate the non-uniqueness property, consider any non-
singular matrix P : the Θi matrices can be replaced by
Ψ = ΘiP , and the driving forces can be replaced by
vt = Pat, resulting in the following equivalent model for
yt:

yt =
r∑

i=0

ΘiPP
−1at−i =

r∑
i=0

Ψivt−i (32)
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Figure 3: Multi-output CV error impulse response
plot matrix for the four variable system consisting of
the bottoms flow, the feed flow, the reboiler level and
the reflux level. These responses were computed from
an eighth order VAR model converted to orthogonal
innovations form VMA via a Cholesky factorization
of the covariance matrix. This plot shows the first
seventy steps of the response.

The models in Equations 30 and 32 are equivalent in the
sense that they produce identical estimates of the k-step
ahead forecast error covariance. The non-uniqueness
property of the VMA model can be used to choose a par-
ticular P that orthogonalizes the driving forces, thereby
simplifying multi-output impulse response analysis and
variance calculations. A common choice is to select P so
that it is the Cholesky factor of the driving force covari-
ance matrix, resulting in orthogonalized driving forces
vt. When one interprets the impulse response coefficient
matrices, the Ψi’s, one can consider the effects of shocks
to the driving force processes one-at-a-time because they
are orthogonal. This topic and other methods for ana-
lyzing multi-output control systems are discussed in Sep-
pala et al. (2001) and Seppala (1999).

Results of Multivariate Analysis

An eighth order VAR model was found to adequately
model the control error data in Figure 1, i.e., Equation 28
was used with n = 4 and p = 8. Standard residual anal-
ysis showed the model to be adequate, and the residu-
als themselves to be nearly orthogonal. The impulse re-
sponse form of the multivariate model for the distillation
column data is shown in Figure 3 with a time horizon of
seventy minutes, and in Figure 4 with a time horizon of
twenty minutes. In these figures, the rows (from top to
bottom) represent the four CV error variables (bottoms
flow, feed flow, reboiler level, and reflux level) and the
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Figure 4: Multi-output CV error impulse response
plot matrix for the four variable system consisting of
the bottoms flow, the feed flow, the reboiler level and
the reflux level. These responses were computed from
an eighth order VAR model converted to orthogonal
innovations form VMA via a Cholesky factorization
of the covariance matrix. This plot shows the first
twenty steps of the response.

columns represent the system’s driving forces. Because
the driving forces are essentially orthogonal, the driving
force in column i can be interpreted as a deviation from
setpoint or disturbance in variable i, and the coefficients
plotted in position (i, i) of the impulse response matrix
can be considered the endogenous component of the re-
sponse for variable i.

Non-significant interactions. The responses in the
subplots labeled A and/or G in Figures 3 and 4 contain
non-significant relationships because the 95% confidence
intervals for the responses contain zero across the entire
time horizon. This can be interpreted as a lack of sig-
nificant correlation between a deviation from setpoint or
a disturbance in variable i and the presence of any cor-
responding response in variable j. From Figures 3 and
4 it can be seen that the model shows non-significant
interactions along the dynamic pathways from: i) the
bottoms flow to the feed flow, ii) the bottoms flow to the
reflux level, iii) the reboiler level to the feed flow, iv) the
reboiler level to the reflux level, and v) the reflux level
to any other system variable.

The feed flow error. Inspection of the second row of
plots in Figures 3 and 4 reveals that only driving force
v2 (recall, v2 is interpreted as an impulse-like upset in
the feed flow) has a significant effect on the feed flow.
This aspect of the model makes sense physically because
in this example, only upstream properties affect the feed
flow controller. If v2 is the only driving force significantly
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correlated with the feed flow control error, then the uni-
variate and multivariate impulse response plots should
be similar for the feed flow tracking error.

How do the other system variables respond to a shock
in the feed flow loop? The plots labeled C show that
after a couple of units of delay, the bottoms flow and
the reboiler level both show significant responses with
a strong cyclical component at seven minutes. The plot
labeledH shows that a shock in the feed flow has a small,
perhaps negligible, effect on the reflux level.

The reflux level error. The reflux level tracking
error exhibits a dominant cycle with a period of about
60 minutes. Since all the responses labeled G in Figures
3 and 4 are non-significant, it can be deduced that the
reflux level control error is unrelated to the other three
tracking error variables over the period of data collec-
tion. Note also that the impulse response plot in pane D
is essentially identical to the univariate impulse response
plot for the reflux level in Figure 2. The multi-output
impulse response plots in column four provide statistical
evidence that errors in the reflux level controller are un-
related to dynamics in the other three loops during the
period of data collection.

The reboiler level/bottoms flow pair. In Figures
3 and 4, the rows showing the responses for the bottoms
flow (row 1) and the reboiler level (row 3) indicate that
there is a strong seven minute cycle shared by both CV
error variables in this cascaded pair. The multivariate
model that has been estimated shows that an upset in
any of the CV error variables except the reflux level error
is related to this statistically significant response in the
bottoms flow/reboiler level pair. As mentioned above,
deductions regarding causality are out of the question,
but the analysis shows that a common cycle exists be-
tween the reboiler level error and the bottoms flow error,
and that the error in at least one external loop (the feed
flow) is correlated with this pair.

Industrial Perspectives

At CPC V, controller performance monitoring was cat-
egorized as a new direction for academic research. Since
then, there has been considerable research in this area,
with a significant focus of this work directed towards de-
veloping controller performance monitoring (CPM) tech-
niques for multivariable systems. Most of the work in
this area has focused on developing multivariable system
invariants, with more recent work addressing incorpora-
tion of constraints. There are other topics requiring at-
tention, and we shall indicate a few that are of industrial
interest.

As CPM matures as a technology, and as its accep-
tance becomes more widespread, the question of how
to affect CPM solutions arises. Since 1996, a number
of commercial products and services for CPM have ap-
peared. There are an enormous number of challenges in

developing, supporting and ensuring that these packages
are used effectively. We will provide a short discussion
of these challenges. Finally, a brief discussion on the rel-
ative merits of CPM solutions as vendor products or as
vendor services is included.

New Areas for Research

Multivariate predictive controllers have an optimization
layer in the form of a linear or quadratic program, and
some plants have real time optimization (RTO) systems
downloading targets to Multivariable Predictive Con-
trollers (MPCs) or to the base level control system.
What is there to be learned by monitoring the behavior
of these targets? On the time scale of control systems,
can this data be considered dynamic? RTO targets ar-
rive on the order of hours and can be considered static;
however, over-active optimization targets that cannot be
considered static from the point of view of the control
system have been observed. What effect does would the
latter have on one’s perception of control system perfor-
mance?

The use of dynamic analysis of variance (ANOVA),
i.e., studying the correlation and quantifying the vari-
ance propagation between key control system variables
was used by Desborough and Harris (1993) to analyze
multiple-input-single-output controlled systems. Ideally,
one would use ANOVA methods to identify process vari-
ables that are chiefly responsible for variance inflation
of key controlled variables. The technical challenges
are well-known: causal ordering of upstream variables,
the effects of feedback and recycle, collinearity of dis-
turbances, and a dealing with the component of vari-
ance propagation due to invariants. Further study of
this topic is warranted.

Several methods for modeling multivariate dynamic
and/or static data have matured to the point where pow-
erful software packages are now available for their appli-
cation. A couple of examples well known in the control
engineering community are: ADAPTX (Subspace ID),
Simca-P (PCA/PLS), and the host of data analysis tools
available for the Matlab(R) environment. In combina-
tion with process knowledge, these data analysis pack-
ages can be very useful for analysis and diagnosis. Note,
however, that batches of control system data that have
been gathered because they came from a previously iden-
tified problem area are good for analysis, but this does
not count as monitoring. True performance monitor-
ing requires constant, scheduled contact with the plant
information system, and this has been known for some
time. There are many practical challenges with real-time
applications: data integrity, fault-detection, robust algo-
rithms, data visualization and presentation, to name a
few.
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CPM in the Field: A Product or A Service?

Many practicing control specialists are now at least fa-
miliar with controller performance monitoring. A num-
ber of prototype industrial controller performance mon-
itoring systems have been described in the open liter-
ature, Harris et al. (1999). Commercial products are
available from Honeywell, Matrikon and Control Arts to
name a few. When one considers purchasing CPM ca-
pabilities for a plant, besides the obvious issues of the
level of technology required, the issue of whether to buy
a CPM product, or a CPM service emerges. Using a
CPM product would be like using any other piece of in-
stalled software; essentially one has access to on-line help
and product support. Pursuing a CPM service could in-
volve engineers visiting the site to perform control per-
formance audits, service providers consulting on difficult
CPM problems, or an electronic exchange of raw data
for loop performance reports (Miller and Desborough,
2000).

CPM products and services will both be costly, and
both will require support from the provider. Without
trying to answer the question of which model is better,
CPM as a product or CPM as a service, some of the
important issues will be outlined below.

Whether CPM is used as a product or a service, proper
training is required if plant operation going to benefit
from CPM. One of the frustrations with applications of
CPM, and other quality monitoring methods, is the level
of training for individuals who are asked to use these
methods. Although CPM technology is not as wide in
scope or as complex as multivariate predictive control,
the availability of training in the latter area far exceeds
that which is available for CPM. As with most statistical
methods, attention must be paid to the length of data
and sampling interval used for analysis, the type of fil-
tering used prior to analysis (such as compressed data)
and other aspects of data integrity.

Process knowledge has long been known to be an es-
sential ingredient to successful application of CPM in the
field (Jofriet and Bialkowski, 1996; Haarsma and Niko-
laou, 2000; Horch, 2000). In order to integrate CPM
into engineers’ work practices, regular hands-on expe-
rience with CPM is required to develop skills. CPM
products are best suited for this, because the product
becomes just another tool, one that does not rely on a
third party to use successfully. A particular challenge is
that advanced multivariate techniques, which require a
priori structural information and advanced system iden-
tification techniques, may only be successful when used
by experts in CPM. Widespread use by control engineers
requires automation of most of the methodology, with an
emphasis placed on interpretation and analysis. These
requirements are not different than those encountered in
applications of multivariate statistical process control.
Finally, we note that control engineers working in en-

vironments where constraints on available funds, time,
and support personnel are limiting, are the least likely
to get involved in CPM. In this situation, if CPM is to be
implemented at all, then the service model is probably
more appropriate.

Conclusions

The use of controller performance monitoring and assess-
ment tools in industrial settings has grown considerably
in the past several years. Extensions and variations of
minimum variance based methods have been used ex-
tensively, primarily due to ease of understanding, robust
computational methods, and minimal requirements for a
priori knowledge. Industrial versions of these packages
are available as both products and services.

Since CPC V, there has been considerable develop-
ment of the underlying theory for multivariable con-
troller performance assessment methods. Two main ap-
proaches to multivariate controller performance assess-
ment have emerged thus far. The first method requires
the use of extensive a priori process knowledge. In par-
ticular, the use of previously identified process models,
which enables constraint handling to be addressed in a
logical and straightforward fashion. The outcome of en-
ables one to ascertain performance bounds and thus to
subsequently monitor changes in these bounds over time.
Of course, the results of the analysis are interpreted pre-
suming that the process model is correct. The second
approach largely dispenses with the requirement for a
priori knowledge. Empirical models are built and used
to analyze the predictive structure of the data. In partic-
ular, process interactions, and variance-decompositions
over time can be used to help diagnosis process inter-
actions. With such an approach, one is not restricted
to using time series models; many multivariate statis-
tical methods can be used if they are modified to in-
clude lagged data to account for serial correlation. The
two approaches share common features, and it is clear
that they are non-trivial generalizations of the univari-
ate measures. It remains to be shown whether the more
demanding and complex multivariate methods can be
successfully integrated into a plant-wide monitoring and
assessment strategy.

Most approaches for performance assessment use data
collected in a passive mode or use data generated when
significant events occur (Isaksson et al., 2000; Stanfelj
et al., 1993). This is one of the key attributes of the
performance measures—one performs the analysis with
representative data. When poor performance is detected,
a combination of statistical tools and process knowledge
is required to analyze and diagnose the underlying prob-
lems. The role of designed experiments, in either closed-
loop or open-loop, to aid in the diagnosis and analysis
is an area requiring attention. Preliminary results have
been reported by Kendra and Çinar (1997) and Gustafs-
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son and Graebe (1998). Since many of the proposed
methods for accommodating constraints require that the
process transfer function model be known, on-line and
off-line methods for model validation are essential for
these techniques to be used with confidence. The devel-
opment of diagnostics for model-based control is an open
area for research (Kesavan and Lee, 1997).

The focus of much of this paper has been on the per-
formance measures themselves. Large-scale industrial
applications require incorporation of such performance
measures into a plant-wide monitoring and performance
assessment package. Industrial experience indicates that
many of the challenges to broader application of perfor-
mance measures lie in the successful development and
maintenance of such systems.
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