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Abstract
The growing interest in model predictive control for nonlinear systems, also called NMPC, is motivated by the fact that
today’s processes need to be operated under tighter performance specifications to guarantee profitable and environmentally
safe production. One of the remaining essential problems for NMPC is the high on-line computational load. At each
sampling instant, a nonlinear optimal control problem must be solved. In this paper, we summarize recent results showing
the practical applicability of NMPC for process control. We show how recent advances in NMPC theory and dynamic
optimization can be used to make the real-time application of NMPC feasible even for high dimensional problems. As an
application example the real-time control of a high purity distillation column is considered.
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Introduction

Over the last two decades model predictive control
(MPC), also referred to as moving horizon control or
receding horizon control, has become an attractive feed-
back strategy. Linear MPC approaches have found
successful applications, especially in the process indus-
try (Qin and Badgwell, 1996). Nowadays, tighter prod-
uct quality specifications, increasing productivity de-
mands and environmental regulations require systems to
be operated closer to the boundary of the admissible op-
erating region. To allow operation near the boundary, a
linear model is often not adequate to describe the pro-
cess dynamics. This motivates the use of nonlinear sys-
tem models, non-quadratic cost functions and nonlinear
constraints in the predictive framework, thus leading to
nonlinear model predictive control (NMPC).
Recently NMPC schemes with favorable properties in-
cluding guaranteed closed-loop stability or reduced com-
putational demand have been developed, see for exam-
ple De Nicolao et al. (2000); Allgöwer et al. (1999) for a
review. Despite these advances concern has been raised
that due to the high on-line computational load none of
the available NMPC schemes can be used for real-time
control in practice. This concern is based on the fact
that at every sampling instant a high-dimensional non-
linear, finite horizon optimal control problem has to be
solved.
In this paper we summarize results of an ongoing
study (Nagy et al., 2000; Bock et al., 2000b; Allgöwer
et al., 2000) showing the practical applicability of NMPC
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to medium/high dimensional processes. We consider the
control of a high purity distillation column using NMPC.
In contrast to (Nagy et al., 2000; Bock et al., 2000b) we
consider the output feedback case in this paper.
Our goal is to outline the key components for real-
time application of NMPC. The conclusion is that a
successful application of NMPC is possible even nowa-
days, if a combination of special dynamic optimization
strategies (Bock et al., 2000b; Biegler, 2000) and NMPC
schemes with reduced online computational load (Chen
and Allgöwer, 1998; De Nicolao et al., 1996) is used.
The paper is organized as follows: In the first section, we
review NMPC strategies that require reduced computa-
tional load. In the second section, one specially tailored
dynamic optimization strategy for the solution of the oc-
curring optimal control problems is described. Finally,
the control of a high-purity distillation column is consid-
ered.

Nonlinear Model Predictive Control

In Figure 1 the general principle of model predictive
control is shown. For simplicity of exposition, we as-
sume that the control and prediction horizon have the
same length. Based on measurements obtained at time
t, the controller predicts the future dynamic behav-
ior of the system over a control horizon Tc and de-
termines the manipulated input such that a predeter-
mined open-loop performance objective functional is op-
timized. In order to incorporate some feedback mech-
anism, the open-loop manipulated input function ob-
tained is implemented only until the next measurement
becomes available. We assume that this is the case ev-
ery δ seconds (sampling time). Using the new measure-
ment, at time t+δ, the whole procedure—prediction and
optimization—is repeated to find a new input function.
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Figure 1: Principle of model predictive control.

Mathematical Formulation of NMPC

We assume that the system is given by nonlinear index-
one differential algebraic equations (DAE) of the form

ẋ(t) = f(x(t), z(t),u(t)), x(0) = x0 (1a)
0 = g(x(t), z(t),u(t)), (1b)

where x(t) ∈ Rn denotes the differential variables, z(t) ∈
Rp the algebraic variables and u(t) ∈ Rm the inputs.
The control objective is to stabilize this system around
a given setpoint, denoted by (xs, zs,us), while satisfying
constraints on the input and states of the form:

h(x, z,u) ≥ 0. (2)

In the simplest case the constraints are box constraints,
i.e. umin ≤ u ≤ umax, xmin ≤ x ≤ xmax. The control is
given by the following open-loop optimization problem
that is solved at every sampling instant:

min
ū(·)

J(ū(·);x(t)) (3a)

with:

J(ū(·);x(t)) =
∫ t+Tc

t

F (x̄(τ), ū(τ))dτ (3b)

subject to:

˙̄x(τ) = f(x̄(τ), z̄(τ), ū(τ)), x̄(t) = x(t) (3c)
0 = g(x̄(τ), z̄(τ), ū(τ)) (3d)

h(x̄(τ), z̄(τ), ū(τ)) ≥ 0 τ ∈ [t, t + Tc]. (3e)

Internal controller variables are denoted by a bar. The
function F , often called stage cost function, specifies
the desired control performance. Often, F is chosen as
quadratic in x and u: F (x,u) = (x − xs)T Q(x − xs) +
(u− us)T R(u− us). The system input during the sam-
pling time δ is given by the optimal input resulting from
the solution of the open-loop control problem at time t:
u(τ) = ū?(τ), τ ∈ [t, t + δ).

Efficient Formulation of the NMPC Problem

While the NMPC formulation described above can be
applied straightforwardly in practice, in general noth-
ing can be said about stability of the closed loop and
performance. One way to achieve good closed-loop per-
formance and stability is the use of an infinite horizon
length (Keerthi and Gilbert, 1988), i.e. Tc is set to ∞.
However, for an infinite horizon, the resulting nonlinear
program (NLP) is in practice not solvable in finite time.
If finite prediction and control horizons are used, the
closed-loop system trajectories differ from the predicted
open-loop ones. As a consequence it is not clear how the
resulting performance is related to the “optimal” infinite
horizon cost and whether the closed-loop is stable.

To allow an efficient solution of the resulting open-
loop optimal control problem while guaranteeing stabil-
ity and good performance several NMPC schemes have
been proposed (Chen and Allgöwer, 1998; De Nicolao
et al., 1996). These methods lead to a similar open-
loop optimization problem as Equation 3a, however the
cost function, Equation 3b, is augmented by a terminal
penalty term Es(·)

J(ū(·);x(t)) =∫ t+Tc

t

F (x̄(τ), ū(τ))dτ + Es(x̄(t + Tc)) (4)

and the following final region constraint is added

r(x̄(t + Tc)) ≥ 0. (5)

Roughly speaking the terminal state penalty term Es

gives an (upper bound) estimate of the infinite horizon
cost and thus approximately recovers the infinite horizon.
For this approximation however, the final predicted state
has to be restricted to a predetermined region given by
the terminal region constraint r. Detailed descriptions
of these approaches and how to obtain Es and r can
be found in Allgöwer et al. (2000); Chen and Allgöwer
(1998); Findeisen and Allgöwer (2000); De Nicolao et al.
(2000). The computational advantage of the described
schemes lies in the fact, that shorter horizons can be
used, while not jeopardizing performance and stability.
We propose to use this kind of NMPC schemes in com-
bination with specially tailored dynamic optimization
strategies as outlined in the next section.

Efficient Solution of NMPC Problems

An numerically efficient solution of the NMPC optimiza-
tion problem should: 1) take advantage of the special
problem structure of the open loop optimization prob-
lem, 2) reuse as much information as possible from the
previous sampling interval in the current sampling in-
terval. One dynamic optimization scheme that can be
adapted to provide all these properties is the so-called di-
rect multiple shooting approach (Bock and Plitt, 1984).
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q q q q q q q q q q
q q q q q
6

s̄0 s̄1
s̄2

s̄3

q q q q q̄
sN−1

6
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Figure 2: Principle of direct multiple shooting.

Direct Multiple Shooting for NMPC

In the following, the basic idea of direct multiple shoot-
ing is outlined. More can be found in Bock et al. (2000b).
We assume, that the controls are parametrized as piece-
wise constant on each of the N = Tc

δ so-called multi-
ple shooting intervals, i.e. ū(τ) = ūi for τ ∈ [τi, τi+1),
τi = t + iδ. The DAE solution is decoupled on these
intervals by considering the initial values s̄x

i and s̄z
i of

differential and algebraic states at the times τi as addi-
tional optimization variables (compare Figure 2). The
solution of the “decoupled” initial value problems obeys
the following relaxed DAE formulation on the intervals
[τi, τi+1):

˙̄xi(τ) = f(x̄i(τ), z̄i(τ), ūi) (6a)
0 = g(x̄i(τ), z̄i(τ), ūi)− g(s̄x

i , s̄z
i , ūi) (6b)

x̄i(τi) = s̄x
i , z̄i(τi) = s̄z

i . (6c)

The subtrahend in Equation 6b is introduced to allow
an efficient DAE solution for initial values and controls
s̄x
i , s̄z

i , ūi that violate temporarily the consistency condi-
tions 0 = g(s̄x

i , s̄z
i , ūi) (Bock et al., 2000a). The contri-

bution of the integral cost term on [τi, τi+1) is determined
by:

Ji(s̄x
i , s̄z

i , ūi) =
∫ τi+1

τi

F (x̄(τ), ūi)dτ.

The resulting large but structured NLP takes the form:

min
ūi,s̄i

N−1∑
i=0

Ji(s̄x
i , s̄z

i , ūi) + Es(s̄x
N ) (7)

subject to:

s̄x
0 = x(t), (8a)

s̄x
i+1 = x̄i(τi+1), i = 0, 1, . . . , N−1, (8b)

0 = g(s̄x
i , s̄z

i , ūi), i = 0, 1, . . . , N−1, (8c)
h(s̄x

i , s̄z
i , ūi) ≥ 0, i = 0, 1, . . . , N−1, (8d)

rs(s̄x
N ) ≥ 0. (8e)

This large structured NLP problem is solved by a spe-
cially tailored partially reduced SQP algorithm (see Bock
et al. (2000a) for a detailed description). To further im-
prove the solution time, one should taken into account

that the optimization problems at consecutive sampling
instants are quite similar. We propose to consider the
following strategy to decrease the computation time:

Initial Value Embedding Strategy: Optimization
problems at subsequent sampling instants differ only by
different initial values x(t), that are imposed via the ini-
tial value constraint, Equation 8a: s̄x

0 = x(t). Accepting
an initial violation of this constraint, the complete so-
lution trajectory of the previous optimization problem
can be used as an initial guess for the current problem.
Furthermore, all problem functions, derivatives as well
as an approximation of the Hessian matrix have already
been found for this trajectory and can be used in the new
problem, so that the first QP solution can be performed
without any additional DAE solution.
The application of this strategy does improve the ro-
bustness and speed of the optimization algorithm signif-
icantly. More details can be found in Diehl et al. (2001a).

Example Process

We outlined two key components for a computationally
feasible application of NMPC: 1) the use of efficient, tai-
lored dynamic optimization algorithms and 2) the use of
efficient NMPC formulations. In this section we utilize
these components to show that a successful application
of NMPC to a nontrivial process control example is fea-
sible already nowadays.

High Purity Distillation

As an application example the control of a high purity
binary distillation column for the separation of Methanol
and n-Propanol is considered (see Figure 3). The binary
mixture is fed into the column with flow rate F and
molar feed composition xF . Products are removed at
the top and bottom of the column with concentrations
xB and xD. The liquid flow rate L and the vapor flow
rate V are the control inputs (L/V configuration). The
control problem is to maintain the specifications on the
product concentrations xB and xD despite disturbances
in the feed flow F and the feed concentration xF . It
is assumed that only the temperatures on the 14th tray
and 28th tray can be measured and that the disturbance
quantities xF and F are not measured.

System Models and State Estimation

For comparison, two models of different complexity for
the prediction are used in the controller. Modeling of the
distillation column under the assumptions of constant
relative volatility, constant molar overflow, no pressure
losses, no energy balances and hydrodynamics leads to
a 42nd order ODE model. The second model considered
is a 164th order model with 122 algebraic states and 42
differential states. A more detailed description is given
in Nagy et al. (2000). The controller needs estimates of
all differential states, as well as of the disturbances F
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Figure 3: Considered distillation column.

and xF . They are reconstructed from measurements of
the temperatures T14, T28 using an Extended Kalman
Filter (EKF).

Controller Setup

As common in distillation control, the product concen-
trations xB and xD are not controlled directly, i.e. they
do not appear directly in the cost function. Instead an
inferential control scheme, which controls the deviation
of the concentrations on tray 14 and 28 from the set-
points, is used. Based on the estimates from the EKF
in a first step, the system state at the next sampling
instant is predicted. Using this state, the open-loop op-
timal control problem is solved. The resulting first input
is implemented at the next control instant and the pro-
cedure is repeated. Note that this leads to a delay in the
control scheme. This is necessary since the solution of
the dynamic optimization problem cannot be obtained
instantaneously. As NMPC scheme, the quasi-infinite
horizon NMPC scheme for index–one DAE systems is ap-
plied (Findeisen and Allgöwer, 2000). A quadratic stage
cost and a quadratic terminal penalty term are used.
The choice of the weighting matrices and the derivation
of the terminal region is described in (Nagy et al., 2000).
For all simulations, the real plant is given by the 164th

order model. The 42nd and 164th order models are used
for the controller predictions. The control input param-
eterization (controller sampling time) δ is 30s, while the
EKF is updated with the plant measurements every 10s.
The control horizon Tc is fixed to 10 minutes (N = 20).

model
size max avrg
42 1.86s 0.89s

164 6.21s 2.48s

Table 1: Necessary CPU time for one sampling time.
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Figure 4: Behavior of the closed-loop.

Performance and Computational Complexity

In Table 1, the necessary solution times for the input dis-
turbance scenario as shown in Figure 4 are given1. One
can see that the proposed strategy of combining NMPC
schemes that require reduced computational time with a
direct multiple shooting approach does lead to a rather
low computational load. In our example the solution is
easily feasible in the sampling time of 30s, even for the
164th order model and a horizon length of N = 20. In
Figure 4 the performance of the closed-loop for the dif-
ferent model sizes is compared. The temperatures T14

and T28 are kept in a narrow band, which is certainly
more than satisfying. As shown, real-time application of
NMPC is possible even for rather large models, if NMPC
schemes with a low computational load and specialized
optimization schemes are employed. Currently, the pre-
sented algorithms are experimentally applied to control
a medium scale distillation column. Results will be pre-
sented in a forthcoming paper (Diehl et al., 2001b).

Conclusions

From an industrial/application point of view there is a
strong demand to use NMPC schemes, since these meth-
ods allow to directly use (nonlinear) first principle mod-
els that are able to describe a wider range of operation
than linear models can do. However, concern has been
raised that NMPC cannot be applied in practice, since
at every sampling instant a nonlinear optimization prob-

1All computations are carried out on a Compaq Alpha XP1000.
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lem has to be solved. In this paper, we outlined the key
components for a computationally feasible application of
NMPC: The use of efficient NMPC schemes like quasi-
infinite horizon NMPC in combination with specially tai-
lored, efficient dynamic optimization techniques. Using
these techniques, a successful application of NMPC even
for high dimensional systems is feasible. This has been
demonstrated considering the real-time control of a high
purity distillation column.
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Multiple Shooting Method for Real-time Optimization of Non-
linear DAE Processes, In Allgöwer, F. and A. Zheng, editors,
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F. and A. Zheng, editors, Nonlinear Model Predictive Control,
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