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Abstract
This paper highlights some of our recent results on control of single-input single-output constrained uncertain nonlinear
processes. The main issues and challenges that arise in control of such processes are discussed and a novel Lyapunov-
based framework for nonlinear controller synthesis is presented to address these issues. The proposed framework leads
to the explicit synthesis of nonlinear robust optimal state feedback controllers, with well-characterized stability and
performance properties, that cope effectively with the simultaneous problems of severe process nonlinearities, significant
model uncertainty, and hard constraints on the manipulated input. The impact of the proposed framework is analyzed
and its implications for nonlinear process control are identified.
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Introduction

In designing an effective process control system, there
are several fundamental issues that transcend the bound-
aries of specific process applications. Although they may
vary from one application to another and have differ-
ent levels of significance, these issues remain generic in
their relationship to the control design objectives. Cen-
tral to these issues is the requirement that the con-
trol system provide satisfactory performance in the face
of severe process nonlinearities, modeling errors, pro-
cess variations, and actuator constraints. Nonlinear be-
havior, model uncertainty and input constraints repre-
sent some of the more salient features whose frequently-
encountered co-presence in a multitude of chemical pro-
cesses renders the task of controlling such processes a
challenging one. For example, many important indus-
trial processes including highly exothermic chemical re-
actions, high purity distillation columns, and batch sys-
tems exhibit strong nonlinear behavior and cannot be ef-
fectively controlled with controllers designed on the ba-
sis of approximate linear or linearized process models.
The limitations of traditional linear control methods in
dealing with nonlinear chemical processes have become
increasingly apparent as chemical processes may be re-
quired to operate over a wide range of conditions due to
large process upsets or set-point changes. This realiza-
tion has consequently motivated intense research activity
in the area of nonlinear process control over the last fif-
teen years. The literature on nonlinear process control is
really extensive (see, e.g., (Allgöwer and Doyle III, 1997)
for references).

In addition to nonlinear behavior, many industrial pro-
cesses are characterized by the presence of model uncer-
tainty such as unknown process parameters and external
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disturbances which, if not accounted for in the controller
design, may cause performance deterioration and even
closed-loop instability. Significant research work has con-
sequently focused on this problem including the use of
integral action in conjunction with feedback linearizing
controllers to compensate for constant model uncertainty
and the design of robust controllers through Lyapunov’s
direct method for processes with time-varying uncertain
variables (e.g., (Christofides et al., 1996)).

The above approaches, however, do not lead in gen-
eral to controllers that are optimal with respect to a
meaningful cost and therefore do not guarantee achieve-
ment of the control objectives with the smallest possible
control action. This is an important limitation of these
methods, especially in view of the fact that the capacity
of control actuators used to regulate chemical processes
is almost always constrained. The problems caused by
input constraints have consequently motivated many re-
cent studies on the dynamics and control of chemical
processes subject to input constraints. Notable contri-
butions in this direction include controller design and
stability analysis within the model predictive control
framework (e.g., (Rawlings, 1999; Kurtz et al., 2000)),
constrained quadratic-optimal control (Chmielewski and
Manousiouthakis, 1996), the design of “anti-windup”
schemes in order to prevent excessive performance dete-
rioration of an already designed controller when the in-
put saturates (Kothare et al., 1994; Valluri and Soroush,
1998; Kapoor and Daoutidis, 1999). However, these con-
trol methods do not explicitly account for robust uncer-
tainty attenuation.

Summarizing, a close look at the available literature
reveals the fact that, at this stage, existing nonlinear
process control methods lead to the synthesis of con-
trollers that can deal with either model uncertainty or
input constraints, but not simultaneously or effectively
with both. This clearly limits the achievable control
quality and closed-loop performance, especially in view
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of the commonly-encountered co-presence of uncertainty
and constraints in chemical processes. Therefore, the
development of a unified framework for control of non-
linear processes that explicitly accounts for the presence
of model uncertainty and input constraints is expected
to have a significant impact on chemical process control.
Motivated by this, we outline in this paper some of our
recent results on the development of this framework and
discuss, in particular, its implications for enriching our
existing arsenal of nonlinear control tools.

Nonlinear Processes with Uncertainty and
Constraints

We consider single-input single-output nonlinear pro-
cesses with uncertain variables and input constraints
modeled by the class of continuous-time nonlinear or-
dinary differential equation systems with the following
state-space description:

ẋ = f(x) + g(x)sat(u) +
q∑

k=1

wk(x)θk(t)

y = h(x)

(1)

where x ∈ IRn denotes the vector of process state
variables, u ∈ IR denotes the manipulated input,
θk(t) ∈ W ⊂ IR denotes the k-th uncertain (possibly
time-varying) but bounded variable taking values in a
nonempty compact convex subset W of IR, y ∈ IR de-
notes the output to be controlled, and sat refers to the
standard saturation nonlinearity. The presence of the
sat operator in Equation 1 signifies the presence of hard
constraints on the manipulated input. The uncertain
variable θk(t) may describe time-varying parametric un-
certainty and/or exogenous disturbances. It is assumed
that the origin is the equilibrium point of the nominal
(i.e., u(t) = θk(t) ≡ 0) system of Equation 1.

Main Issues on Control of Constrained
Uncertain Nonlinear Processes

Towards our end goal of developing an effective control
strategy that enforces the desired stability and perfor-
mance properties in nonlinear processes subject to model
uncertainty and actuator constraints, we begin in this
section by identifying some of the outstanding issues
that arise in this problem and must be addressed prop-
erly. While the individual presence of either model un-
certainty or input constraints poses its own unique set
of problems that must be dealt with at the stage of con-
troller design, the combined presence of both uncertainty
and constrains is far more problematic for process stabil-
ity and performance. The difficulty here emanates not
only from the cumulative effect of the co-presence of the
two phenomena but is, more importantly, due to the ad-
ditional issues that arise from the interaction of the two.
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Figure 1: Paradigm for control of constrained uncer-
tain nonlinear processes.

At the core of these issues are the following two prob-
lems:

1. The co-presence of model uncertainty and input con-
straints creates an inherent conflict in the controller
design objectives and control policy to be imple-
mented. On one hand, suppressing the influence of
significant external disturbances requires typically
large (high-gain) control action. On the other hand,
the availability of such action is often limited by the
presence of input constraints. Failure to resolve this
conflict will render any potential control strategy es-
sentially ineffective. A schematic representation of
this conflict is depicted in Figure 1.

2. The set of feasible process operating conditions un-
der which the process can be operated safely and
reliably is significantly restricted by the co-presence
of uncertainty and constraints. While, on their own,
input constraints place fundamental limitations on
the size of this set (and consequently on our abil-
ity to achieve certain control objectives), these lim-
itations become even stronger when uncertainty is
present. At an intuitive level, many of the feasi-
ble operating conditions permitted by constraints
under nominal conditions (i.e. predicted using a
nominal model of the process) cannot be expected
to continue to be feasible in the presence of signif-
icant plant-model mismatch. The success of a con-
trol strategy in effectively addressing the problems
of uncertainty and constraints hinges, therefore, not
only on the design of effective controllers, but also
on the ability to predict a priori the feasible condi-
tions under which the designed controllers are guar-
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anteed to work in the presence of both uncertainty
and constraints.

Having discussed some of the main issues involved,
we are now motivated to proceed in the next two sec-
tions with the presentation of some of our recent results
on this problem, which directly address the issues out-
lined above and culminate in the development of a gen-
eral Lyapunov-based framework for control of nonlinear
processes with model uncertainty and input constraints.
More specifically, the developed framework entails:

1. The synthesis of nonlinear robust optimal con-
trollers that account explicitly for the problems of
significant model uncertainty and input constraints
and enforce the desired stability, robustness, opti-
mality, and explicit constraint-handling properties
in the closed-loop system.

2. The explicit and quantitative characterization of the
limitations imposed by the co-presence of uncer-
tainty and constraints on our ability to steer the
nonlinear process in a desired direction.

To lay the appropriate foundation for the development of
the proposed framework, we begin in the next section by
presenting first some of the key tools necessary to address
the first issue. Then, in the following section, we show
how these tools can be built upon to address the second
issue, leading finally to the desired framework.

Robust Optimal Control

The control paradigm presented in Figure 1 suggests a
natural approach to resolve the inherent conflict between
the need to compensate for the effect of model uncer-
tainty and the limitations imposed by input constraints
on the available control action. This is the robust op-
timal control approach which involves the synthesis of
robust controllers that use minimal or reasonably small
control action to compensate for the effect of significant
model uncertainty and achieve robust stabilization. In
(El-Farra and Christofides, 2001a), using a novel com-
bination of Lyapunov’s direct method and the inverse
optimal control approach, we synthesized robust opti-
mal controllers that enforce, in the presence of signifi-
cant model uncertainty and absence of constraints: a)
global stability, b) robust asymptotic output tracking
with arbitrary degree of attenuation of the effect of un-
certainty on the output, and c) optimal performance, in
the closed-loop system. The controllers take the general
form

u = −1
2
R−1(x, θb, φ)LḡV (2)

where

1
2
R−1(·) = c0 +

Lf̄V +
√

(Lf̄V )2 + (LḡV )4

(LḡV )2

+
ρ + χ

∑q
k=1θbk|Lw̄kV ||2bT Pe|

(LḡV )2(|2bT Pe|+ φ)

(3)

is a strictly positive definite function, θbk’s represent the
available bounds that capture the magnitude of uncer-
tainty for all time, c0, ρ, χ, and φ are tuning parameters
that can be adjusted to achieve the desired degree of un-
certainty attenuation, V = eT Pe is a scalar quadratic
Lyapunov function of the tracking error whose time-
derivative is rendered negative definite by the feedback
law of Equation 2 along the trajectories of the closed-
loop system, and LḡV is the standard Lie derivative no-
tation. Further details on the controller synthesis pro-
cedure and notation used can be found in (El-Farra and
Christofides, 2001a). In what follows, we outline some
of the key desirable features of the robust optimal con-
trollers proposed and their implications for the problem
of controlling constrained uncertain nonlinear processes.

1. The robust optimal controllers of Equation 2 possess
two desirable properties not present in other non-
linear controllers designed on the basis of feedback
linearization concepts. The first property is their
ability to recognize the presence of beneficial (sta-
bilizing) nonlinearities in the process and prevent
their unnecessary cancellation. As a result, these
controllers do not waste unnecessary control effort
to accomplish the desired closed-loop objectives. An
important implication of this property is the fact
that these controllers (though not designed to han-
dle constraints explicitly yet) are better equipped
to cope with the limitations imposed by input con-
straints on the available control action than other
controllers which may request unnecessarily large
control effort. The second property is the use of
domination, rather than cancellation, to eliminate
the effects of harmful (destabilizing) nonlinearities.
This property guards against the non-robustness of
nonlinear cancellation designs which increases the
risk of instability due to the presence of other un-
certainty not taken into account in the controller
design.

2. The use of Lyapunov’s direct method in the con-
troller design allows the synthesis of robust con-
trollers that can effectively attenuate the effect of
time-varying persistent uncertainty on the closed-
loop output which cannot be achieved using classi-
cal uncertainty compensation techniques, including
the incorporation of integral action and parameter
adaptation in the controller. For constant distur-
bances, the Lyapunov approach offers an alterna-
tive method for disturbance rejection that avoids
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the use of integral action which contributes to the
problem of windup in the presence of constraints.
Furthermore, robust stabilization is accomplished
regardless of how large the disturbances are so long
as bounds are available that capture their magni-
tude. For nonlinear controller design, in general,
Lyapunov methods provide useful and systematic
tools (see, e.g.,(Kazantzis and Kravaris, 1999)).

3. Using the inverse optimal control approach
(Freeman and Kokotovic, 1996; El-Farra and
Christofides, 2001a), one can rigorously prove that
the robust Lyapunov-based controller of Equation 2
is optimal with respect to a meaningful performance
index of the form:

J =
∫ ∞

0

(l(e) + uR(x)u)dt (4)

which imposes physically sensible penalties on both
the tracking error (l(e) is a smooth positive definite
nonlinear function bounded below by a quadratic
function of the norm of the tracking error) and the
control action. The inverse optimal approach pro-
vides a sound theoretical basis for explaining the
origin of the controllers’ optimality properties out-
lined in the first remark. Another major advantage
of using the inverse optimal approach in controller
design is the fact that it provides a convenient route
for the synthesis of robust controllers that are op-
timal with respect to meaningful cost functionals
without recourse to the unwieldy task of solving the
Hamilton-Jacobi-Isaacs partial differential equation
which is the optimality condition for the robust sta-
bilization problem for nonlinear systems.

Integrating Robustness, Optimality, and
Constraints

While optimality is certainly a desirable feature that ev-
ery well designed controller must possess to cope with the
limitations imposed by input constraints on the control
action, it might not always be sufficient to address the
problem in its entirety. For example, one can envision sit-
uations where the control objectives cannot be achieved
in the presence of constraints, irrespective of the partic-
ular choice of the control law. Therefore, for an optimal
control policy, such as the one presented in the previous
section, to effectively address the problem of constraints,
it is imperative that it also identifies, explicitly, the fea-
sible operating conditions under which stability of the
process can be guaranteed in the presence of constraints.
In this regard, we note that although the robust optimal
controllers of Equation 2 are equipped with the appropri-
ate tools to resolve the conflict between uncertainty and
constraints, they are not designed to address the second
issue of explicitly characterizing the limitations imposed
by input constraints on the feasible operating conditions

and cannot therefore be expected to enforce the same
closed-loop properties in the presence of arbitrary input
constraints.

To address this issue, we developed in (El-Farra
and Christofides, 2001a) a novel scaling procedure that
bounds the robust optimal controllers in Equation 2:

|u| ≤ umax (5)

where | · | is the Euclidean norm and umax represents the
available information on the actuator constraints. The
result of this bounding procedure was the direct synthe-
sis of nonlinear bounded robust optimal controllers that
are conceptually aligned with the robust optimal con-
trollers of Equation 2, but possess the additional capabil-
ities of: a) incorporating both uncertainty and actuator
constraints explicitly in the controller synthesis formula,
and b) characterizing explicitly the set of feasible initial
conditions starting from where the desired stability and
performance properties are guaranteed in the closed-loop
system under uncertainty and constraints. The result-
ing bounded robust optimal controllers have the general
form:

u = −1
2
R̄−1(x, umax, θb, φ)LḡV (6)

where

1
2
R̄−1(·) =

L∗
f̄
V +

√
(L∗

f̄
V )2 + (umaxLḡV )4

(LḡV )2[1 +
√

1 + (umaxLḡV )2]
(7)

is a strictly positive definite function of its arguments
and L∗

f̄
V = Lf̄V +

∑q
k=1θbk|Lw̄kV |+ρ|e|. For details on

the notation used, see (El-Farra and Christofides, 2001a).
We have shown in (El-Farra and Christofides, 2001a)
that whenever the following inequality is satisfied:

Lf̄V + ρ|e|+ χ

q∑
k=1

θbk|Lw̄kV | ≤ umax|LḡV | (8)

the bounded robust optimal controllers of Equation 6 en-
force the following properties in the constrained closed-
loop system, including: a) stability, b) robust asymptotic
output tracking with arbitrary degree of uncertainty at-
tenuation, and c) optimal performance with respect to
a meaningful performance index of the general form of
Equation 4 that imposes meaningful penalties on the
tracking error and control action. In what follows, we
outline some of the key features of the proposed bounded
robust optimal controller design method and discuss its
implications for the development of the desired unified
framework for control of constrained uncertain nonlinear
processes.

1. The inequality of Equation 8 describes explicitly
the largest region in state space where the time-
derivative of the Lyapunov function is guaranteed
to be negative definite along the trajectories of the
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closed-loop system, in the presence of uncertainty
and constraints. Therefore, guided by this inequal-
ity, one can explicitly identify the set of admissi-
ble initial states, starting from where the aforemen-
tioned closed-loop properties are guaranteed, and
ascertain a priori (before implementing the con-
troller) whether stability and robust set-point track-
ing can be guaranteed in the constrained closed-loop
system for a given initial condition. This aspect of
the proposed method has important practical impli-
cations for efficient process operation since it pro-
vides the plant operators with a systematic guide to
select feasible operating conditions. This is particu-
larly significant in the case of unstable plants (e.g.,
exothermic chemical reactors) where lack of such a
priori knowledge can lead to undesirable outcomes.

2. In addition to providing the desired characteriza-
tion of the region of guaranteed closed-loop stabil-
ity, the inequality of Equation 8 also depicts the
region where the control action satisfies the input
constraints. Within this region, no mismatch exists
between the controller output and the actual process
input.

3. The inequality of Equation 8 captures, in an intu-
itive way, the limitations imposed by uncertainty
and constraints on the size of the closed-loop sta-
bility region. To this end, note that Equation 8
predicts that the tighter the input constraints (i.e.,
smaller umax) and/or the larger the plant-model
mismatch (i.e., larger θbk), the fewer the initial con-
ditions that can be used for stabilization.

4. In light of the above remarks, it’s important to com-
pare the above control method with other methods
of nonlinear control for nonlinear processes with in-
put constraints. For example, in contrast to the
traditional two-step approaches employed in ana-
lytical process control, which involves first the de-
sign of a controller for the unconstrained process
and then accounts for input constraints through a
suitable anti-windup modification, the bounded ro-
bust optimal control method offers a direct approach
to the problem whereby the controllers of Equa-
tion 6 use directly the available information on ac-
tuator constraints (umax) and uncertainty (θb) to
compute the necessary control action; thus integrat-
ing robustness, optimality, and explicit-constraint
handling capabilities in a single design. Other di-
rect approaches for dealing with input constraints
include optimization-based methods such as model
predictive control. In these methods, however, the
feedback law is not given explicitly, but implicitly
through the optimization problem, which must be
solved at each time step. Furthermore, issues of
computational effort, robustness, and the a priori

characterization of the region of closed-loop stabil-
ity have yet to be addressed satisfactorily within
these approaches.

The proposed Lyapunov-based control approaches re-
viewed here were applied successfully in (El-Farra and
Christofides, 2001a) to benchmark examples including
nonisothermal chemical reactors with unstable dynam-
ics. Finally, we note that the problem of output feedback
was recently addressed in (El-Farra and Christofides,
2001b, 2000) through combination of the robust optimal
state feedback controllers with high gain observers. This
approach was shown to practically preserve both the op-
timality properties as well as the region of guaranteed
closed-loop stability obtained under state feedback.
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