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Abstract
The purpose of this paper is to describe the importance of the underlying relationship between control strategy design
and model predictive control. Successes and problems encountered when implementing model predictive control (MPC)
on chemical processes have revealed that understanding this relationship provides insight into the nature of the process
control problem. Model predictive control (MPC) has been used as an effective tool to gain the process control benefits
that come from its ability to handle constraints, process interactions, and multiple time frames. The use of the MPC
algorithm on a variety of chemical processes has led to insight on how to effectively use MPC along with traditional
control strategy notions to improve process control. The development of control strategies using MPC has resulted in the
typically reported benefits of increased throughput and reduced process variability. Several issues remain to be addressed.
These include controller tuning, complex performance criteria, depth of integration of MPC with the regulatory control
layer, redundant process information, and controller robustness to measurement loss or deterioration.
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Introduction

Process control strategy design has been the cornerstone
of successful application of process control technology for
many years. As new process control methods and algo-
rithms have been conceived and developed, their success-
ful application in the process industries has relied upon
the underlying insight into the nature of the process.
Certainly, if one chooses the right problem the success of
a particular technology is enhanced. One technology can
be shown to be superior to another simply by judicious
choice of application. The success of model predictive
control lies in its ability to cast process control strategy
choices into a manageable framework. The capability
to dynamically decouple process control loops, to handle
process constraints, and to minimize deviation from set
point are important but are more tactical in nature com-
pared to the control strategy changes that take place.

As a model predictive controller is exercised through-
out its allowable range, any number of control strate-
gies may be manifested. The ability to understand the
ramifications and consequences of each strategy or group
of strategies is key to the successful implementation of
model predictive control. In the past, we had a fixed con-
trol strategy. The process control designer was charged
with the design of a strategy that would perform the best
for as wide a range of circumstances as possible. Often if
it were known beforehand that a strategy could not han-
dle a particular set of conditions, those conditions were
avoided during operation or protected against on a case-
by-case basis. Given that the control strategy was fixed,
it was studied by subjecting it to the variety of distur-
bances and operating scenarios that were plausible. As
unexpected operating conditions and disturbances were
encountered, the plant operators acted as “test pilots”
having to manage the new operating regime as best they
could.

Model predictive controllers provide the capability to

change the fundamental control strategy while the pro-
cess is operating—in its simplest sense acting as a control
system override. The opportunity to exercise and explore
complex MPC control designs is limited by the factorial
number of possible strategies that can be in effect at a
given time. How each of these strategies will respond to
an array of disturbances and operating conditions must
be answered or addressed to avoid having “test pilots”
testing systems that look like black boxes.

The evolution of process control technology has ex-
panded the role for the process control engineer. The
notion of designing multiple, complex control strategies
that can change during the normal course of operation is
becoming more prevalent. Certainly high and low select
overrides have been around for many years. However,
the extent to which even mildly complex MPC appli-
cations result in unexpected control strategies is a new
realm. The purpose of this paper is to discuss how this
new focus is unfolding.

This paper starts with a perspective on the current
process control work environment in the chemical indus-
try. This perspective highlights what a process control
engineer is likely to face in today’s world. With this per-
spective as a backdrop, a linkage is developed between
the familiar territory of control strategy design and the
newer, possibly unfamiliar tool, model predictive con-
trol. This linkage demonstrates the need and value of
accumulated process knowledge and traditional process
control notions when faced with reaping the widely ac-
knowledged benefits of model predictive control. The
paper concludes with examples that highlight the vari-
ety of problems benefiting from our application of model
predictive control and that illustrate some of the imple-
mentation issues that we have encountered.
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The Process Control Landscape in the
Chemical Industry

New Plants

Normally for new plants the process control design is
determined as a fixed strategy that provides regulatory
control for the array of expected disturbances and opera-
tion regimes. The focus during this activity is maintain-
ing the plant operation at a nominal operating condition
from which operations can move to achieve product prop-
erties. New plants often contain new technology that in-
volves uncertainty of operation and of performance. All
that is needed of the control system is to maintain sta-
bility and to be understandable by personnel with a wide
range of experience and education levels. Forays into the
use of advanced control techniques on unfamiliar unit op-
erations or processes employing new process technology
have usually demonstrated that starting up with a sim-
ple, understandable control system is best. Once the
operating characteristics are more known then the oper-
ation can be optimized employing more advanced control
techniques.

The design of control strategies for new facilities war-
rants the need for control strategy design and analysis.
The formation of rugged, well thought out regulatory
control strategy designs that can withstand the variety
of disturbances and operating abnormalities encountered
during the first year of plant operation is a requirement
for future process control enhancements. Undoubtedly,
operating a process closer to optimum conditions and
determining where that is requires some semblance of
stable operation. There has been much written and pre-
sented to help integrate the process and the control strat-
egy design. Recent examples include Barolo and Pap-
ini (2000), Groenendijk et al. (2000), and Tseng et al.
(1999). These efforts are directed at the development
of process designs and regulatory control strategies that
achieve good regulatory control. This work is to be rec-
ognized for providing guidance where a few years ago
there was none. In a similar vein, Luyben (1998c; 1998a;
1998b; 2000) has published a series of articles to guide
control strategy development based on process situa-
tions. While the incorporation of advanced control tech-
nology into the process design phase is a notable goal,
current practice is to get new processes up and running
first and follow later with control system enhancements.

Existing Plants

Once a plant has been in operation long enough to find
and fix problems that preclude stable operation then the
initiation of process improvement activities is a natural
consequence. It is during this time that enough is learned
about the operation that advanced control techniques
can be successfully applied. During this time the linkage
among what is needed, what is feasible, and the appro-
priate technology to apply is most important. Among

the many improvement opportunities and the flood of
available technologies, it is necessary for the process con-
trol engineer to discriminate between process equipment
problems and control strategy problems. Often process
improvements that come from process control changes
are of the control strategy variety rather than control al-
gorithm changes. From our viewpoint, MPC is regarded
as a “control strategy change agent” instead of an algo-
rithm for improved high performance control. Indeed,
it is capable of both. The effort needed to develop and
maintain models accurate enough for high performance
control, however, often outweighs the marginal benefits.
The need to change control strategies for differing modes
of operation has been more persistent.

The process knowledge available for existing plants
provides insight into the true objective that needs to be
achieved by the control system. While cursory overviews
of plant operation may yield process control objectives
that appear reasonable, often a deeper process insight is
needed to arrive at the desired process objectives. This
deeper process insight comes from understanding process
chemistry, unit operation objectives, business objectives,
and process flow structures.

Control Objectives

The definition of process control objectives often involves
an evolutionary path. Often an initial statement of what
the control system should do is oriented around what the
current control system cannot do. “If only we could con-
trol the temperature, we would be happy with our opera-
tion” leads to “The temperature control we have is great,
but what we really need is to control the composition
of . . . ”. This in turn may lead to other objectives that
may change once the successive performance plateaus are
reached. As process control systems hold key variables
within narrower and narrower limits, the costs in terms
of increased variation in other non-key variables becomes
apparent and control objectives change. Furthermore,
tighter control allows process engineers to see process
improvement opportunities that are otherwise hidden.

When product requirements change, control objectives
may need to be altered. These changes may involve a
simple change such as altering controller weighting pa-
rameters or require an entire control system structure
change. Labor, retraining, and opportunity costs to
maintain and improve advanced control systems when
process objectives change are compared with the eco-
nomic benefits. This situation results in large, single
product, unchanging plants to be obvious candidates for
advanced control applications. This type of application
is common and has been reported often in the literature.
On the other hand, for plants that are smaller, multiple
product, or undergo occasional change there is a need to
be able to reap the benefits available from advanced con-
trol without prohibitive costs. An MPC structure that
can represent various control strategies can be a very
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effective tool.
In this more fluid application environment, we are not

driving for a lower IAE, ITAE, etc. as much as we are ad-
dressing opportunities to conveniently drive processes to
the optimum steady state when constraints are encoun-
tered. In many of our applications it is the steady state
targeting feature of model predictive control that is the
important piece. Control objectives that we encounter
are much more focused on where the process will line out
under various conditions rather than on how a process
will dynamically respond.

The Academic/Vendor/Industry Relationship

The implementation of process control technology, and in
particular model predictive control, requires process con-
trol skills that may not be taught in the normal under-
graduate curriculum. Certainly skills arising from formal
training in this area may not be recent or deep enough to
warrant a personal embarkation into an advanced con-
trol project. The role of the corporate process control
group in the chemical industry is pivotal in channeling
the technology to the appropriate applications and en-
suring their success. Without such a group, the linkage is
weak between those with the problems and those possess-
ing the solutions. A central group can provide the stan-
dardization and stewardship needed for company wide
application.

The process control vendor has historically provided
the control toolkit needed to apply process control tech-
nology along with training and personnel to use their
products. The current climate of specialization of ser-
vice providers as modeled in the communications indus-
tries is becoming popular in the chemical industry as
well. Vendors are moving from providing a product to
providing a service. Academic institutions on the other
hand provide trained personnel and technology ideas but
no industrially hardened products. The process control
toolkits on the market today have a variety of technolo-
gies that hopefully weave together to make their use easy.
The relationship between vendors and academicians is
becoming stronger. This is driven by a viewpoint that
few companies have the wherewithal to incorporate new
theoretical advancements into their day-to-day business.
Process control vendors are becoming a more important
avenue through which theoretical advancements make
their way to industrial practice.

Companies are in transition to meet relentless market
pressures on shorter and shorter time horizons and the
lure of marketing suggestions that promise short pay-
back times while requiring little long term corporate in-
vestment are strong. The choice of appropriate control
technology requires an unbiased viewpoint. Often times
the solution of a control problem can be accomplished
via many technology avenues. If a vendor is selling ham-
mers then the vendor sees most problems looking like
nails. The implementation of advanced control is only

warranted where simpler control techniques are inade-
quate. Corporate process control groups should have
the knowledge to make choices among competing tech-
nologies based on life cycle costs and other intangible
factors. Vendors while economically driven should nev-
ertheless provide a similar unbiased approach to problem
solution.

The identification of appropriate candidates for ad-
vanced control usually requires proprietary knowledge
of process economics, process weaknesses, process chem-
istry, and even corporate politics. Relying upon opera-
tion personnel to identify candidates in the midst of reg-
ulatory, labor, and production demands is difficult for
reasonably steady operations and nearly impossible for
constantly changing production environments. Indeed,
a process control specialist with knowledge of corporate
objectives and a process viewpoint of the larger picture
has a much better chance of identifying the best projects.
Once projects are selected, the process knowledge needed
to reach solutions is normally located within operations.
Often that knowledge is shared with the in-house process
control specialist because of past experiences, built up
trust relationships, or personal relationships. The criti-
cality of process knowledge cannot be overstated (Downs
and Doss, 1991). How much process knowledge can be
shared with non-company personnel, secrecy agreements
notwithstanding, is always a subject of debate. Process
discoveries during implementation, accumulated process
operational savvy, and application tricks are all subject
to loss after the project is complete. In addition, process
control revelations arising from implementation become
leveragable knowledge for the control vendor. Undeni-
ably, early customers are in the role of guinea pig until
adequate enhancements harden advanced control prod-
ucts.

One of the most important factors in the success of
process control projects is the long-term maintenance of
the finished product. Valves change, transmitter ranges
change, processes change. There is an inevitable march
toward a process that sooner or later does not match the
process control system. For large volume plants with
only a few products the process control system may re-
main valid for several years. However, as the variety
of projects increases, the applications require more sup-
port. Local personnel can change simple items, however,
software upgrades, process changes, and even retuning
will probably require specialized support. This support
can be provided by service contracts or by in-house spe-
cialist.

In this environment, Eastman has thus far benefited
from having a corporate group to manage this activity.
The Eastman process control group has maintained the
strength to objectively evaluate the cost/benefit tradeoff
in the spectrum ranging from an entirely in-house pro-
cess control program to one that is entirely contracted to
a service provider. Our current approach is to purchase
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those products and technology that provide value and
are generally one-time in cost. Those products that en-
tail on-going costs for each use or application have been
used sparingly due to their continual drain on process
control profitability. Each company trades off between
the expense of maintaining in-house talent and purchas-
ing that talent through vendors. However, recent in-
formal survey data indicates that the need for in-house
process control expertise remains strong (Downs, 2000).

We believe that there is a strong case for academia
to continue to provide people knowledgeable in process
control not only for service vendors but also for corpo-
rate in-house needs. The propagation of process control
technology from the academic realm to the industrial
shop floor requires both vendor and user comprehension.
Movement toward a strictly “vendor/supplier sells con-
trol system hardware/solutions/knowledge to corporate
consumer” may appeal to the compartmentally minded.
However, once the corporate user becomes ignorant in
the technology, the synergy between process design, con-
trol, and operation is lost. The lack of process control
talent in any of academic research, process control ven-
dor, or corporate consumer is a weakness and handicap
for all concerned.

Instantiation of Supervisory Control Systems

Underlying the application of advanced technology is the
computational platform and distributed control system
in place. Decisions of complexity and distributive relia-
bility are important factors in the definition of scope for
advanced control applications. As advanced control algo-
rithms become available on regulatory level distributed
control systems, the process control engineer is faced not
only with a technology decision but also with a choice
of vendor instantiation of advanced control technology.
While algorithm fundamentals are published and well
known, it is often the subtle modifications of published
technology that make the technology actually work in
practice. Each vendor claiming that their implementa-
tion is superior to their competitors can create a con-
fusing climate that clouds the more important issues of
control system objectives.

While it may seem that the development of process
control technology is a mature area, the application of
the technology available is quite young. The field is much
bigger than the $3M project to apply MPC on the next
mega-sized olefins plant. It is much bigger than the ap-
plication on the “off-the-shelf” polymers facility. Mining
the industry for valuable applications that may not be of
the high throughput/low margin genre is widespread for
exploitation. However, to do this effectively the appli-
cation costs must be low. Eastman has written its own
MPC code to enable “free” replication of MPC technol-
ogy in addition to the learning of the technology that
comes with such an endeavor. We have applied the in-
finite horizon model predictive control algorithm as de-

scribed by Muske and Rawlings (1993). The IHMPC
algorithm is based on a state space description of the
process. A Kalman filter is used as a plant observer to
reconstruct plant states, a quadratic program formula-
tion is used to determine steady state process targets,
and an infinite horizon linear quadratic regulator prob-
lem is solved to determine process inputs. Additional im-
plementation details are described in Downs and Vogel
(2001). Certainly, as Qin and Badgwell (1997) point out,
there are numerous implementations of model predictive
control algorithms. With as much research and devel-
opment effort that model predictive control has com-
manded it would be a shame if questions such as which
implementation of MPC to use, implementation costs,
etc. inhibited the harvesting of the fruit this technology
offers.

Our experience suggests that there are numerous good
applications that require MPC to be integrated with
other process control technologies. This integration de-
mands an understanding of our chemical processes, their
regulatory control strategies, the array of process control
technologies available, and how to apply various tech-
nologies effectively. The variety of process control needs,
process control technology, and the underlying hardware
available have led to an increased need for broad based,
knowledgeable process control talent.

Motivating Example—A Low Selector

The linkage between control strategy design and model
predictive control has provided insight into the problem
formulation and design of advanced control systems. The
examples in this paper are intended to highlight the vari-
ety of application needs, MPC control structure, and the
control strategy viewpoint. A motivating example cen-
tered on a distillation column control problem demon-
strates the relationship between control strategy design
and MPC design. Each example illustrates the impor-
tance of control strategy concepts when developing good
MPC problem statements.

The concept of controlling unit operations within pro-
cess constraints has been around for many years. The use
of high and low selectors to prevent an operation from
violating constraints can be viewed as a control strategy
change agent. Consider the column illustrated in Fig-
ure 1. One control objective is to manipulate steam flow
rate to control the underflow composition. If the column
feed rate becomes large enough then the steam rate may
increase to the point of flooding the column. A low select
can be used to choose the lower of two desired steam flow
set points, that requested by the column delta pressure
controller or that requested by the underflow composi-
tion controller.

The low selector changes the column control strategy
from an underflow composition to steam strategy to a
column delta pressure to steam strategy. In the former,
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Figure 1: Distillation column with low selector on
heat input.

the column loading will change in an attempt to main-
tain a relatively constant underflow composition. In the
latter, the underflow composition will vary and yield to
maintaining the column loading at a maximum value.

The steady state that this column will approach is ap-
parent in this simple example, as are the two control
loops that can be invoked. The two control loops, com-
position to steam and delta pressure to steam, will have
different dynamics and may need to be tuned differently.
Other control blocks can be added to make the transition
from one strategy to another a smooth one. Current dis-
tributed control systems usually handle initialization of
the non-selected controller. The influence of other con-
trol loops such as the temperature to reflux rate loop
could also be incorporated. Other variables that depend
on the steam rate and that need to be maintained within
constraints could be added to the low selector. For ex-
ample, the distillate flow rate may feed a downstream
operation that has a maximum feed rate limit. If the
column control demands a distillate rate that exceeds
this limit, we may instead want to give up on the under-
flow composition to maintain temperature control. The
list of possible constraint additions obviously could go
on. As plant designs become more integrated this type
of constraint escalation becomes more prevalent.

For the case of one manipulated variable, each con-
straint represents a different control strategy. However,
if there is more than one manipulated variable then the
number of possible control strategies is much larger. The

understanding of what control strategy might be instan-
tiated at any given time is an integral part of the design
of the high and low selectors. Each possible pairing can
be examined and verified for practical sense. If the num-
ber of possible strategies becomes too large to be reason-
ably evaluated, the high/low selectors are reconsidered
and alternatives to achieve the control objective are de-
veloped. There is a self-regulating nature to the control
design process—if the strategy becomes too complex to
understand all that might happen, then simplifications
are made.

Contrast the high/low selector design process to the
model predictive control application mentality of today.
It is so easy to add input or output constraints that a
complete analysis of the resulting controller can become
practically impossible. The unusual controller pairings
that may result can be quite unexpected. Viewing model
predictive control as a control strategy change agent can
lead to insight into what the controller might end up con-
trolling with what. This insight can provide guidance in
what dynamic relationships are important in controller
performance and robustness. Furthermore, do the op-
eration regimes where the controller may end up make
sense—even if they are stable? At Eastman we spend
considerable time on determining why an undesirable
outcome has occurred only to find out that the controller
has done exactly what we programmed it to do. It has
become evident to us that viewing MPC in light of con-
trol strategy design has made our MPC design job much
easier and more intuitive.

Multivariable Control Applied to a Distil-
lation Column

Problem Statement

Using high and low selectors for constraint control when
more than one manipulated variable is involved quickly
leads to application of MPC to more easily manage pro-
cess constraints. When viewed as a control strategy
change agent it is realized that the number of different
control strategies that can be active at any one time is
large. Each of these strategies can be evaluated based on
numerous tools that have been developed over the years
such as RGA, Niederlinski Index, SVD, etc. (Bristol,
1966; McAvoy, 1983). The issues of control loop inter-
action, degeneracy of degrees of freedom, and sensitivity
to model error that control strategy analysis tools ad-
dress can be applied to understand underlying problems
in MPC applications.

Our approach in using MPC is one of understanding
the control strategy that we want to invoke and how we
want that strategy to change under different operating
scenarios and then using MPC to accomplish this. As a
result our MPC applications are studied more from the
steady state viewpoint than a dynamic one. Certainly
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Figure 2: Distillation column.

we have cases where the dynamic advantages of MPC
are exploited, but we have found that the steady state
features are of most benefit.

Another important design consideration for supervi-
sory control that employs model predictive controllers is
the controller architecture. At one end of the spectrum
is the flat architecture that has all the measurements
and manipulated variables in one MPC controller. This
structure takes on the appearance of a “black box” and
it is sometimes difficult to diagnose underlying controller
problems. At the other end of the spectrum is a ver-
tical architecture that resembles a multi-layer cascade
structure. This structure has the advantage of building
control strategies using conventional process control no-
tions and of segregating unrelated parts of the controller.
Using the vertical structure, however, requires that the
issues of controller initialization, constraint passing be-
tween layers, and controller speeds of response be man-
aged.

To illustrate some of these issues consider the distil-
lation column illustrated in Figure 2. We assume that
process analysis has been completed to determine that
the following process objectives are to be achieved:

1. Maintain tray temperature in the rectifying section
at set point

2. Maintain underflow composition at set point

3. Maintain feed rate at set point

4. Maintain column pressure drop less than a given
maximum
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Figure 3: Distillation column hybrid control strategy.

5. Maintain the column distillate rate less than a given
maximum

6. Minimize energy usage

We have reflux rate, heat input rate, feed rate and
cooling rate available to manipulate. Of course, even
getting to this step required a decision to control reflux
drum level with distillate rate and reboiler level with
underflow rate. These controllers could also be added
to the control strategy development problem but will be
assumed as given here. Developing a control strategy
to achieve these objectives is incomplete until we know
what set points to give up on if the column becomes
constrained—a ranking of importance is also required.
For this example we will assume that the temperature
in the rectifying section is the most important followed
by column feed rate followed by underflow composition,
which is the least important.

Case 1—A Hybrid Strategy

Consider first a hybrid strategy that employs an under-
lying SISO strategy that is illustrated in Figure 3. This
may be a strategy that has been successfully used for
many years and is effective in maintaining the rectifying
temperature at its set point. Our job is simply to achieve
the stated objectives by overlaying an “advanced con-
trol system” above the regulatory SISO strategy. This is
common when the regulatory strategy is sound and pro-
vides stabilizing control during periods of process upsets,
start-ups, etc.

A steady state process gain matrix for the resulting
variables is
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Heat
Input

Feed
Rate

Underflow Composition -1 0.5
Feed Rate 0 1
Distillate Rate 0.01 0.5
Pressure Drop 1 0

During normal operation with no constraint active an
MPC controller will line out with the underflow compo-
sition and feed rate at set point and the distillate rate
and pressure drop within limits. The control strategy
active at this time has the steady state gain matrix,

Heat
Input

Feed
Rate

Underflow Composition -1 0.5
Feed Rate 0 1

Clearly we can see that the resulting MPC controller
will look a lot like underflow composition to heat input
and feed rate set constant with a feed forward term be-
tween feed rate and heat input. Interaction measures
would say that this strategy should work fine—in fact,
the relative gain for each loop is equal to one.

Consider how operations change if the pressure drop
constraint becomes active. If we are to give up on un-
derflow composition first and maintain feed rate then we
end up with a gain matrix,

Heat
Input

Feed
Rate

Feed Rate 0 1
Pressure Drop 1 0

which again indicates that MPC will work well. How-
ever, if it is desired to give up instead on feed rate and
maintain underflow composition then the gain matrix is

Heat
Input

Feed
Rate

Underflow Composition -1 0.5
Pressure Drop 1 0

and we will have a more difficult control problem. In fact
the model relating underflow composition to feed rate at
constant heat input becomes more important because
it is the only link that the feed rate has into the con-
trol strategy. During normal operation this model only
influences the feedforward relationship between heat in-
put and feed rate whereas in this constrained case it is
the primary relationship for underflow composition con-
trol. This difference in control problem characteristics
resulted from a change in the steady state weighting of
the controlled variable importance. Certainly, this is an
innocent change that has important ramifications on the
resulting control problem.

Next consider the case where the distillate rate is con-
strained and again where we are to give up on underflow
composition and maintain feed rate. This scenario yields
the following gain matrix

Heat
Input

Feed
Rate

Feed Rate 0 1
Distillate Rate 0.01 0.5

which is almost degenerate. Large steady state heat in-
put changes are needed to have any effect on the distillate
rate. Certainly for this simple example, process insight
might key us into the fact that the distillate rate and
the feed rate are so closely tied together that this re-
quirement is unreasonable. However, this case was quite
reasonable when it was the column pressure drop that
was the constraint instead of the column distillate rate.
This behavior points to the fact that steady state weight-
ing preferences may easily lead to difficult dynamic con-
trol problems that have poor characteristics regarding
interaction or robustness.

Finally consider the case where both constraints are
active. The gain matrix again becomes docile and well
behaved.

Heat
Input

Feed
Rate

Distillate Rate 0.01 0.5
Pressure Drop 1 0

The heat input maximizes the column pressure drop
to keep the underflow composition as close to target as
possible and the feed rate is reduced to keep the column
distillate rate within its limits. If we knew these con-
straints were always going to be active, this may even be
a strategy we would design.

Each constraint scenario yields a different control
strategy; some of these strategies are well behaved and
some are clearly not strategies that we would want to de-
ploy. The transition between different strategies is seam-
less and it may appear that if you can describe the con-
trol objective in terms of an MPC structure your prob-
lems are over—simply configure, tune, and start counting
the savings. However, this is not the case and for MPC
controllers that have these time bombs buried within
them, it usually happens that the poor, unforeseen strat-
egy gets invoked late at night or on holiday weekends.

Case 2—A Less Hybrid Strategy

If the temperature in the rectifying section of the column
is in fact less important than the feed rate or underflow
composition, then it is advantageous to move that con-
trol loop from the regulatory level to the supervisory
level. This allows the importance of holding the tem-
perature at set point to be given a lower weight in the
steady state target calculation. As long as the tempera-
ture is controlled at the regulatory layer, the reflux will
change in an attempt to get the temperature to target
even though this may have a low priority. Consider a dif-
ferent hybrid strategy that employs an underlying SISO
structure that is only used to handle level control loops.
In this case the rectifying temperature and reflux rate are
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Figure 4: Distillation column hybrid control strategy
with reflux rate in supervisory control layer.

in the supervisory layer. A candidate strategy is illus-
trated in Figure 4. There is advantage to leaving inven-
tory loops at a PID level because it keeps the supervisory
controller dealing only with self regulating loops and can
help avoid reliability issues around advanced control sys-
tems. Our job is simply to achieve the stated objectives
by overlaying an “advanced control system” above the
regulatory control strategy. It is noted, however, that
once the underlying inventory control strategy is chosen,
many options for the overall control are eliminated.

A steady state process gain matrix for the resulting
variables is given by

Heat
Input

Feed
Rate

Reflux
Rate

Underflow Composition -2 0.3 1
Feed Rate 0 1 0
Temperature 1 0.1 -0.8
Distillate Rate 2 0 -1
Pressure Drop 1 0 0.1

When no constraints are active, controlling the under-
flow composition, feed rate, and temperature using the
heat input set point, feed rate set point, and the reflux
rate set point leads to a well-behaved process gain ma-
trix. MPC in this case simply provides mild decoupling
of the implied SISO loops. The RGA for this case is

Heat
Input

Feed
Rate

Reflux
Rate

Underflow Composition 2.66 0 -1.66
Feed Rate 0 1 0
Temperature -1.66 0 2.66

and using it to pair loops one can envision an SISO strat-
egy as shown in Figure 5.
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Figure 5: Distillation column control strategy during
unconstrained operation.

When constraints become active, the implied control
strategy changes and the resulting implied strategy is
dependent on the importance placed on the variables
having set points, that is, which controlled variables are
allowed to deviate from their set point. Using a linear
program (LP) for the determination of steady state op-
eration results in answers that lie at a vertex and an im-
plied control strategy that has controlled variables that
do not line out at set point entering the problem in a
sequential manner as constraints become active. Using a
quadratic program (QP) for the determination of steady
state operation results in answers that can look blended.
For example, two controlled variables can be allowed to
deviate from set point equally and can enter the prob-
lem in a parallel manner. There has been recent work to
explore the steady state target problem formulation and
calculation (Kassmann et al., 2000).

Consider the case where the column pressure drop con-
straint becomes active and the column rectifying tem-
perature is to be allowed to deviate from set point. The
resulting controller gain matrix is

Heat
Input

Feed
Rate

Reflux
Rate

Underflow Composition -2 0.3 1
Feed Rate 0 1 0
Pressure Drop 1 0 0.1

An RGA calculation of this matrix is given by
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Figure 6: Distillation column control strategy when
delta pressure becomes constrained

Heat
Input

Feed
Rate

Reflux
Rate

Underflow Composition 1/6 0 5/6
Feed Rate 0 1 0
Pressure Drop 5/6 0 1/6

and suggests a control strategy as shown in Figure 6.
From the gain matrix we can see that this pairing is a
pretty obvious one if the variables we are required to con-
trol are the ones shown. However, presented with this
control design problem from an SISO point of view, we
would probably be looking for alternatives—controlling
the underflow composition with the reflux just doesn’t
look too promising. If we expect this case to occur then
we would probably want to spend additional effort de-
termining the relationship between reflux and underflow
composition when the feed and pressure drop are con-
stant. This is, of course, different than the relationship
determined during open loop testing when the feed and
heat input are constant. The understanding of what con-
trol strategies can look like under different constraint
scenarios leads to insight into why an MPC controller
might fail or perform poorly.

Finally, the question of including the reflux drum level,
column reboiler level, and column pressure in the super-
visory control layer must also be addressed. Including
the level measurements and their control in MPC leads
to handling a mix of self-regulating and integrating vari-
ables. It is not clear to us which predictive control tech-
nologies on the market are equipped to handle this case.

Depending on the column reflux ratio, which may change
during the course of operation, the level control strategy
may be best left alone and on the regulatory layer or it
may be paramount that it to be given over to the super-
visory controller.

Incorporating the column pressure control into the su-
pervisory layer may at first seem unwise. However, the
ability to change the operating pressure of the column
can lead to increased energy efficiency provided it can
be done in a coordinated way with the other column
controls. That, of course, is exactly what MPC does.

Process Applications

This paper contains examples of the variety of applica-
tions benefiting from our use of model predictive control.
Our successful record of gaining benefit from this tech-
nology has relied upon several basic tenets. First, our
ability to develop good regulatory control strategies has
provided a solid foundation on which to build higher-
level supervisory control systems. The benefit and re-
sults from this step sometimes indicate that this is all
that needs to be done. Second, the identification of good
advanced control candidates has required an understand-
ing of the process economics to screen for high value ap-
plications. Third, the costs of solution development and
implementation has been kept low and not hindered the
“leap of faith” often required of operations. Fourth, a
building block approach to reaching intermediate pro-
cess control milestones has led to increasing complexity
and value that could not be envisioned at the start of
projects. Fifth, the integration of process improvement
functions already in place (e.g. design of experiments,
equipment design, process chemistry experiments) has
led to control objectives that were unknown at project
initiation. Finally, maintenance of our applications has
led to new opportunities and relationships that have in
turn grown this aspect of our work.

Reactor Product Crystallization Train

Illustrated in Figure 7 is a common situation where the
control strategy needs to change during operation. Con-
sider the problem of controlling the four crystallizer lev-
els and a total throughput rate using the five manipu-
lated variables shown. A common SISO strategy, Fig-
ure 8, would be to set the throughput rate using the re-
actor feed and then have a level to outflow pairing for the
four crystallizers. This strategy has two problems. First
the process variation will be propagated downstream and
the fourth and perhaps the most important crystallizer
will be the one getting the most variability in its feed
flow rate. Second, if the process bottleneck is somewhere
other than the reactor, then the throughput rate needs
to be lowered enough to insure that the valve or crystal-
lizer that is the bottleneck does not exceed its capability
when throughput rates cycle through a maximum.
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Figure 7: Reactor followed by crystallization train.
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Figure 8: Original control strategy for reactor fol-
lowed by crystallization train.
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Figure 9: Level control strategy for reactor followed
by crystallization train when downstream valve be-
comes constrained.

A model predictive controller has the ability to change
the level control strategy as needed via the constraint
handling. If the feed to the fourth crystallizer is the pro-
cess constraint then the level control strategy becomes
that shown in Figure 9. Of course this constraint, which
may be more complicated than a simple valve limit, can
move to different locations and a model predictive con-
troller can accommodate this. Another advantage of a
model predictive controller in this application is that it
can be tuned to distribute the variability to the units
that are least upset by flow variations. The level control
variability in this example can be directed more toward
the first and second crystallizers and away from the later
ones.

There are implementation considerations needed to
maintain operation when more than one manipulated
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Figure 10: Parallel distillation column loading.

variable becomes constrained or gets put into manual.
Procedures are needed to control the process to some
extent when no steady state solution to the model equa-
tions exists. This example is one of many where man-
agement of process inventories is important. These in-
ventory control problems can span a single process like
this example or cover large networks of in-process tank-
age. The ability to handle integrating variables and to
distribute level and flow variability is important in this
category of problems. Benefits of reduced flow variability
often translate into increased production rates. The abil-
ity to handle unit operation feed constraints that move
from unit to unit based on processing conditions is also
an important benefit arising form this type of problem.

Parallel Distillation Column Loader

Illustrated in Figure 10 is a common situation where sev-
eral parallel unit operations need to be used in an effi-
cient manner. In this example there are three isomer
separation distillation columns that process a reactor ef-
fluent. The control objective is to maintain the total
feed to the system at a specified target and to load the
columns in an efficient manner. Each column has an
effective SISO control strategy that controls end com-
positions by manipulating distillate rate and heat input.
Manipulating cooling duty controls the operating pres-
sure of each column. The feed rate capacity as measured
by column differential pressure and the separation effi-
ciency are a function of the column operating pressure.

The control objective can be met by manipulating the
feed rate to each column and the operating pressure of
each column. Certainly other choices can be made. In
particular, the depth to which the individual column reg-
ulatory control strategy is included in the model predic-
tive controller is an important decision. The column reg-
ulatory controls will have to respond when the column
operating pressure is changed. If this is expected to be
a slow change the supervisory system may simply layer
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Figure 11: Process gas absorber/regenerator systems.

on top of the existing regulatory control. However, if the
total feed rate and hence the pressure are expected to be
changed more quickly, then the composition loops may
need to be incorporated into the supervisory layer. If the
economics strongly suggest that operation at minimum
pressure is required, then the notion of running each col-
umn at its maximum pressure differential and manipu-
lating the column pressures to control feed rates is not
too far away. Unusual strategies like this one require
process understanding to uncover pitfalls and unusual
unit operation behavior that may make such a sugges-
tion laughable.

This type of process loading to parallel unit operations
is common. Usually the parallel operations have differ-
ing efficiencies that can be determined to minimize the
processing costs. Often the operating efficiencies of the
units are a function of how loaded the unit is. The ef-
ficiency often goes through a maximum indicating more
efficient operation at higher loads up to a point after
which efficiency drops off, usually very quickly.

Flue Gas CO2 Absorber Control

A similar but different situation is illustrated in Fig-
ure 11 where three CO2 absorber systems recover CO2

from three different furnaces. There is a varying de-
mand for recovered CO2. The control objective is to
recover the demand amount of CO2 at the minimum
costs. Each system has a different recovery efficiency
and also has varying amounts of CO2 that are available
for recovery. Each recovery system has its own process
constraints that must be honored.

A model predictive controller can be employed to man-
age the system. There are at least two major model

predictive control strategies that are suggested. One is
a flat, horizontal architecture and the other is a verti-
cal architecture. The horizontal architecture has all the
manipulated variables for each recovery system in the
same MPC. This has the advantage of making all the
information available in one MPC. As constraints be-
come active in one system this information is part of the
MPC calculations for the other systems. The downside
is that changes in one system directly influence the other
systems when local handling of disturbances might be a
better alternative. In addition, there is always the pos-
sibility of a system being down or off-line requiring it to
be removed from the controller.

Process control strategy notions suggest measure-
ments that naturally reject some common process distur-
bances. For example, controlling percent CO2 recovery,
Figure 12, for a system may reject most of the feed rate
disturbances that a local system may experience without
propagating them to the other systems. Similarly, en-
ergy efficiency may also be normalized by feed rate. The
characteristics and patterns of the CO2 users can also
be incorporated into the design of measurements that
reject common disturbances. Process knowledge that ab-
sorber/regenerator systems of this type are suitable for
ratio-oriented strategies can unload the supervisory con-
trol system to perform primarily the optimization work
that it can do best.

Energy Recovery Pressure Controller

Illustrated in Figure 13 is a process environmental con-
trol/energy recovery situation where the control strategy
needs to change during operation. In this example a pro-
cess effluent gas stream contains components that need
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Figure 12: Individual process gas absorber/regenerator system.
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Figure 13: Process effluent catalytic oxidation process.
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Figure 14: Plant wide water balance control.

Refining
System

#1
Feed

Refining
System

#2
Feed

Process
Production

Rate

Process
Water
Feed

(measured

disturbance)

Composition -1 -2 1 1
Temperature in Refining System #1 -2 0 -0.2 -0.1
Steam Flow in Refining System #2 0 1 0 0
Composition in Refining System #2 0 0.2 0 0
Recycle from Refining System #2 0 0.5 0 0

Table 1: Steady state process gain matrix for plant wide water balance control.

to be catalytically oxidized. The effluent gas comes from
the top of a distillation column whose condenser can con-
dense and remove some of the effluent as liquid products.
The uncondensed gas is routed to a gas expander used to
recover energy from this high pressure stream before it is
sent to the catalytic oxidizer. The gas expander cools the
gas. There is natural gas fuel that inexpensively preheats
the gas to temperatures needed for catalytic oxidation to
occur. There are maximum and minimum inlet and out-
let temperatures that must be honored to insure proper
component destruction.

The process gain matrix is given by

Column
Distillate

Rate
Fuel
Rate

Expander
Feed
Valve

Expander
Bypass
Valve

Pressure -2 0 -1 -1
Inlet Temp. 0.5 2 -1 0
Exit Temp. 0.5 2 -1 0

This example incorporates the fast process dynamics
associated with pressure control of gas systems. The in-
corporation of pressure control overrides for safety sys-
tems and the combustion control system used for the fuel
can complicate the design of the advanced control strat-
egy. The use of the advanced control system is to layer

on top of the existing safety and burner control systems
and not compromise their operation. In fact, these safety
systems may operate on process control hardware that
is distinct and loosely linked to the platform used for
supervisory control. These issues may dictate the incor-
poration of information indicating how such systems are
interacting with the supervisory control, if at all. Under-
standing the process control hardware, the process oper-
ational requirements, and the safety and environmental
consequences are as much a part of the control system
design as the control technology.

Plant Wide Water Balance Control

Illustrated in Figure 14 is a plant wide control situation
where an overall control strategy needs to change during
operation. In this example a plant contains a component
that travels throughout the process. The component in
this case is water and it is in a plant feed, is produced
by reaction and is removed via two distillation systems.
Refining system #1 is a simple distillation column and
refining system #2 is a combination of columns. The
cost of removal is different for each system and each sys-
tem has process constraints that must be honored. An
important control issue in this case is what measurement
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or combination of measurements indicates the status of
the water balance. The measurement used in this case is
an on-line analyzer on a key stream within the process.

The objective of a model predictive controller is to
maintain the water in balance by manipulating the feed
rates to the two refining systems and, if needed, the over-
all plant production rate. The steady state process gain
matrix is shown in Table 1.

The complications that arise in this example are: (1)
the process time frames are widely diverse, (2) the pro-
cess economics suggest a preferred use of the manipu-
lated variables, and (3) the best approach to identify
the status of the plant water composition may be un-
clear. These issues can be addressed using a layered,
vertical hierarchy or a flat, “all-in-one” strategy. How
one chooses to design the structure depends on not only
understanding the process control ramifications of each
design but also the appropriateness and timing of mak-
ing changes in one part of the plant in response to upsets
in another part of the process.

The ability to add additional process constraints as
they are discovered integrates a longer term support role
for applications of this type. While the initial installa-
tion may incorporate only the constraints listed in the
process gain matrix, good process improvement work
will probably eliminate them and identify new unfore-
seen constraints. This in turn will require the identifi-
cation of new models and support for this application.
For many of our applications process improvement work
thrives when process constraints are clearly identified
and operated against. This creates an environment of
process development whose costs and benefits can clearly
be identified and realized.

Conclusion

The application of process control and, in particular,
model predictive control remains an active and profitable
area for the chemical industry. Considerable progress
has been made to provide a theoretical foundation for
model predictive control and to move it into the main-
stream of application. As this technology becomes more
widespread the implementation issues encountered ev-
ery day will begin to be addressed and this technology
will mature into a powerful tool with routine applica-
tion. In the meantime there remains much to develop
to reach this destination. As demonstrated in the pro-
cess examples, there are numerous application issues that
complicate the use of MPC. These issues include con-
troller tuning, characterizing complex performance crite-
ria, using redundant process information, and controller
robustness. The solution to these issues requires identi-
fication of the problem, short term and possibly ad-hoc
fixes, and research to address the problem in more fun-
damental ways. The need for process control talent for
academic research, process control vendors, and corpo-

rate consumers alike remains strong. Each group brings
a unique and indispensable viewpoint to the effective ap-
plication of process control.

Incorporating the process control strategy viewpoint
into advanced control design has provided Eastman with
a very high success rate when applying advanced con-
trol technology. The understanding and incorporation
of process knowledge continues to be invaluable in the
successful application of new control techniques. The
advent and routine use of model predictive control has
not supplanted the need nor the value of process under-
standing in the successful application of process control
technology. On the contrary, model predictive control
has amplified the need for process and control strategy
analysis and understanding.
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