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Abstract
Continuous bioreactors are critical unit operations in a wide variety of biotechnological processes. While they can be
viewed as chemical reactors, bioreactors offer unique modeling and control challenges due to the complexity of the un-
derlying biochemical reactions and the distributed properties of the cell population. The dynamic behavior of continuous
bioreactors can be strongly affected by variations between individual cells that are captured only with cell population
models. The objective of this paper is to outline recent progress in dynamic analysis and feedback control of continuous
bioreactors described by cell population models. The industrially important process of continuous yeast production is
used to illustrate various concepts. Future research problems in cell population modeling, dynamics and control are
outlined to provide insights on the key challenges and opportunities in this emerging area.
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Introduction

Biochemical engineering is concerned with the industrial
production of biologically based products such as foods
and beverages, pharmaceuticals, commodity chemicals,
specialty chemicals and agricultural chemicals. The bio-
chemical manufacturing industry is growing rapidly due
to dramatic advancements in biotechnology and the high
value of biochemical products such as pharmaceuticals
(Lee, 1992). Process control has played a rather limited
role in the biochemical industry as the economic incen-
tive for improved process operation often is dwarfed by
costs associated with research and development. This
situation is likely to change with the expiration of key
patents and the continuing development of global com-
petition. Another obstruction to process control has
been the lack of on-line sensors for critical process vari-
ables (Pons, 1992). While this will remain an impor-
tant issue for the forseeable future, recent advancements
in biochemical measurement technology make the devel-
opment of advanced process control systems a realistic
goal. These trends suggest that biochemical processes
will emerge as an important application area for control
engineers.

A complete review of the modeling and control needs
in the biochemical industry would require a lengthy book
rather than a short paper. Therefore the scope of this
paper is limited to continuous bioreactors used for the
growth of microbial cell cultures important in the food
and beverage, pharmaceutical and agricultural chemical
industries. Other types of bioreactors (batch and semi-
batch) and cell cultures (animal and plant) are not cov-
ered despite their industrial importance. The remainder
of this section is used to provide an overview of continu-
ous bioreactors with particular emphasis on the process
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modeling and control challenges.

Continuous Bioreactors

A typical biochemical process involves batch, semi-batch
and/or continuous reactors in which raw materials are
transformed into the desired biological products. In
many applications, continuous bioreactors are preferred
due to their ease of operation and higher productiv-
ity (Lee, 1992). A prototypical continuous stirred tank
bioreactor (also known as a continuous fermentor) is de-
picted in Figure 1. Medium is supplied continuously to
the reactor to sustain growth of the microbial cell popu-
lation. The synthetic medium contains the substrate(s)
metabolized by the cells during growth as well as other
components such as mineral and salts required to repli-
cate the natural growth environment. The culture is
called aerobic if the biochemical reactions involved in
cell growth require oxygen as a reactant. In this case,
air must be supplied continuously to maintain the neces-
sary dissolved oxygen concentration. By contrast, anaer-
obic cultures do not require oxygen for cell growth. For
each microorganism there is a unique range of culture
temperature and pH that support cell growth. A typical
bioreactor has simple feedback control loops that main-
tain the temperature and pH at predetermined setpoints
chosen to maximize cell growth (Pons, 1992).

An agitator is used to continuously mix the reactor
contents. The agitator speed is chosen to provide satis-
factory mixing while avoiding excessive shear forces that
may damage cells (Lee, 1992). A stream is removed con-
tinuously from the reactor to achieve constant volume
operation. The removal rate is characterized by the di-
lution rate, which is the reciprocal of the reactor resi-
dence time. The dilution rate is controlled by a simple
feedback controller that manipulates the medium flow
rate. The effluent stream contains unreacted substrate
and biomass that is a complex mixture of cells and vari-
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Figure 1: Continuous bioreactor.

ous metabolites produced by the cells. Desired products
can be the cells themselves, one or more metabolites,
or some combination of cells and metabolites. Products
are separated from the other components via a series
of recovery and purification operations (Lee, 1992). In
addition to the liquid product stream, off-gases such as
carbon dioxide may be produced as byproducts of the
biochemical reactions.

Successful operation of a continuous bioreactor re-
quires much more than simply supplying the necessary
nutrients and extracting the desired products. Careful
preparation of the growth medium is essential as mi-
croorganisms are strongly affected by changes in the cul-
ture environment. The microorganism must be innocu-
lated in the reactor to initiate cell growth. Typically in-
noculation is achieved via a multistep procedure in which
cells grown in a shake flask are transferred to increasingly
larger volume bioreactors until the production bioreactor
is innoculated (Lee, 1992). This procedure is necessary
to achieve a sufficiently large cell population to sustain
growth. A critical requirement is to maintain sterility of
the medium and all processing equipment. Even a small
amount of contamination can lead to complete loss of
productivity and shutdown of the bioreactor. As a re-
sult of these complexities, effective operation of continu-
ous bioreactors is a very challenging problem.

Opportunities for Process Modeling and Control

Mathematical modeling of cell growth kinetics in contin-
uous bioreactors continues to be a major focus of bio-
chemical engineering research (Nielsen and Villadsen,
1994). The potential impact of such models on bio-
process simulation, scale-up, optimization and control
is significant. As compared to conventional chemical
reactors, bioreactors are particularly difficult to model
due to the complexity of the biochemical reactions, the
unique characteristics of individual cells and the lack of
measurements of key process variables. The consump-
tion of substrates and production of metabolites results
from hundreds of coupled biochemical reactions (Mauch
et al., 1997). The identification and modeling of these
complex reaction networks are very challenging problems
usually not encountered in other chemical reaction sys-
tems. While it is convenient to view a microbial culture
as a homogeneous mixture of identical cells, most cul-
tures actually are comprised of a heterogeneous mixture
of cells that differ with regard to size, mass and intracel-
lular concentrations of proteins, DNA and other chemical
components (Srienc and Dien, 1992). Accurate model-
ing of cell growth and product formation kinetics may
require that individual cells be differentiated based on
these characteristics. While on-line sensors for secondary
variables such as carbon dioxide off-gas concentration are
available, measurements of primary variables such as the
biomass and product concentrations require expensive
analytical equipment (Lee, 1992). Accurate and reliable
measurement of these primary variables often is required
to develop and validate mathematical models.

As shown in Figure 1, a typical control system for a
continuous bioreactor consists of simple feedback con-
trol loops that regulate reactor residence time, temper-
ature and pH. The control system is designed to supply
the prescribed flow of nutrients while avoiding environ-
mental conditions that adversely affect bioreactor pro-
ductivity. With regards to key output variables such
as the biomass and product concentrations, this is an
open-loop control strategy based on the unrealistic as-
sumption that unmeasured disturbances have a negli-
gible effect on bioreactor performance. The develop-
ment of closed-loop control strategies for reactor stabi-
lization and biomass/product optimization would repre-
sent a major advance in the biochemical industry.

Overview of the Paper

The remainder of the paper is organized as follows. Sec-
tion 2 contains an introduction to the mathematical
modeling of continuous bioreactors with an emphasis on
cell population models. Section 3 focuses on the dynamic
behavior of cell population models with particular em-
phasis on yeast culture models. The design of feedback
controllers using cell population models and the critical
issue of on-line measurements are discussed in Section 4.
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Finally our personal perspective on future research in cell
population modeling, dynamics and control is presented
in Section 5.

Mathematical Modeling of Cell Growth
Dynamics

Classification and Overview

Mathematical models that describe cell growth processes
can be classified into two broad categories:

• Continuum or unsegregated models which treat the
cell population as a continuum or a lumped bio-
phase, i.e. assume that it behaves as a homogeneous
entity.

• Corpuscular or segregated or cell population balance
models which account for the heterogeneous and dis-
tributed nature of cell growth, i.e. the fact that a
cell population consists of individual cells.

Continuum models include compartmental (Roels, 1983)
and detailed metabolic models (see e.g. Nielsen and Vil-
ladsen, 1992, and the references therein) which attempt
to describe the influence of intracellular metabolism on
cell growth, as well as cybernetic models (e.g. Kompala
et al., 1986; Straight and Ramkrishna, 1994) which pos-
tulate the optimal nature of biomass growth and nutri-
ent uptake in order to predict growth dynamics. The
mathematical formulation of continuum models typically
leads to a set of nonlinear ordinary differential equations,
whereas corpuscular models typically consist of sets of
first order partial integro-differential equations coupled
with ordinary integro-differential equations that describe
substrate consumption and/or product formation.

A second important classification of both continuum
and corpuscular models is in unstructured and structured
models. Structured continuum (structured or multi-
variable corpuscular) models account for the fact that
the lumped biomass (single cell) is comprised of differ-
ent chemical components, such as DNA, RNA, protein
etc, while unstructured continuum and corpuscular mod-
els do not. Hence, structured corpuscular models not
only account for the fact that cells within a population
can behave differently, but they also account for chemi-
cal structure within a single cell. On the other hand, in
structured continuum models, the chemical structure is
included at the cell population level since the continuum
approach does not distinguish between different cells.

Moreover, structured or unstructured cell population
balance models are assorted in single-staged and multi-
staged models depending on the number of cell cycle
stages that are included in the cell population balance
formulation. Finally, if the property or properties that
are used to describe the intracellular structure obey the
mass conservation law, then the cell population balance
model is referred to as mass structured, whereas if age is
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Figure 2: Simplified cell cycle for budding yeast.

used to differentiate each cell from other cells of the pop-
ulation, then the model is referred to as age structured.

Due to the level of detail built in their mathematical
formulation, structured cell population balance models
represent the most accurate way of describing the com-
plicated phenomena associated with cell growth, nutrient
uptake and product formation. Moreover, the mathe-
matical formulation of such models naturally allows the
incorporation of information about transition between
successive cell cycle stages and partitioning of cellular
material upon cell division. Furthermore, contrary to
continuum models, which can predict only average pop-
ulation properties, cell population balance models are
able to predict entire cell property distributions.

Baker’s Yeast: A Motivating Example for Cell
Population Balance Models

In what follows, we briefly discuss Saccharomyces cere-
visiae as an illustrative example of a microorganism for
which cell population balance models play a key role in
the dynamic analysis and control of its cultures.

Saccharomyces cerevisiae is a key microorganism in
the brewing, baking and genetic engineering industries.
Also known as Baker’s yeast, it has been widely stud-
ied due to its own importance as well as to understand
the behavior of more complex cells present in plants and
animals. It can be grown in aerated continuous biore-
actors by feeding a nutrient stream containing glucose
substrate. A variety of products including ethanol are
produced.

A distinctive feature of yeast cells is that they divide
via an asymmetric process known as budding (Hjortso
and Nielsen, 1994). A simplified depiction of the yeast
cell cycle is shown in Figure 2. The cell population is
characterized in terms of daughter cells and mother cells.
A daughter cell consumes substrate until it reaches a
critical mass known as the transition mass. At this point,
the daughter cell becomes a mother cell and a small bud
attached to the cell begins to grow. Additional substrate
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consumption increases the mass of the bud while the
mass of the mother cell remains essentially constant. At
a second critical mass known as the division mass, the
bud separates from the mother cell producing a newborn
daughter cell and a mother cell.

Many investigators have shown that continuous yeast
cultures exhibit sustained oscillations under operating
conditions encountered in industrial bioreactors (von
Meyenburg, 1973; Parulekar et al., 1986). The intracel-
lular mechanisms that cause these oscillations are con-
troversial and have been a subject of three decades of
intensive research. However, recent modeling and dy-
namical studies (Zhang et al., 2001) have established a
strong dependence of the open-loop dynamics of yeast
bioreactors on the initial cell mass distribution. Clearly,
this dependence can only be captured (and accounted
for in the controller design) by cell population balance
models.

Furthermore, the existence of two distinct stages in
yeast cultures (budded and unbudded) and the fact that
key products of interest (such as ethanol) have been
shown to be produced preferentially during the second
part of the cell cycle (Alberghina et al., 1991; Frykman,
1999) suggest the use of two-staged population balance
models for predicting and controlling the production of
such products. This is also the case in other cell cultures,
e.g. in murine hybridoma cells where the antibody secre-
tion rates have been found to be much higher in the late
stages of the cell cycle (Kromenaker and Srienc, 1994).
This type of information is simply not present in contin-
uum models, whereas it can be naturally incorporated in
multi-staged cell population balance models.

Mathematical Formulation of Structured Cell
Population Balance Models

In this section we briefly describe the mathematical for-
mulation of cell population balance models in continu-
ous bioreactors such as the one depicted in Figure 1.
Each individual cell in the population of cells contained
in the bioreactor is assumed to comprise of r biochemi-
cal components (DNA, RNA, protein etc.), with differ-
ent cells containing different quantities of these compo-
nents. The vector x = [x1, x2, · · · , xr] with elements the
amounts of these components in each cell is called the
physiological state vector of the cell. The physiologi-
cal state space is expressed as G = [xn,min, xmax], where
xn,min, xmax denote the vectors containing the minimum
and maximum, respectively, values for the amounts of
the r biomass components of the newborn cells. Finally,
xmin denotes the vector containing the minimum values
of the amounts of the r biomass components of the di-
viding cells. For the sake of simplicity and without loss
of generality, it is often assumed that the minimum and
maximum values of the quantities of all biomass compo-
nents are xn,min = xmin = 0 and xmax = 1, respectively.

The state of the entire population is described by a

time-dependent function N(x, t), such that N(x, t)dx
represents the number of cells per unit of biovolume that
at time t have physiological state representation between
x and x + dx. The total number of cells per unit of bio-
volume (cell density) and the concentration of the i-th
biomass component are respectively obtained from the
zeroth and first moments of the state distribution func-
tion:

Nt(t) =
∫ xmax

xn,min

N(x, t) dx (1)

Nb,i(t) =
∫ xmax

xn,min

xiN(x, t) dx, i = 1, . . . , r (2)

The sum from 1 to r of all expressions defined in Equa-
tion 2 yields the total biomass concentration at time t.
Finally, S denotes the substrate concentration vector (as-
suming s substrates), Sf the feed substrate concentration
vector and D the dilution rate.

A cell population balance model includes information
about nutrient uptake, growth, division and birth at the
single-cell level. These processes are mathematically de-
scribed by a set of functions known as intrinsic phys-
iological state functions which, in general, depend on
the physiological state of the cell x and the state of
the substrate environment S. Specifically, the nutri-
ent consumption is characterized by the s-dimensional
consumption rate vector q(x, S) whose elements express
the single-cell rate of consumption of each substrate.
The growth process is represented by the r-dimensional
growth rate vector r(x, S) whose elements express the
single-cell rate of increase in the amount of the each cel-
lular component. The cell division is described by the di-
vision rate Γ(x, S). Finally, the birth process is described
by the partition probability density function p(x, y, S),
which expresses the probability that a mother cell with
physiological state vector y gives birth to a daughter cell
with physiological state vector x; this function must sat-
isfy the normalization condition:∫ xmax

xmin

p(x, y, S) dx = 1 (3)

which guarantees that it is a probability density function.
It should also be such that the amount of each one of the
r biochemical components is conserved at cell division.
In particular, since no daughter cell can have greater
amounts of any component than the dividing cell from
which it originates, the partitioning function p should be
zero for all daughter cell states that are greater than the
states of the corresponding mother cell, i.e.:

p(x, y, S) = 0, ∀xi > yi, i = 1, . . . , r (4)

Finally, the probability of a dividing cell with physiolog-
ical state vector y to produce a daughter cell of state x
must be equal to the probability of producing a daughter
cell of state y − x, i.e.

p(x, y, S) = p(y − x, y, S) (5)
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For simplicity, it is also assumed that the bioreactor op-
erates in conditions under which the cell death rate is
negligible (quite common in practice).

The Cell Population Balance Equation. Under
the assumptions and the process description presented
above, the dynamics of the state distribution function
N(x, t) are described by the general cell population bal-
ance equation (Fredrickson et al., 1967; Ramkrishna,
1979):

∂N(x, t)
∂t

+∇x · [r(x, S)N(x, t)]

+ Γ(x, S)N(x, t) + DN(x, t)

= 2
∫ xmax

x

Γ(y, S)p(x, y, S)N(y, t) dy (6)

subject to the initial condition:

N(x, 0) = N0(x) (7)

The first term in Equation 6 denotes accumulation.
The second term accounts for the loss of cells with the
physiological state vector representation x due to the fact
that they grow into bigger cells. The third term repre-
sents loss of cells with physiological state vector x due to
division leading to the birth of smaller cells. The fourth
term is the dilution term describing the rate by which
cells exit the reactor. The source term in the right-hand
side is the rate of birth of cells with the physiological
state vector x originating from the division of all bigger
cells. The integration in this term is performed in all
r dimensions of the physiological state space and has a
lower limit of x due to the fact that cells of physiologi-
cal state x can not be born from cells with amounts of
biochemical components less than x. Moreover, the fac-
tor of two multiplying the integral birth term accounts
for the fact that each division event leads to the pro-
duction of two daughter cells. For a detailed discussion
on the statistical foundation of the above model and the
detailed assumptions made for its derivation, the reader
is referred to Fredrickson et al. (1967).

Boundary Conditions. Besides an initial condi-
tion, appropriate boundary conditions for the first order
partial differential equation in Equation 6 are required.
Defining the boundary B of the physiological state space
G as the set of points where at least one of the r biochem-
ical biomass components obtains either its maximum or
minimum value, the boundary conditions can be mathe-
matically expressed as (Eakman et al., 1966; Fredrickson
et al., 1967):

r(x, S)N(x, t) = 0, ∀x ∈ B (8)

These conditions (often referred to as regularity condi-
tions), essentially specify the boundary of the physio-
logical state space (and hence can be more accurately

thought of as ‘containment’ conditions (Fredrickson and
Mantzaris, 2002)) and have been the subject of consid-
erable discussion in the literature. They can be derived
from balances for the cell density and the concentrations
of the biomass components (see e.g. Mantzaris et al.,
2001a), and essentially force the solution of the cell pop-
ulation balance equation to satisfy two facts imposed by
the physics of the problem: a) that cell growth does not
affect the number of cells, and b) that cell division pre-
serves biomass.

The Dynamics of the Substrate Concentra-
tions. The cell population balance equation is coupled
with the equations describing the dynamics of the sub-
strate concentrations:

dS

dt
= D(Sf − S)−

∫ xmax

xn,min

q(x, S)N(x, t) dx (9)

subject to the initial conditions:

S(0) = S0 (10)

The integral term in the above mass balance represents
the rate of loss of substrate leading to cell growth. In
the case where a single rate limiting substrate is present
the above set of equations reduces to a single equation.

Notice that the coupling between the cell population
balance equation and the ordinary integro-differential
equations shown above occurs through the dependence
of the intrinsic physiological state functions on the con-
centrations of the substrates. This coupling is the only
source of nonlinearity in the model. If the assumption
of constant substrate concentrations is made (not a rea-
sonable one in most cases of practical interest), then the
model consists only of the cell population balance model
and is linear.

Unstructured Cell Population Balance Models.
A common simplification to the general structured cell
population balance model presented above concerns the
case of a single physiological state x, usually the cell
mass m; this is quite meaningful in bioreactors where cell
growth and division are strongly dependent on cell mass.
In this case, the growth rate vector becomes a scalar and
the resulting unstructured cell population model takes
the form:

∂N(m, t)
∂t

+
∂[r(m,S)N(m, t)]

∂m
+ Γ(m,S)N(m, t) + DN(m, t)

= 2
∫ mmax

m

Γ(m′, S)p(m,m′, S)N(m′, t) dm′ (11)

with the integral in the birth term being a one-
dimensional one, and the mass state space defined as
M = [0, mmax]. The containment boundary conditions
take the form:

r(0, S)N(0, t) = r(mmax, S)N(mmax, t) = 0 (12)
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and the substrate balance equations become:

dS

dt
= D(Sf − S)−

∫ mmax

0

q(m,S)N(m, t) dm (13)

Multi-Staged Cell Population Balance Models.
Consider now the case where the cells grow in two dis-
tinct stages (e.g. budded and unbudded in the case of
yeast), with stage 1 cells being born through the division
of stage 2 cells, and stage 2 cells being formed through
the transition of stage 1 cells to stage 2. Let N1(x, t)dx
and N2(x, t)dx denote the number of cells per unit of
biovolume in stages 1 and 2, respectively, which at time
t have physiological state between x and x+dx. Let also
r1(x, S), r2(x, S) denote the corresponding growth rate
vectors, Γ1(x, S),Γ2(x, S) the transition rates from stage
1 to stage 2 and from stage 2 to stage 1, respectively,
and p(x, y, S) the partition probability density function.
Then, the dynamics of the two subpopulations are de-
scribed by the following coupled set of cell population
balance equations:

∂N1(x, t)
∂t

+∇x · [r1(x, S)N1(x, t)]

+ Γ1(x, S)N1(x, t) + DN1(x, t)

= 2
∫ xmax

x

Γ2(y, S)p(x, y, S)N2(y, t) dy (14)

∂N2(x, t)
∂t

+∇x · [r2(x, S)N2(x, t)]

+ Γ2(x, S)N2(x, t) + DN2(x, t)
= Γ1(x, S)N1(x, t) (15)

Note that the above equations are coupled through their
corresponding source terms appearing in the right-hand
sides.

The balances on the substrates in this case take the
form:

dS

dt
= D(Sf − S)−

∫ xmax

xn,min

q1(x, S)N1(x, t) dx

−
∫ xmax

xn,min

q2(x, S)N2(x, t) dx (16)

where q1(x, S), q2(x, S) denote the corresponding sub-
strate consumption rates in the two stages. Appropri-
ate initial and containment boundary conditions (see e.g.
Mantzaris et al., 2002) complete the model formulation.
The incorporation of multiple cell cycle stages in the
mathematical model can also be performed in a similar
way (Hatzis et al., 1995).

Numerical Solution

Despite the generality, accuracy, and predictive power of
cell population balance models, and the fact that they

have been formulated since the mid 60s, their use for de-
sign, optimization and control of bioprocesses has been
sparse. One major obstacle to this end is that cell popu-
lation balance models require information at the single-
cell level; in particular, they require the knowledge of the
intrinsic physiological state functions (single-cell growth
rates, single-cell stage-to-stage transition rates and par-
titioning function). The experimental determination of
these functions is hard, mainly due to the fact that it
requires measurements at the single-cell level. However,
the evolution of flow cytometry (Srienc, 1993) has con-
tributed significantly in providing a basis for obtaining
information at the single cell level. The analysis of such
information with inverse population balance modeling
techniques (Ramkrishna, 1994) has enabled, in certain
cases, the determination of the intrinsic physiological
state functions (Srienc, 1999).

A second obstacle towards the practical application
of cell population balance models is the fact that owing
to their complex mathematical nature (first order par-
tial integro-differential equations, coupled in a nonlinear
fashion with ordinary integro-differential equations), the
development of numerical algorithms for the accurate ap-
proximation of their solution is a challenging task.

Several studies have addressed the numerical solu-
tion of age structured cell population balances (Hjortso
and Bailey, 1983; Hjortso and Nielsen, 1994, 1995; Kim,
1996; Kim and Park, 1995a,b; Kostova, 1990, 1988; Kurtz
et al., 1998). However, age structured models are limited
by the fact that age is very difficult to measure experi-
mentally in microbial populations.

On the other hand, some properties of cells, such as
volume, total protein content, DNA content can be mea-
sured even at the single-cell level. Therefore, the use
of such properties in the formulation of mass structured
models is quite meaningful. Liou et al. (1997) devel-
oped analytical solutions of mass structured and age-
mass structured cell population balances in the case of
some simple single-cell growth rate expressions. Reports
on the numerical solution of more general mass struc-
tured models had been sparse until recently. Subrama-
nian and Ramkrishna (1971) employed a combination of
the weighted residual method and the successive approx-
imation method. However, this approach is limited to
the case of linear growth rate where the cell population
balance and the substrate concentration equation can be
decoupled. Sulsky (1994) addressed a specific nonlinear
mass structured population balance model, with the use
of classical finite difference schemes as well as the method
of characteristics. However, the model under considera-
tion did not include changes in the environmental condi-
tions, which when incorporated in the mathematical for-
mulation can dramatically alter the dynamics of the cell
population as well as the behavior of numerical schemes.
Godin et al. (1999a,b) and Zhu et al. (2000; 2001) em-
ployed finite element techniques for the solution of the
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problem under conditions of changing substrate concen-
tration. Finally, Mantzaris et al. (1999) proposed a finite
difference technique applicable to problems with chang-
ing substrate concentration and various sets of physio-
logical state functions.

The above reports focused on unstructured models,
which do not incorporate any internal chemical struc-
ture of the single cell. Mantzaris et al. (2001a,b,c) have
recently developed several finite difference, spectral and
finite element algorithms for the solution of structured
cell population balance models, and evaluated these al-
gorithms in terms of numerical stability, accuracy and
computational speed. These algorithms are quite general
in the sense that they are not limited by the choice of the
physiological state functions, and can be applied for any
number of substrates and constant or changing environ-
mental conditions. With small modifications, they can
also be applied in the case of multi-staged cell population
balance models (Mantzaris et al., 2002).

In conclusion, the recent studies on the numerical so-
lution of cell population balance models have led to a va-
riety of algorithms that can be used to efficiently obtain
accurate solutions of these models and hence facilitate
their use in optimization and control.

Cell Population Dynamics

The dynamics of continuous bioreactors are important
for simulation and control of industrial bioprocesses.
Bioreactors can exhibit complex dynamic behavior due
to nonlinearities associated with cell growth and divi-
sion processes. Unlike most other types of chemical re-
actors, these nonlinear dynamics are not caused by the
nonlinear dependence of reaction rates on temperature.
Indeed continuous bioreactors operated at constant tem-
perature can exhibit nonlinear behavior such as multi-
ple steady states and limit cycles (Hjortso and Bailey,
1983; Hjortso and Nielsen, 1995). While cell metabolism
certainly plays an important role, the observed nonlin-
ear behavior is partially attributable to complex interac-
tions between the cell population and the culture envi-
ronment (Eakman et al., 1966; Subramanian and Ramkr-
ishna, 1971). Consequently the study of cell population
dynamics has considerable theoretical and practical sig-
nificance. The objective of this section is to provide a
brief introduction to the control relevant dynamics of
cell population models with particular emphasis on limit
cycle behavior in continuous yeast bioreactors.

Steady-State and Periodic Solutions

A rigorous dynamic analysis of the general cell popula-
tion model (6)–(10) is very difficult due to the complexity
of the model equations. The problem can be simplified
by considering only a single physiological state (x) and
a single rate limiting substrate (S). In this case the
unstructured cell population model can be written as

in (11)–(13). It is well known that this model can ex-
hibit both steady-state and periodic solutions for specific
forms of the physiological state functions.

The first problem considered is existence and stability
of steady-state solutions. As can be seen from (11)–(13),
a solution that exists for all values of dilution rate (D)
and feed substrate concentration (Sf ) is the so-called
washout steady state: N(m) = 0 ∀m, S = Sf . This cor-
responds to the highly undesirable situation where sub-
strate is fed to the reactor but biomass is not produced.
Stability of the washout steady state usually can be char-
acterized in terms of a critical dilution rate (Dc) that is
a complex function of the physiological state functions
and parameter values. For D < Dc the washout steady
state is unstable while for D ≥ Dc it is stable. Hence
there is a tradeoff between reactor stability (low D) and
reactor throughput (high D). Clearly the most impor-
tant requirement of any bioreactor control system is to
avoid washout and maintain bioreactor productivity.

Non-trivial steady-state solutions of cell population
models are more difficult to analyze. Closed-form solu-
tions can be obtained using the method of characteristics
if restrictive assumptions are imposed on the cell cycle
and/or the culture environment (Hjortso, 1996; Hjortso
and Nielsen, 1995). This approach has been used to an-
alyze local stability of steady-state solutions for an age
structured cell population model (Hjortso and Bailey,
1983). A more practical approach for local stability anal-
ysis involves spatial discretization of the cell population
model to obtain a coupled set of nonlinear ordinary dif-
ferential equations in time (Zhang et al., 2001). Steady-
state solutions are calculated by solving the nonlinear
algebraic equations which comprise the steady-state ver-
sion of the discretized model. Local stability of a steady-
state solution is analyzed by linearizing the discretized
model about the steady-state operating point and com-
puting the eigenvalues of the linearized model. Non-local
stability analysis typically requires dynamic simulation
of the discretized model. A secondary control objective
may be stabilization of a particular cell mass distribu-
tion N(m) that optimizes the steady-state production of
certain products.

Experimental studies with different microorganisms
have shown that continuous bioreactors can exhibit sta-
ble periodic solutions which are observable as sustained
oscillations in measured variables (Daugulis et al., 1997;
Jones, 1995; von Meyenburg, 1973). Several investiga-
tors have shown that cell population models are capable
of generating such periodic solutions (Bellgardt, 1994;
Hjortso and Nielsen, 1995; Zhu et al., 2000). Closed-
form representation of periodic solutions have been de-
rived directly from cell population models under certain
simplifying assumptions (Hjortso and Nielsen, 1995). We
are not aware of any analysis results concerning the sta-
bility of such periodic solutions. As discussed below for
yeast bioreactors, periodic solutions usually are located
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by dynamic simulation of a spatially discretized model.
Another possible control objective is creation of periodic
solutions that lead to increased production of certain
products as compared to that achievable under steady-
state conditions (Hjortso, 1996).

Dynamics of Continuous Yeast Bioreactors

Cell population dynamics play a key role in the sustained
oscillations observed in continuous bioreactors produc-
ing Baker’s yeast. Fundamental understanding of these
dynamics could lead to important advances in yeast pro-
duction processes and provide key insights into the cel-
lular behavior of more complex cells present in plants
and animals. Several investigators (Munch et al., 1992;
Strassle et al., 1989) have shown that the appearance
of sustained oscillations is related to the formation of
distinct cell subpopulations via a mechanism known as
cell cycle synchrony. A synchronized culture is recog-
nized by well defined peaks in the cell distribution that
correspond to large groups of cells that collectively pass
through the cell cycle.

Recently it has been proposed that continuous yeast
bioreactors can exhibit a stable steady state and a stable
limit cycle at the same operating conditions as a conse-
quence of cell cycle synchrony (Zhang et al., 2001). Ex-
perimental data that support this claim are shown in
Figure 3 where the carbon dioxide off-gas concentration
is used as a representative output signal. The experi-
mental protocol used involves careful manipulation of the
dilution rate to establish different initial conditions for
the cell distribution. An initial condition corresponding
to a synchronized cell population results in convergence
to a stable limit cycle (top plot). By contrast, a steady-
state solution appears to be attained when the initial cell
population is less synchronized (bottom plot).

The experimental data in Figure 3 show that the open-
loop dynamics of yeast bioreactors are strongly depen-
dent on the initial condition of the cell distribution. At
a particular value of the dilution rate there appears to
be two stable solutions, each with a domain of attraction
that is a complex function of the initial cell distribution.
This interpretation provides a rational explanation for
the observation that oscillations appear and disappear
without measurable changes in external inputs such as
dilution rate and feed substrate concentration (Parulekar
et al., 1986). Moreover this nonlinear behavior would be
fundamentally different than that observed in other par-
ticulate processes such as emulsion polymerization reac-
tors (Rawlings and Ray, 1987) and solution crystallizers
(Witkowski and Rawlings, 1987) that exhibit sustained
oscillations as the steady-state solution becomes unsta-
ble.

A more detailed understanding of the nonlinear dy-
namics leading to sustained oscillations can be obtained
via bifurcation analysis (Kuznetsov, 1995). A bifurca-
tion represents a fundamental change in the qualitative

Figure 3: Multiple stable solutions for a yeast biore-
actor.

behavior of a nonlinear system as a parameter is var-
ied. The most common example is the Hopf bifurcation
where the steady state becomes unstable and a stable
limit cycle is created (Kuznetsov, 1995).

We have performed bifurcation analysis using the un-
structured cell population model (11)–(13) with specific
forms of the physiological state functions (Zhang et al.,
2001). The single cell growth rate is modeled as:

r(m,S′) =
µmS′

Km + S′
(17)

where µm and Km are constants. The effective substrate
concentration S′ is a filtered version of the actual sub-
strate concentration (S) and accounts for the lagged re-
sponse of cells to environmental changes. The growth
rate function models the tendency of cells to reach a
maximum growth rate (µm) at large substrate concentra-
tions (substrate inhibition). The division rate function
is modeled as:

Γ(m,S′) =

 0 m ≤ m∗
t + mo

γexp
[
−ε(m−m∗

d)
2
]

m ∈ [m∗
t + mo,m

∗
d]

γ m ≥ m∗
d

(18)
where m∗

t is the transition mass (see Figure 2), mo is the
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additional mass that mother cells must gain before divi-
sion is possible, ε and γ are constants and m∗

d is the mass
at which the division rate reaches its maximum value γ.
This function models the tendency of cells to divide near
the division mass (m∗

d). The cell cycle parameters (m∗
t ,

m∗
d) are functions of S′ as discussed below.
The partition probability density function has the

form:

p(m,m′, S′) = Aexp[−β(m−m∗
t )

2]

+ Aexp[−β(m−m′ + m∗
t )

2] (19)

where m < m′ and m′ > m∗
t + mo; the function is iden-

tically zero otherwise. Here A and β are constants. This
function yields two Gaussian peaks in the cell mass dis-
tribution, one centered at m∗

t (corresponding to mother
cells) and one centered at a location in the mass domain
that is determined by mass conservation (corresponding
to daughter cells). The substrate consumption rate is
modeled as:

q(m,S′) =
1
Y

r(m,S′) (20)

where Y is a constant yield parameter. The substrate
dependence of the cell cycle parameters is modeled as:

m∗
t (S

′) =

 mt0 + Kt(Sl − Sh) S′ < Sl

mt0 + Kt(S′ − Sh) S′ ∈ [Sl, Sh]
mt0 S′ > Sh

(21)

m∗
d(S

′) =

 md0 + Kd(Sl − Sh) S′ < Sl

md0 + Kd(S′ − Sh) S′ ∈ [Sl, Sh]
md0 S′ > Sh

(22)

where Sl, Sh, mt0, md0, Kt and Kd are constants. As
found experimentally (Alberghina et al., 1991), both m∗

t

and m∗
d are increasing functions of the substrate concen-

tration. Numerical values of the model parameters are
presented elsewhere (Zhang et al., 2001).

The dilution rate (D) is chosen as the bifurcation pa-
rameter. Stability of steady-state solutions is determined
by checking the eigenvalues of the Jacobian lineariza-
tion. Stable limit cycles are located using a combina-
tion of dynamic simulation and continuation calculations
(Kuznetsov, 1995). The resulting bifurcation diagram is
shown in Figure 4 where the zeroth moment of the cell
mass distribution (here denoted as m0) is used as a rep-
resentative output variable. As observed experimentally
(Beuse et al., 1998), a stable steady state (+) is obtained
for low and high ranges of the dilution rate. A Hopf bi-
furcation occurs at D = 0.21 h−1 that results in the
appearance of a stable limit cycle with sustained oscil-
lations of the magnitude indicated (*). A second Hopf
bifurcation occurs at D = 0.27 h−1 where the limit cycle
disappears. An unstable steady state (o) is observed at
the intermediate dilution rates that support stable limit
cycles.

The bifurcation diagram appears to be inconsistent
with the experimental data in Figure 3 which indicate the
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Figure 4: Bifurcation diagram for a yeast bioreactor
model.

coexistence of stable steady state and stable periodic so-
lutions. However the model predicts that destabilization
of the steady state occurs very slowly due to the small
real parts of the eigenvalues that cross the imaginary axis
due to the first Hopf bifurcation. We conjecture that this
behavior is not observed in Figure 3 due to the relatively
short duration of the experimental test. This hypothesis
is supported by the small oscillations that are visible in
the “stationary” response. This subtle dynamic behav-
ior cannot be captured by unsegregated models such as
cybernetic models (Jones and Kompala, 1999).

Feedback Control of Cell Populations

Feedback control is necessary to ensure satisfactory per-
formance of continuous bioreactors in the presence of ex-
ternal disturbances and/or changes in the operational
requirements. As depicted in Figure 1, a typical bioreac-
tor control system consists of simple regulatory loops for
residence time, temperature and pH designed to main-
tain the bioreactor at environmental conditions which
promote cell growth. Such simple schemes do not al-
low direct control of variables such as the biomass con-
centration that determine profitability of the bioprocess.
During the last decade substantial effort has gone into
developing more advanced (nonlinear or adaptive) con-
trol strategies for continuous bioreactors (Bastin and
Dochain, 1990; Hoo and Kantor, 1986; El Moubaraki
et al., 1993; Pons, 1992; Kurtz et al., 2000). These ef-
forts are based on continuum models that neglect the
distributed nature of the cell population. As such, they
rely on measurement and control of ‘average’ properties
of the cell populations in the bioreactor. A typical con-
trol strategy along these lines involves manipulation of
the dilution rate or the feed substrate concentration to
maximize biomass concentration (Henson and Seborg,
1992; Proll and Karim, 1994).
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The last decade has also seen the evolution of exper-
imental techniques, specifically flow cytometry and cell
staining techniques (Srienc, 1993), which enable the mea-
surement of entire cell property distributions. Flow cy-
tometers measure the frequency of fluorescence in the
cell population, and hence can differentiate cells with re-
spect to naturally fluorescent protein content (e.g. the
green fluorescent protein, Gfp), or other variables (e.g.
DNA content) after appropriate staining. When inter-
faced with proper flow injection systems (Zhao et al.,
1999) they provide a powerful experimental tool for on-
line monitoring and control. These advances in instru-
mentation and measuring devices, together with the ad-
vances in the numerical solution of cell population bal-
ance models outlined earlier, provide strong motivation
to explore more advanced control strategies that utilize
cell population balance models to address a wider range
of control objectives, e.g. control of cell property distri-
butions and/or cell cycle characteristics.

This realization has motivated research in our groups
on the development of control strategies based on cell
mass population balance models that address a vari-
ety of control objectives. Specifically, in Zhang et al.
(2001) the problem of attenuating open-loop oscillations
observed in yeast bioreactors was addressed, through the
design of a feedback linearizing controller that manipu-
lates the dilution rate and controls the zeroth moment
of the cell mass distribution. The design of distributed
feedback linearizing control laws that manipulate the di-
lution rate to influence the zeroth and first moment of
cell mass distributions was also addressed in Mantzaris
et al. (1998). Zhu et al. (2000) addressed the attenua-
tion of oscillations as well as the induction of oscillations
in yeast bioreactors, using a linear model predictive con-
trol strategy that manipulates the dilution rate and the
feed substrate concentration. Finally, Mantzaris et al.
(1999) addressed the productivity control for a cell cul-
ture where the desired product is produced only in the
second stage of the cell cycle, using a feedback lineariz-
ing control strategy that manipulates the feed substrate
concentration. In what follows, we briefly outline the
last two control studies in order to demonstrate the po-
tential advantages of using cell population models as the
basis for controller design. More details on the controller
design and additional simulation results are available in
the original references.

Oscillation Attenuation in Yeast Bioreactors

The first case study addresses the control of oscillations
in continuous yeast bioreactors. The motivation is pro-
vided by the fact that open-loop oscillations can ad-
versely affect bioreactor stability and productivity, in
which case it is imperative that they be attenuated. In
other cases, inducing stable oscillatory behavior may lead
to increased production of target metabolites preferen-
tially produced during part of the cell cycle (Hjortso,

1996). Below we outline a linear model predictive con-
trol (LMPC) strategy which is well suited for both of the
above control problems.

The controller design model is generated from the cell
population model (11)–(13) and the physiological state
functions (17)–(20). The population model is discretized
in the mass domain using orthogonal collocation on fi-
nite elements, linearized about the desired steady-state
operating point and discretized with a sampling time ∆t
= 0.1 hr. The resulting linear model has the form:

x(k + 1) = Ax(k) + Bu(k) (23)

where: x is the state vector which includes the cell mass
density Nj at each collocation point j and the substrate
concentration S; and u is the input vector comprised of
the dilution rate D and feed substrate concentration Sf .
It is assumed that the cell mass distribution can be mea-
sured via flow cytometry or reconstructed from on-line
measurements of the particle size distribution (Yamashit
et al., 1993).

The controller design model is completed by defining
the output vector. An obvious approach is to choose
the discretized cell mass densities Nj as the controlled
outputs. This method is problematic because: (i) the
resulting control problem is highly non-square (2 inputs,
113 outputs); (ii) cell mass densities at nearby colloca-
tion points are strongly collinear; and (iii) the substrate
concentration must be controlled to avoid washout. We
have found that good closed-loop performance can be ob-
tained by controlling a subset of the cell mass densities
and the substrate concentration:

y(k) =
[

Nj1(k) . . . Njp
(k) S(k)

]T = Cx(k) (24)

where the indices {j1, . . . , jp} denote the collocation
points where the associated cell mass density is used as
a controlled output. In the subsequent simulations, the
outputs are chosen as the boundary points of the finite
elements. This results in a much lower dimensional prob-
lem with 14 outputs.

The LMPC controller is formulated as an infinite hori-
zon open-loop optimal control problem:

min
UM (k)

∞∑
j=0

{[y(k + j|k)− ys]T Q[y(k + j|k)− ys]

+ [u(k + j|k)− us]T R[u(k + j|k)− us]

+ ∆uT (k + j|k)S∆u(k + j|k)} (25)

where: y(k + j|k) and u(k + j|k) are predicted values
of the outputs and inputs, respectively; ys and us are
target values for the outputs and inputs, respectively;
and ∆u(k) = u(k) − u(k − 1). The decision variables
are current and future values of the inputs: UM (k) =
[u(k|k) . . . u(k +M − 1|k)], where M is the control hori-
zon. The inputs are subject to constraints that are de-
termined by operational limitations: umin ≤ u ≤ umax.
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The resulting problem can be reformulated as a finite
horizon problem and solved using standard quadratic
programming software (Muske and Rawlings, 1993). The
control horizon is chosen as M = 5 and the weighting ma-
trices (Q, R, S) are chosen by trial-and-error to provide
acceptable closed-loop performance.

Figure 5 shows the ability of the LMPC controller to
stabilize an oscillating bioreactor at a desired steady-
state operating point. The zeroth-order moment of the
cell mass distribution and the substrate concentration
(S) are shown as representative output variables. The
initial cell mass distribution N(m, 0) corresponds to a
stable periodic solution, while the setpoint vector is ob-
tained from the discretized cell mass distribution at the
desired steady-state operating point. The solid line is
the LMPC response and the dashed line is the open-
loop response in the absence of feedback control. The
LMPC controller effectively attenuates the oscillations
while generating reasonable control actions. The evolu-
tion of the cell mass distribution (here denoted as W )
also is shown in Figure 5. The initial distribution is
highly synchronized with two cell subpopulations that
produce sustained oscillations. The controller achieves
the desired steady-state distribution by dispersing the
subpopulations.

Figure 6 shows the ability of the LMPC controller to
create a desired periodic solution. The initial mass num-
ber distribution corresponds to the steady-state solution
in Figure 5. The stable periodic solution shown as the
open-loop response in Figure 5 is used to define a time-
varying setpoint trajectory to be tracked. The controller
stabilizes the periodic solution by generating oscillatory
input moves. Although not shown, it is interesting to
note that the oscillations are sustained with the same pe-
riod when the controller is switched off at the end of the
simulation and the bioreactor runs under open-loop con-
ditions. The evolution of the cell mass distribution also
is shown in Figure 6. Note that the oscillating dynam-
ics are accompanied by the appearance of two distinct
cell subpopulations. These results suggest that feedback
control strategies which provide direct control of the cell
distribution have the potential to enhance the stability
and productivity of continuous yeast bioreactors.

Productivity Control in Two-staged Cell Growth

In the second case study, we address the problem of con-
trolling the productivity with respect to a desired prod-
uct in a continuous bioreactor where the cells grow in
two stages, with the desired product being formed only
in the second stage (this is consistent with the discus-
sion in page 4 on the behavior of many microorganisms
including yeast). Individual cells are differentiated with
respect to their mass, m (or any other variable that is
conserved). There is a single substrate with concentra-
tion S, whereas the product concentration is denoted by
P .

0 2 4 6 8 10 12
1000

1100

1200

1300

1400

1500

 c
el

l n
um

be
r 

(#
/l)

 ×
 1

0−
10

t (hr)
0 2 4 6 8 10 12

0.25

0.3

0.35

0.4

0.45

 D
 (

1/
hr

)

t (hr)

0 2 4 6 8 10 12
0.5

1

1.5

2

2.5

 S
 (

g/
l)

t (hr)
0 2 4 6 8 10 12

20

22

24

26

28

 S
f (

g/
l)

t (hr)

0 2 4 6 8 10 12
−100

0

100

200

300

400

500

600

 c
el

l d
en

si
ty

 (
#/

g−
l) ×

 1
0−

10

cell mass (g) ×1013

initial distribution
distribution at t = 6 hr
distribution at t = 12 hr
steady state distribution

Figure 5: Oscillation attentuation with LMPC con-
trol.

It is assumed that the single-cell growth rates are lin-
ear with respect to cell mass and exhibit substrate inhibi-
tion during both stages of the cell cycle, whereas during
the second stage the growth rate exhibits product inhi-
bition as well (this is a rather standard assumption, see
e.g. Henson and Seborg, 1992). Specifically, the single-
cell growth rates are expressed as:

r1(m,S) =
µmS

Km + S + S2

Ki

m (26)

r2(m,S, P ) =
µm

(
1− P

Pm

)
S

Km + S + S2

Ki

m (27)

where µm, Pm,Km,Ki are the maximum specific growth
rate, the product and substrate saturation constants and
the substrate inhibition constant, respectively.
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Figure 6: Oscillation stabilization with LMPC con-
trol.

The transition rates from stage 1 to stage 2, and from
stage 2 to stage 1 are modeled as follows (Fredrickson
et al., 1967):

Γ1(m,S) =
f1(m)

1−
∫ m

0
f1(m′) dm′ r1(m,S) (28)

Γ2(m,S, P ) =
f2(m)

1−
∫ m

0
f2(m′) dm′ r2(m,S, P ) (29)

where f1(m), f2(m) are the transition probability den-
sity functions which are assumed to depend only on
mass; these functions are taken to be Gaussian distribu-
tions with mean values µf1 , µf2 and standard deviations
σf1 , σf2 , respectively.

The partitioning function is assumed to be indepen-
dent of the substrate and product concentrations, and is
taken to be a symmetric beta distribution with a param-
eter q:

p(m,m′) =
1

B(q, q)
1
m′

( m

m′

)q−1 (
1− m

m′

)q−1

(30)

The substrate consumption rates during the two stages

of the cell cycle are expressed as:

q1(m,S) =
1
Y1

r1(m,S) (31)

q2(m,S, P ) =
1
Y2

r2(m,S, P ) (32)

where Y1, Y2 denote constant yield coefficients. Finally,
the product formation rate is expressed as:

rp(m,S, P ) = a(µ2(S, P ) + b)m (33)

where a, b are constants. The parameter values used can
be found in Mantzaris et al. (1999).

The dynamic model of the reactor consists of the two
cell population balance equations for stages 1 and 2, the
substrate balance and the product balance:

∂N1(m, t)
∂t

+
∂[r1(m,S)N1(m, t)]

∂m
+ Γ1(m,S)N1(m, t) + DN1(m, t)

= 2
∫ mmax

m

Γ2(m,S, P )p(m,m′, S)N2(m, t) dm′ (34)

∂N2(m, t)
∂t

+
∂[r2(m,S, P )N2(m, t)]

∂m
+ Γ2(m,S, P )N2(m, t) + DN2(m, t)

= Γ1(m,S, P )N1(m, t) (35)

dS

dt
= D(Sf − S)− 1

Y1

∫ mmax

0

r1(m,S)N1(m, t) dm

− 1
Y2

∫ mmax

0

r2(m,S, P )N2(m, t) dm (36)

dP

dt
= −DP +

∫ mmax

0

rp(m,S, P )N2(m, t) dm (37)

with the following boundary conditions for the two pop-
ulation balance equations (see Mantzaris et al., 1999, for
their derivation):∫ mmax

0

∂[r1(m,S)N1(m, t)]
∂m

dm = 0 (38)∫ mmax

0

∂[r2(m,S, P )N2(m, t)]
∂m

dm = 0 (39)

For the numerical solution and controller design, the
two cell population balance equations were discretized
in the mass space using a Galerkin spectral method.
Specifically, the stage 1 and 2 mass distributions were
expanded as follows:

N1(m, t) = Σ∞
i=1ai(t)φi(m)

N2(m, t) = Σ∞
i=1bi(t)φi(m)

(40)
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Figure 7: Steady state productivity vs. feed substrate
concentration.

where φi =
√

2sin(iπm) and ai, bi denote the time de-
pendent coefficients of the sine expansions (it can be eas-
ily verified that with these basis functions the boundary
conditions are satisfied). Following the usual procedure
of substituting the expansions to the partial differential
equations and taking the inner product with the adjoint
functions, an infinite set of ODEs for the time varying co-
efficients can be obtained. To obtain a finite-dimensional
approximation of the infinite dimensional model, the in-
finite series expansion was truncated to include n = 20
terms.

Open-loop Behavior. Initially, the effect of the di-
lution rate D and the feed substrate concentration Sf

on the steady state productivity DP was analyzed. The
analysis established that there is a pair of these oper-
ating parameters, D = 0.18h−1 and Sf = 34g/l, where
the productivity is maximized (the maximum is approx-
imately DPmax = 4.93g/l/h). Figure 7 shows a plot
of the productivity as a function of the feed substrate
concentration at steady state, for D = 0.18h−1. The
occurrence of a maximum in the productivity is con-
sistent with the results obtained in Henson and Seborg
(1992) which considered a continuum model consisting of
biomass, substrate and product balances, with the same
functions and parameters for cell growth, substrate con-
sumption and product formation. This behavior is also
indicative of the nonlinearity of the system and moti-
vates the design of nonlinear controllers to maintain the
productivity close to its maximum.

Nonlinear Productivity Control. The control
study focused on controlling the productivity y = DP
close to its maximum value ysp = 4.93g/l/h using the
feed substrate concentration Sf as manipulated input.
The dilution rate was fixed at D = 0.18h−1, and hence
the control strategy essentially aimed at maximizing the

product concentration.
The finite-dimensional approximation of the process

model was used as the basis for the controller design.
Specifically, the relative degree of this model was found
to be two, as long as the reactor operates away from
washout conditions and from a manifold which intersects
the equilibrium curve of Figure 7 approximately at the
maximum productivity (note that due to the complexity
of the model one has to rely on numerical approxima-
tions for the above observations). Also, the zero dynam-
ics with respect to the output variable was numerically
found to be locally asymptotically stable at the setpoint
conditions.

A nonlinear state feedback controller was designed
that induces the following linear response in the closed-
loop system:

γ2
d2y

dt2
+ γ1

dy

dt
+ y = ysp (41)

For comparison purposes, the approximate finite dimen-
sional model was also linearized (around the steady state
conditions corresponding to the setpoint), and a linear
state feedback controller was designed on the basis of
the resulting linear model to enforce the same behavior
as above.

Figure 8 shows the results of a representative simula-
tion run for γ1 = γ2 = 10. The initial cell mass distribu-
tions in the two stages, and the substrate and product
concentrations were obtained from the steady state cor-
responding to Sf = 25g/l. The corresponding initial
productivity was y = 3.95g/l/h, which is approximately
20% smaller than the setpoint value. Notice that the
nonlinear controller induces the desired closed-loop re-
sponse and smoothly brings the system to the desired
setpoint. On the other hand, the output response un-
der the linear controller is considerably more sluggish,
taking almost twice as long to bring the productivity to
its setpoint. Further, the manipulated input for the lin-
ear controller exhibits a much larger peak in the initial
part of the response. For larger deviations from the set-
point, the linear controller led to closed-loop instability,
whereas the nonlinear controller continued to perform
very satisfactorily (successful results were obtained with
the initial productivity being as much as seven times
smaller than the maximum productivity).

A second simulation run addressed the disturbance re-
jection properties of the two controllers. Specifically,
the actual value of the maximum specific growth rate
was assumed to be approximately 10% smaller than the
nominal one. The productivity setpoint was chosen as
ysp = 4.43g/l/h which corresponds to the approximate
maximum productivity for the actual value of the max-
imum specific growth rate. Integral action was incorpo-
rated in both controllers. Figure 9 shows the controlled
output and manipulated input responses. The nonlinear
controller exhibits again a faster response, with smaller



Dynamics and Control of Cell Populations in Continuous Bioreactors 287

0 20 40 60 80 100 120 140 160 180 200
3.8

4

4.2

4.4

4.6

4.8

5

time (h)

P
ro

du
ct

iv
ity

 (
g/

l/h
) nonlinear

linear   

0 20 40 60 80 100 120 140 160 180 200
25

30

35

40

45

50

55

time (h)

F
ee

d 
S

ub
st

ra
te

 C
on

ce
nt

ra
tio

n 
(g

/l)

Figure 8: Closed-loop responses under linear and
nonlinear controllers—setpoint tracking.

deviations from the setpoint compared to the linear con-
troller.

Concluding Remarks and Future Re-
search

Cell growth systems are characterized by overwhelming
complexity and variety. The dynamics of such systems
can be described at various levels of detail. In this paper,
we focused on continuous reactors used for growth of mi-
crobial populations, and presented an overview of recent
results in dynamical analysis and control which account
directly for the heterogeneous nature of cell populations.
These results illustrate the feasibility and advantages of
using cell population balance models as the basis for feed-
back control of bioreactors, and in our view, make a clear
case for further research towards the development and
practical application of such bioreactor control strate-
gies. The opportunities for scientific and engineering
contributions, from a systems and control perspective,
in this direction are numerous. Some of these are out-
lined below.
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Figure 9: Closed-loop responses under linear and
nonlinear controllers—disturbance rejection.

Cell Population Modeling

The development and validation of cell population bal-
ance models for cultures of specific microorganisms (such
as yeast), through the combination of flow cytometric
measurements and inverse population balance modeling
techniques is a key research goal. Analyzing the effect
of environmental parameters such pH, temperature etc.
on these functions may also enable using such param-
eters as additional manipulated variables to achieve a
broader range of control objectives, e.g. simultaneously
controlling multiple moments of cell property distribu-
tions. Finally, the development of structured cell popu-
lation balance models for specific cultures is the ultimate
goal in this direction; such models, although invariably
complex, can further broaden the range of control ob-
jectives that can be achieved, e.g. controlling metabolic
pathways at such a distributed level.

Dynamic Analysis of Cell Population Models

Despite the fact that cell population balance models have
been available for over thirty years, the literature on
their dynamics is very sparse. Important open theoreti-
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cal questions include the existence and stability of both
steady-state and periodic solutions. Addressing these
questions, either on the basis of the PDE models them-
selves or on the basis of ODE approximations obtained
from spatial discretizations is a key research task. Dy-
namic simulation is another important tool to address
these problems and to investigate other control relevant
dynamics such as bifurcations between solutions. Un-
structured models are a reasonable starting point for
such studies owing to their ability to capture population
dynamics with minimal complexity. Analysis of struc-
tured models is a considerably more difficult problem
but offers the potential to enhance understanding of the
complex interactions between individual cell metabolism
and cell population dynamics.

Cell Distribution Control

Further automating and refining on-line flow cytometry
and cell staining techniques, to be able to obtain rapid
and robust measurements of desired cell property distri-
butions, is clearly an essential task towards the practi-
cal application of control laws derived on the basis of
cell population balance models. At the level of con-
troller design, translating general operational objectives
into specific control objectives involving the measured
distribution properties, and evaluating a wide variety of
controller design methods with regard to their suitabil-
ity for these objectives are clearly important tasks that
need to be addressed for specific cultures. Integrating
sensor development and control algorithm development
through laboratory experiments is also necessary to be
able to prototype control systems suitable for industrial
applications.

In closing we note that much like the results presented
in this paper are the outcome of fruitful collaborations
between biochemical engineers and control engineers in
our respective groups, the future research goals out-
lined above can be most effectively pursued through such
cross-disciplinary collaborations.
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