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Abstract
Crystallization from solution is an industrially important unit operation due to its ability to provide high purity separa-
tions. The control of the crystal size distribution can be critically important for efficient downstream operations such as
filtration and drying, and product effectiveness (e.g., bioavailability, tablet stability). This paper provides an overview
on recent developments in the control of industrial crystallization processes. This includes descriptions of recent activ-
ities in the modeling, parameter estimation, state estimation, analysis, simulation, optimization, control, and design of
crystallization processes.
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Introduction

Crystallization from solution is an industrially important
unit operation due to its ability to provide high purity
separations. For efficient downstream operations (such
as filtration and drying) and product effectiveness (e.g.,
bioavailability, tablet stability), the control of the crys-
tal size distribution can be critically important. Also
important is crystal purity and the crystal shape. The
purity of the crystals is especially important in the food
industry, where the crystals are consumed by humans.
The crystal size and shape affects the dissolution rate,
which is important for crystals that dissolve during final
use (Winn and Doherty, 2000). In the pharmaceutical in-
dustry, the relative impact of drug benefit versus adverse
side effects can depend on the dissolution rate. Control
of crystal size and shape can enable the optimization of
the dissolution rate to maximize the benefit while mini-
mizing the side effects. For crystals used in photography,
the size and shape uniformity is the principle concern of
the customer (Miller and Rawlings, 1994). Poor control
of crystal size and shape can result in unacceptably long
filtration or drying times, or in extra processing steps,
such as recrystallization or milling. Purity is especially
important in the pharmaceutical industries, in which the
crystals will be consumed.

The fundamental driving force for crystallization from
solution is the difference between the chemical potential
of the supersaturated solution and that of the solid crys-
tal face (Kim and Myerson, 1996; Mullin and Sohnel,
1977). It is common to simplify this by representing the
nucleation and growth kinetics in terms of the supersatu-
ration, which is the difference between the solute concen-
tration and the saturated solute concentration. Figure 1
is a schematic of a batch crystallizer where the supersatu-
ration is caused by decreasing the temperature. Another
method of supersaturation creation is by adding a sol-
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Figure 1: Schematic of a batch cooling crystallizer.

vent for which the solute has a lower solubility—this is
often called drowning out, or antisolvent addition. Yet
another common method of creating supersaturation is
evaporation.

The challenges in crystallization processing are signif-
icant. First, there are significant uncertainties associ-
ated with their kinetics. Part of the difficulty is that the
kinetic parameters can be highly sensitive to small con-
centrations of contaminating chemicals (Shangfeng et al.,
1999), which can result in kinetic parameters that vary
with time. Another significant source of uncertainty in
industrial crystallizers is associated with mixing. Al-
though crystallization models usually assume perfect
mixing, this assumption is rarely true for an industrial-
scale crystallizer.

Crystallization processes are highly nonlinear, and are
modeled by coupled nonlinear algebraic integro-partial
differential equations. For the case of distribution in
shape as well as overall size, there are at least three in-
dependent variables in the equations (Ma et al., 1999).
Simulating these equations can be challenging because
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the crystal size distribution can be extremely sharp in
practice, and can span many orders of magnitude in crys-
tal length scale (0.01 nm to 200 µm) and time scale (20
µs to 100 min).

Another challenge in crystallization is associated with
sensor limitations. The states in a crystallizer include
the temperature, the solute concentration, and the crys-
tal size and shape distribution. The solute concentration
must be measured very accurately to specify the nucle-
ation and growth kinetics. Because the kinetics are func-
tions of the difference between two solute concentrations
(one of these being the saturated solute concentration),
the error in the difference is much larger than the error
in a single solute concentration measurement. Obtaining
an accurate measurement of the full crystal size distribu-
tion (CSD) is even more challenging. Hence it is desir-
able to estimate the states from the noisy measurements
that are available.

The last review of efforts to control crystallization pro-
cesses was published in 1993 (Rawlings et al., 1993).
This paper reviews efforts towards the control of crys-
tallization processes, focusing mostly on results since
1993. The next section describes the current status of
sensor technologies for crystallization processes. This
is followed by descriptions on crystallization modeling
including model structure determination and parameter
estimation. Activities in state estimation are reviewed.
Investigations into the stability of continuous crystal-
lization processes, and the robustness analysis of batch
crystallization processes are described. The simulation
techniques of method of moments, weighted residuals,
discretized population balances, and Monte Carlo simu-
lation are reviewed. On-line and off-line approaches to
optimizing and controlling crystallization processes are
reviewed, including a discussion of efforts to relate pro-
cess design to process control. The paper concludes with
some predictions on where future efforts are headed.

Measurements

Measurements of both solute concentration and the crys-
tal size distribution are necessary for effective estimation
and control.

Solute Concentration Measurement

The nucleation and growth rates are strongly dependent
on the solute concentration, making its measurement
necessary for estimating kinetic parameters, and highly
useful for feedback control. One technique is to mea-
sure the refractive index (Helt and Larson, 1977; Mullin
and Leci, 1972; Nyvlt et al., 1994; Sikdar and Randolph,
1976). Although this method can work when there is sig-
nificant change in the refraction index with solute con-
centration, the method is sensitive to ambient light and
air bubbles.

Another approach to obtaining solute concentration

measurements is to sample the crystal slurry, filter out
the crystals, and then measure the density of the liquid
phase. This procedure has been demonstrated on-line for
the cooling crystallization of potassium nitrate in water
(Matthews III, 1997; Miller and Rawlings, 1994; Riebel
et al., 1990; Redman and Rohani, 1994; Redman et al.,
1997). The use of an external sampling loop can lead
to operational difficulties such as clogging of the screen
used to filter out the crystals, and to fluctuations in tem-
perature in the sampling loop. This latter problem is es-
pecially important for crystals with a small metastable
zone width, where a slight reduction in temperature can
cause crystals to nucleate in the densitometer, leading to
inaccurate solute concentration measurements.

In the crystallization of electrolytes, the solute concen-
tration can be estimated by placing a conductivity probe
in the crystal slurry (David et al., 1991; Franck et al.,
1988; Garcia et al., 1999). While avoiding the opera-
tional problems associated with sampling, conductivity
measurement has its own issues. It has been difficult to
apply this technique to batch cooling crystallization pro-
cesses, because conductivity strongly depends on tem-
perature. Hlozny et al. (1992) and Nyvlt et al. (1994)
extended the measurement technique so that tempera-
ture effect can be taken into consideration. This tech-
nique has been successfully applied to a batch cooling
crystallizer (e.g., Jagadesh et al. (1996)).

An indirect method of determining the solute concen-
tration is to use calorimetry, in which the measurements
of temperature and flow rates are combined with a dy-
namic energy balance of the crystallizer (Fevotte and
Klein, 1994, 1995, 1996). This approach has been demon-
strated for the batch crystallization of adipic acid in wa-
ter (Monnier et al., 1997). Solute concentration esti-
mates determined from calorimetry can be expected to
drift as the crystallization progresses.

Kuehberger and Mersmann (1997b) developed a spe-
cial device for measurement of supersaturation. When
the mother liquor contacts with a cold metal plate, crys-
tals deposit on the surface. According to the amount
of the solute deposited, the temperature of the metal
plate rises due to the heat of crystallization. Thus, by
detecting the temperature rise of the plate, the solute
concentration can be estimated.

Loeffelmann and Mersmann (1999) suggested using
the difference in electromagnetic properties of the crys-
tal and solution. In this approach, a cooling plate is
equipped with electrodes and the impedance between the
electrodes is measured. The temperature of the plate is
gradually lowered. When deposition of the crystals on
the plate is detected by a change in impedance, the tem-
perature is recorded and used to calculate the supersat-
uration. As an alternative to the impedance, they also
suggested using attenuation ratio and phase change of
electro-acoustic waves in order to detect crystal deposi-
tion.
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Figure 2: ATR-FTIR spectra for dihydrogen phos-
phate in water for five solute concentrations.

A limitation to the aforementioned methods for su-
persaturation measurement is the inability to track the
concentrations of multiple dissolved species or multiple
solvents.

The feasibility of attenuated total reflection (ATR)
Fourier transform infrared (FTIR) spectroscopy for the
in situ measurement of solution concentration in dense
crystal slurries has been demonstrated (Dunuwila et al.,
1994; Dunuwila and Berglund, 1997; Groen and Roberts,
1999; Lewiner et al., 1999, 2001). In ATR-FTIR spec-
troscopy, the infrared spectrum is characteristic of the
vibrational structure of the substance in immediate con-
tact with the ATR immersion probe (e.g., see Figure 2).
A crystal in the ATR probe is selected so that the depth
of penetration of the infrared energy field into the so-
lution is smaller than the liquid phase barrier between
the probe and solid crystal particles. Hence when the
ATR probe is inserted into a crystal slurry, the sub-
stance in immediate contact with the probe will be the
liquid solution of the slurry, with negligible interference
from the solid crystals. That the crystals do not signifi-
cantly affect the infrared spectra collected using the ATR
probe has been verified experimentally (Dunuwila et al.,
1994; Dunuwila and Berglund, 1997). The combination
of ATR-FTIR with advanced chemometrics analysis can
measure solute concentrations with accuracy as high as
±0.1 wt% in dense crystal slurries (Togkalidou et al.,
2000) (see Figure 3). A significant advantage of ATR-
FTIR spectroscopy over most other methods for solute
concentration measurement is the ability to provide si-
multaneous measurement of multiple chemical species.

On-line Crystal Size Distribution Measurement

Several CSD sensors have become available. One is
a Coulter Counter (Allen, 1990), which electronically
counts particles as the crystal slurry passes through an
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Figure 3: Solubility curve constructed using chemo-
metric model and ATR-FTIR probe inserted into
dense crystal slurry.

orifice. Coulter Counters have small flow orifices that
are prone to clogging, especially for high density crystal
slurries, and may require grounding of the fluid to reduce
background noise (Rovang and Randolph, 1980).

The forward light scattering approach is to direct a
laser beam through a sample cell, and collect the light
scattered through the cell. These instruments, such as
the Malvern or the Microtrac particle sizers, can give
useful CSD measurement for slurries with low solids den-
sity (Eek, 1995; Eek and Dijkstra, 1995; Randolph et al.,
1981). Information on particle shape can be determined
by examining the light intensity variations (Heffels et al.,
1994). This shape information can be used to correct
the particle size determination using commercial laser
diffraction instrumentation (Heffels et al., 1996). The
CSD in dense crystal slurries can be addressed by an au-
tomatic sampling and dilution unit (Jager et al., 1987);
however, it is challenging to collect a representative sam-
ple from an industrial-scale crystallizer and ensure that
the temperature is constant enough so that the sample
remains representative.

The transmittance, which is the fraction of light that
passes through the solution, can be measured either us-
ing a light scattering instrument or a spectrophotome-
ter. The projected area of the crystals can be computed
from the transmittance. For dense crystal slurries, the
transmittance is essentially zero, and no useful informa-
tion is obtained. The transmittance measurement has
been used for the estimation of kinetic parameters for
the crystallization of naphthalene in toluene (Witkowski,
1990; Witkowski et al., 1990), potassium nitrate in water
(Miller, 1993; Miller and Rawlings, 1994), and a photo-
chemical in heptane (Matthews III, 1997; Matthews and
Rawlings, 1998).

An alternative light scattering approach is based on
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Figure 4: Chord length distribution of KDP collected
from a Lasentec FBRM M400L.

inserting a probe directly in the crystallizer, focusing a
laser beam forward through a window in the probe tip,
and collecting the laser light scattered back to the probe.
This approach can measure CSD information even for
dense crystal slurries. One of the first commercial in-
struments of this type, the Par-Tec 100 analyzer, has
been used to estimate kinetic parameters for the crystal-
lization of adipic acid in water (Monnier et al., 1996) as
well as in feedback control (Redman et al., 1997). Sev-
eral publications describe applications of updated ver-
sions of the instrument, referred to as Lasentec Focused
Beam Reflectance Measurement (FBRM) (Farrell and
Tsai, 1995; Barrett and Glennon, 1999; Ma et al., 1999;
Tahti et al., 1999; Togkalidou et al., 2001), which are
rugged enough to be implemented on industrial crystal-
lizers.

Like any laser-based method applied to a crystal
slurry, a transformation is required to relate the collected
laser light to the crystal size distribution. The FBRM
instrument measures the chord length distribution (e.g.,
see Figure 4) as the laser beam emitted from the sen-
sor randomly crosses two edges of a particle, with this
distance being the chord length. There have been ef-
forts to relate the chord length distribution to the parti-
cle size distribution, both by the Lasentec company and
by some independent researchers (Becker, 2001; Clark
and Turton, 1988; Han and Kim, 1993; Liu et al., 1998;
Worlitschek and Mazzotti, 2000; Simmons et al., 1999;
Tadayyon and Rohani, 1998). Chemometrics methods
have been used to relate the chord length distribution
to other variables, such as filtration resistance (Johnson
et al., 1997; Togkalidou et al., 2001).

A weakness of the aforementioned CSD sensors is that
the distribution of crystal shape cannot be directly deter-
mined. For example, a collection of rod-like crystals are

characterized mathematically by a two-dimensional dis-
tribution (one dimension being the length, and the other
dimension being the breadth), but the light scattering
instruments only provide one-dimensional distributions.
It is impossible to uniquely determine a two-dimensional
distribution from a one-dimensional distribution. The
shape information is “averaged out” to obtain a one-
dimensional distribution.

Another instrument that has become available re-
cently is the Lasentec Particle and Vision Measurement
(PVM) system, in which pictures are taken of the crys-
tals in solution using a probe inserted directly into the
dense crystal slurry (Lasentec, 1997). This video micro-
scope can collect 10-30 pictures a second, providing two-
dimensional snapshots of the crystals in real time. On-
line video microscopy can image crystals as small as 5-15
microns (Lasentec, 1997; Pacek et al., 1994), not as small
as obtained by laser scattering instruments. Also, the
quality of the images limits the ability of imaging soft-
ware to automatically identify individual particles (e.g.,
see Figure 5), and quantify the characteristics of these
particles (e.g., maximum axis, minimum axis, aspect ra-
tio). On-line video microscopy has the advantage that
the crystals are directly observed, allowing shape infor-
mation to be obtained. Also, the PVM in particular is a
rugged instrument suitable for use in industrial applica-
tions. The main use of on-line video microscopy today
is for qualitative troubleshooting, with some researchers
working on how to use the images for quantitative pre-
diction (Baier and Widmer, 2000; Braatz et al., 2000b).
One approach is to use multiway principal component
analysis, where features are tracked in the space of prin-
cipal components (Bharati and MacGregor, 1998). An
alternative is to take moments of the images and then
to use principal components analysis to relate the im-
age moments to characteristics of the crystals (Braatz
et al., 2000b). Given the importance of crystal shape in
applications, and that progress becomes easier as com-
puters continue to increase in speed, it seems likely that
quantitative predictions will become available.

An alternative approach to on-line video microscopy
is to remove slurry from a sampling stream and flow it
as a thin film over the focal region of an ordinary light
microscope (Eek, 1995; Puel et al., 1997; Rawlings and
Patience, 1999). A disadvantage of this approach is the
requirement of having a sampling stream in which the
crystals may not be representative of what is in the crys-
tallizer. A strong advantage of this approach is that the
contrast between crystals and background can be made
much sharper, and the number of overlapping crystals
can be reduced. The images are sufficiently clean that
standard image analysis algorithms can be used (Rawl-
ings and Patience, 1999).
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Figure 5: Image of KDP crystals in solution collected
from a Lasentec PVM 700L.

Modeling

Model Structure Determination

Derivation of optimal operation patterns or design of
control system should be carried out using a model that
describes the behavior of the process with sufficient ac-
curacy. The process models can be classified into two
groups: physical models, which can be obtained using
first principles, and models identified from time series
data. Regardless of the type of the model, the model
building involves determination of the model structure
and estimation of parameters appearing in the model
equations. We will discuss the problems of model struc-
ture determination in the first half of this section, which
is followed by a discussion of some other topics.

There are several papers that discuss methods for
modeling the dynamic behavior of the crystallizer using
time-series data. Bravi et al. (1995) identified a dynamic
model of a continuous crystallizer using artificial neural
networks. Time series data generated in a series of sim-
ulations using gPROMS were used to train the neural
network so that the fines slurry density is predicted from
the feed flow rate, the flow rate recirculated through the
fines dissolver, and the inlet concentration. The dynam-
ics of the input and output signals were examined to de-
termine the sampling frequency and the number of past
data points to use for prediction of the behavior of the
fines slurry density.

Rohani et al. (1999a) also conducted a simulation
study on the modeling of the crystallizer behavior us-
ing ARX and neural network models. The identifica-
tion data were generated from simulation using a model
of a continuous cooling crystallizer that has been previ-
ously verified with experimental data. The fines disso-
lution rate, the clear liquor advance flow rate, and the
crystallizer temperature were used as inputs, and out-

put variables were three variables related to crystal size
distribution, the purity, and the magma density of the
product stream. With the view of using the model in
model predictive control (MPC), the prediction perfor-
mance of each model was examined in terms of 1 step
ahead and 50 step ahead predictions.

When a crystallizer is subjected to an excitation signal
such as a pseudo-random binary sequence (PRBS), the
state variables may deviate far from the steady state due
to the strong nonlinearity of the crystallizer. Thus, in or-
der to build a linear dynamic model around the steady
state, it is advantageous to collect time series data when
the process is under feedback control. Eek et al. (1996)
applied closed loop identification techniques to the mod-
eling of the continuous crystallization of ammonium sul-
fate. Two different closed loop identification methods,
direct identification (Soderstrom and Stoica, 1989) and
a two-step method (van den Hof and Schrama, 1993),
were applied to build three-input three-output models
that predict the fines concentration, crystal mean size,
and the magma density based on the measurements of
fines flow rate, product flow rate, and total heat input.
Canonical observability form was the assumed model
structure, and the data for identification were obtained
by exciting the process using by generalized binary noise
sequence (Tullken, 1991). The prediction performance of
the resulting model was as good as that of first principle
models.

When building ARX or neural network models, the
model structure determination and parameter estima-
tion are carried out rather simultaneously. On the other
hand, when a first principle model is to be constructed,
before estimating parameters it is necessary to determine
the model structure suited for the description of the crys-
tallizer dynamics. Therefore, the process of building a
first principle model is more complicated than building
ARX or neural network models. However, first principle
models have several advantages over ARX and neural
network models. In particular, the operating range of
conditions where a first principle model can provide ac-
curate predictions is wider than for ARX or neural net-
work models. This is because the first principle model
incorporates the physical properties of the crystallizer
into the model. When the control system is not per-
forming satisfactorily, the first principle model can be
used to analyze the cause behind this. Also, a first prin-
ciple model enables an examination of the relationship
between the design and controllability of the process.

When building a physical model of a batch crystallizer,
it is usually assumed that the slurry in the crystallizer
is perfectly mixed and the spatial distributions of the
CSD and supersaturation are negligible. In this case,
when modeling a batch crystallizer, it is only necessary
to identify the crystal growth rate and nucleation rate (in
the absence of agglomeration, attrition, or similar phe-
nomena). On the other hand, the dynamic behavior of
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Figure 6: Schematic of a continuous DTB crystal-
lizer.

an industrial continuous crystallizer is influenced by the
spatial distribution of CSD and supersaturation. This is
because the volume of continuous crystallizer is usually
very large. It is said that the continuous crystallization
is not economically advantageous over batch crystalliza-
tion when the production rate is below 500 kg/hr (Wey,
1993). Figure 6 shows the schematic diagram of a con-
tinuous DTB evaporative crystallizer. A portion of fines
is extracted through the settling zone around the baf-
fle and fed to the external heater, in which the slurry
is heated to dissolve crystals. This serves to reduce the
total number of crystals and increases the product mean
size. Only the crystals large enough to fall against the
upward flow in the elutriation leg flow into the product
stream. The CSD and supersaturation at each periph-
eral device are different from those in the crystallization
vessel.

Jager et al. (1991) built a model of a continuous crys-
tallizer in such a way that the spatial distribution of su-
persaturation can be taken into consideration. In their
model, the crystallizer is divided into three sections. The
changes in CSD and supersaturation in a lump of fluid
element is calculated on the assumption that the lump
circulates through the three sections in turn. They con-
firmed that the spatial distribution of supersaturation
influences the dynamic behavior of a large scale crys-
tallizer. The idea of circulating lump of fluid element
was also applied to simulation of a batch crystallizer by
Bohlin and Rasmuson (1996). They concluded that the
non-ideal mixing of fluid does not have a strong influence
on the performance of batch crystallizers.

Kramer et al. (1996) suggested using a compartmen-
tal approach for modeling crystallization processes. In
this approach, the crystallizer vessel is divided into
smaller parts, each of which is assumed to be well-mixed.
Bermingham et al. (1998) presented a heuristic approach

for derivation of a compartmental model for a contin-
uous crystallizer. The information needed in this ap-
proach can be obtained by making use of computational
fluid dynamics (CFD). They suggested that the com-
partments should be chosen in such a way that the gra-
dients of supersaturation and energy dissipation rate in
one compartment are sufficiently small. Sotowa et al.
(2000) proposed a method for deriving an expression for
classification of crystals between compartments based on
the behavior of particles simulated using CFD.

Kramer et al. (1999) showed an approach to the de-
sign of a large scale crystallizer using the compartmental
model. First, kinetic parameters were identified by con-
ducting an experimental study using a 22-liter crystal-
lizer. The resulting rate expressions were incorporated
into compartment models, and the performance for each
of the design alternatives were compared. The compari-
son between the model predictions and the experimental
results was presented by Neumann et al. (1999).

In an evaporative crystallizer, the external heater,
which provides the energy needed to evaporate solvent,
serves to reduce the number of fines by dissolution. In
previous studies on the dynamics and control of contin-
uous crystallizers, it was commonly assumed that the
fines entering the external heater dissolve completely,
and thus the stream recycled from the heater to the
vessel does not contain any crystals. However, in prac-
tice the fines do not dissolve completely in the external
heater, since the residence time of the slurry within the
external heater is very short. Naito et al. (1999) built
a model of an external heater by taking account of the
finite dissolution rate of crystals. The model was de-
rived using a dissolution rate equation that was identi-
fied using experimental data. They demonstrated that
the behavior of the crystallizer is strongly influenced by
the degree of fines dissolution in the external heater.

There are two main approaches to simulating changes
in the distribution of crystal shape in a crystallizer. One
way is to model shape dynamics as changes in the crystal
length-to-width ratio (Matthews and Rawlings, 1998).
The alternative is to model the entire n-dimensional crys-
tal size distribution, where n is the number of indepen-
dent growth faces (Togkalidou and Braatz, 2000). For
example, n = 2 for modeling rod-like crystals, where one
dimension is the crystal length and the other is the crys-
tal width (equal to breadth). Both methods introduce
additional model parameters to be estimated.

Although various models have been used in the study
of crystallizer control and operation, agglomeration is
not usually taken into consideration in the population
balance equation. Jagadesh et al. (1996) demonstrated
that large crystals can be obtained by loading suffi-
ciently large amount of seed crystals in batch crystal-
lization. They argued that this is because newly born
nuclei rapidly agglomerate with other crystals when the
number of seed crystals is large. In order to derive an op-
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timal policy for such an operation, the model must take
agglomeration into consideration. However, the popula-
tion balance equation with agglomeration is more chal-
lenging to analyze, and the identification of the agglom-
eration rate is more difficult. Recent developments in
the analysis of crystallization with agglomeration should
be incorporated into dynamic studies.

While many physical models are available for primary
nucleation (this is nucleation directly from solution),
most industrial crystallizers are seeded, with most of the
nucleation occurring from particle-particle and particle-
impeller collisions (this is called secondary nucleation).
A physical model of secondary nucleation rate has been
presented by Gahn and Mersmann (1997, 1999a,b). In
this model, the number and distribution of secondary
nuclei arising from attrition are predicted based on the
frequency of crystal collision with the impeller, and the
internal stress distribution at the time of each collision.
This model of nucleation kinetics would represent a sig-
nificant advance in crystallization modeling if the pro-
posed model is verified by experimental data.

Progress in the computer technology has enabled the
numerical simulation of slurry flow in a crystallizer
with complex internal structure (see Simulation Section).
CFD simulation provides hints for defining compartmen-
tal models, as well as information on particle segregation
in the vessel. However, a limited number of studies have
been conducted on the use of CFD results in the mod-
eling of crystallizer behavior (Wei and Garside, 1997).
More intensive effort should be conducted to enhance
the progress in the modeling methodologies.

Estimation of Kinetic Parameters

Once the model structure is specified, the modeling prob-
lem is reduced to a parameter estimation problem. In
crystallization processes, the most important parameters
to be estimated are those related to the kinetics of crys-
tal growth and crystal formation/depletion. In order to
build a first principle model of a crystallizer, it is nec-
essary to express each of the rates as a function of the
operating conditions and state of the slurry.

When a crystal grows, solute in the bulk is transported
to the crystal surface by the concentration gradient and
then it is integrated onto the crystal surface. When rate
equations for surface integration and mass transfer are
combined in series, a more complicated growth rate equa-
tion is obtained. It is common in the study of the op-
eration and control of crystallizers to use the empirical
power-law expression to describe the crystal growth rate:

G = kg∆Cg (1)

where G is the crystal growth rate, ∆C is the super-
saturation, and kg and g are parameters that need to
be estimated. When the growth rate is assumed to be

size-dependent, Equation 1 is modified:

G = kg∆CgGx(x) (2)

where Gx(x) represents variation of growth rate by the
crystal size, x. When the effect of temperature on the
growth rate cannot be neglected, kg is assumed to be an
Arrhenius type function of temperature.

As mentioned earlier, nucleation can be classified into
two types. Primary nucleation takes place when the su-
persaturation is high. In the secondary nucleation, fine
fragments of crystalline substance arise as a result of at-
trition or breakage of crystals which are already present
in the liquor. These fragments then grow to be larger
crystals. An empirical rate expression for nucleation is:

B1 = kn∆Cn (3)

where B1 represents the number of primary nuclei that
arise per unit time. Experimental data must be used to
estimate the values of kn and n. A commonly used rate
equation for secondary nucleation is

B2 = kbM
j
T ∆Cb (4)

where B2 is the occurrence rate of secondary nuclei, and
MT is the magma density. In this case, three parameters
(kb, j, b) need to be identified using experimental data.
Again, the parameters kn and kb are usually assumed
to be an Arrhenius type function of temperature, when
the temperature effect on the nucleation rate needs to be
taken into consideration.

For estimation of the values of the parameters in
the crystal growth and nucleation rates, the following
approach is most commonly used. When a continu-
ous MSMPR (mixed-suspension mixed-product removal)
crystallizer is at a static steady state, the relationship be-
tween the crystal size, x, and the population density of
the crystal, n(x), can be written as:

n(x) = n0 exp
(
− x

Gτ

)
(5)

where n0 is the population density of nuclei, and τ is the
mean residence time. As can be seen from this equation,
the population density distribution appears as a straight
line on the semi-log plot. The slope and the intercept can
be used to calculate the growth rate and the nucleation
rate at the operating condition. When data points are
collected at various operating conditions, the parameters
in Equations 1, 3, and 4 can be identified. There are
many other approaches to parameter identification that
are based on the population balance equation. Their
details can be found elsewhere (e.g., Tavare, 1995).

There have been several studies in which the param-
eter estimation problem is solved as an optimization
problem. Dash and Rohani (1993) used Gauss-Newton
method to solve the optimization problem. The param-
eters to be estimated are the five parameters that ap-
pear in the rate equations. The objective function was
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defined as the weighted sum of squared errors of the ini-
tial solute concentration and the CSD at four instances
during batch operation. Qiu and Rasmuson (1994) esti-
mated five parameters in the growth and nucleation rate
equations. In the experiments, the solute concentration
was measured every five minutes by the density method,
and sieve analysis data of the final crystal size distribu-
tion was recorded. The optimization algorithm employed
was a combination of Gauss-Newton and quasi-Newton
methods. Farrell and Tsai (1994) also measured time se-
ries data of supersaturation and final crystal size distri-
bution, and used the prediction errors as the objective
function. They applied reparametrization to avoid ap-
pearance of ill-conditioned Hessian in the optimization
problem.

When estimating the parameters of a real process, it
is important to assess the reliability of the estimates.
Miller and Rawlings (1994) quantified the reliability of
the estimates in terms of a confidence ellipsoid and in
terms of confidence intervals. Using time series of so-
lute concentration and transmittance data, it was shown
that accurate nucleation and growth parameters could
be obtained with as little as two batch crystallization ex-
periments. Closely related work showed that appropriate
selection of the seed distribution used in the batch exper-
iments results in parameter estimates of higher accuracy
(Chung et al., 2000).

Usually studies on the parameter estimation of crys-
tallization processes aim at estimating parameters in the
crystal growth and nucleation rate equations. However,
in order to derive a model that describes the behavior of
an industrial crystallizers, there are many other param-
eters that need to be estimated. Particularly, a model
of large scale continuous crystallizers contains many pa-
rameters whose values depend on the structure and di-
mensions. For a 970-liter continuous crystallizer, Eek
et al. (1995a) constructed a model containing fifteen pa-
rameters. Six out of fifteen parameter values were fixed
using the results from preliminary experiments. The re-
maining nine parameter values were determined using a
parameter estimation algorithm. The objective function
was the prediction error of the light intensity data mea-
sured by the detector rings of the Malvern particle sizer.
Since the number of parameters is large, it is impor-
tant to evaluate the reliability of the estimates. In their
study, the standard deviations of the estimates obtained
using different experimental runs were used to assess the
magnitude of the parameter uncertainties.

The advantage of constructing model based on bench
scale crystallizers is that the experiments are relatively
cheap. However, the slurry in an industrial scale crys-
tallizer is not perfectly mixed. Thus, predictions based
on a model constructed from bench scale experiments
may not agree with the process measurements for an
industrial scale crystallizer, when the model is derived
by assuming perfect mixing within the crystallizer. In

building a model of an industrial process, it would be
best to estimate the values of the model parameters using
both process measurements (because this is based on the
real process) and experimental data obtained from bench
scale apparatus (since these measurements are cheap). It
is desirable to establish a unified modeling methodology
by exploiting various existing modeling techniques such
as experimental design and CFD.

State Estimation

The state of a crystallizer is characterized by the crys-
tal size distribution (which can include distributions in
shape, age, purity, or other variables), supersaturation,
and temperature. Since the volume of a bench scale
batch crystallizer is relatively small, the slurry in the
vessel is usually assumed to be perfectly mixed. In this
case, the state variables depend only on time. In in-
dustrial scale crystallization processes, the spatial dis-
tribution of state variables cannot be neglected in some
cases. Also, even when perfect mixing can be assumed,
the crystal size distribution in the crystallizer vessel is
significantly different from that in the fines recirculation
loop or that in the elutriation leg. Such a continuous
crystallizer can be modeled by combination of several
compartments in which homogeneity of the state vari-
ables can be assumed. In a real crystallization process,
only a limited number of state variables can be measured
on-line. If values of the unmeasured state variables are
required for optimal operation or control, they must be
estimated using an state estimator.

For successful state estimation by observers or Kalman
filters, it is necessary to use a model that describes
the process dynamics with sufficient accuracy. However,
since the crystallization process is a distributed param-
eter system, a population balance equation cannot be
directly used in state estimation, instead it is approxi-
mated by a finite order system. The moment method is
one of the most commonly used model reduction tech-
niques. When a closed set of ordinary differential equa-
tions is obtained by the moment method, a low order lin-
ear state space model can be easily obtained by lineariza-
tion. The state space model can be used for designing
observers and state feedback controllers (Tsuruoka and
Randolph, 1987).

Hashemi and Epstein (1982) discussed the controlla-
bility and observability of a crystallizer using a moment
model which took the energy balance into account. The
flow rate, concentration, and temperature of the feed
stream were taken as inputs, and the zeroth moment,
third-order moment, solute concentration, and tempera-
ture in the vessel were used as measurable variables. The
condition numbers of the controllability and observabil-
ity matrices were used as a measure of the controllability
and observability. It was shown that both controllability
and observability improve when the crystallizer is oper-
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ated at an operating condition with high supersatura-
tion.

Chiu and Christofides (1999) presented a framework
for controlling general nonlinear distributed parame-
ter systems. In this article, they suggested using a
Luenberger-type nonlinear observer for state estimation,
but the systematic procedure to determine the observer
gain was not clearly shown.

Eek et al. (1995b), Eek (1995), and de Wolf et al.
(1989) derived a 100th order state space model by dis-
cretizing the population balance equation using finite dif-
ferences. Eek et al. (1995b) and Eek (1995) calculated
the steady state Kalman gain using the linearized state
space model, by assuming that the laser scattering inten-
sity data is the measurable variable. When implementing
an observer to their experimental rig, a nonlinear model
was used in the observer, which takes nonlinearity of
the process into consideration. Estimates of the crys-
tal size distribution were used to calculate mean size,
which showed good agreement with the experimentally
measured values.

An increase in the number of measurable variables fa-
cilitates state estimation. However, as mentioned in the
Introduction, the number of measurable variables is lim-
ited. In particular, the measurement of the supersatu-
ration can be challenging, though this is the key state
variable that is the driving forces for crystal nucleation
and growth. Thus, intensive studies have been executed
to develop hardware and soft sensors to measure super-
saturation (see Measurements).

Analysis

Crystallization processes can illustrate some interesting
dynamical behavior, including a high sensitivity to pa-
rameter variations. This section focuses on investiga-
tions into the analysis of dynamical behavior in contin-
uous and batch crystallization processes.

Analysis in Continuous Crystallization

Continuous crystallization processes can demonstrate
undesirable oscillations in the crystal size distribution,
even in open loop. A primary cause of the oscillations is
by product being removed that has a different population
density than the average population density—this is re-
ferred to as classification. Industrial crystallizers are of-
ten designed to remove and dissolve the smallest crystals
(fines), and to preferentially remove the larger crystals
as product. Both of these practices increase the ten-
dency for the crystal size distribution to oscillate (Ishii
and Randolph, 1980; Randolph, 1980; Randolph et al.,
1973, 1977). Oscillations can also be caused by a high
order relationship between the nucleation rate and the
supersaturation (Randolph and Larson, 1988; Sherwin
et al., 1967), but this is probably not the most common
cause of the oscillations observed in practice (Randolph,

1980).
Most stability analyses are based on linearized sta-

bility analysis for a single continuous crystallizer, usu-
ally by determining the localized stability of the mo-
ment equations, or by calculating the spectrum of the
linearized integro-differential operator (Buyevich et al.,
1991a; Witkowski and Rawlings, 1987). These insta-
bilities are characterized as Hopf bifurcations. Condi-
tions have been derived for which a crystallization pro-
cess can exhibit multiple steady states (Lakatos, 1996;
Tavare, 1989; Tavare and Garside, 1985). Other in-
vestigations have studied the dynamic behavior under
forced oscillations (Buyevich et al., 1991b), where it is
possible to obtain more complex dynamic phenomena
such as resonance horns, quasi-periodic oscillations, and
chaos (Lakatos and Blickle, 1995). These studies sug-
gest that it may be wise in practice to suppress oscilla-
tory disturbances (for example, in the feed conditions)
to limit the complexity of dynamical behavior exhibited
in the crystallizer. The nonlinear dynamical behavior of
a cascade of well-mixed crystallizers has also been in-
vestigated (Natalukha, 1996). Nonlinear stability anal-
yses are supported by visualization software that pro-
duces phase portraits based on the simulation program
(Epstein and Sowul, 1980; Lakatos and Blickle, 1995;
Witkowski and Rawlings, 1987).

Oscillations can be reduced by manipulation of the
bulk throughput rate (Lei et al., 1971) or the fines de-
struction flowrate (Beckman and Randolph, 1977). The
main difficulty with implementing these early schemes
was the lack of measurements of the crystal size dis-
tribution (Randolph, 1980). Modern instrumentation
makes such schemes implementable (see Measurements
section).

Analysis in Batch Crystallization

Stability in a strict mathematical sense is not an issue
in batch or semibatch crystallization processes, since the
states of such a process cannot blow up in finite time. On
the other hand, having consistent product quality during
parameter variations or disturbances is a concern. Miller
and Rawlings (1994) provided a clear analysis of the
effect of model uncertainties on the product quality in
batch crystallizers. Matthews et al. (1996) investigated
the sensitivity of the optimal supersaturation profiles to
seed loading, profile duration, and the difference in su-
persaturation orders for nucleation and growth. Also,
the singular value decomposition was used to calculate
a vector of perturbations in the model parameters that
has the strongest effect on the supersaturation profile.
Several researchers have shown that the quality of the
product crystals is sensitive to the performance of the
tracking control to the optimal temperature profile (Chi-
anese et al., 1984; Bohlin and Rasmuson, 1992; Ma et al.,
1999a).

An approach was developed that quantifies the im-
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pact of such variations on the product quality without
exhaustive simulation of all possible process conditions
(Ma et al., 1999a; Ma and Braatz, 2001). The knowl-
edge of the worst-case model parameters can be used
to determine where experimental effort should be fo-
cused to improve model accuracy. The robustness anal-
ysis with regard to control implementation uncertainties
can guide the selection of the control instrumentation,
by determining where high precision sensing and actu-
ation are required. The computation of the worst-case
external disturbances determines which disturbances sig-
nificantly affect the product quality and should be sup-
pressed by redesign of the process or feedback control.
The approach was applied to batch crystallization simu-
lations, including to the multidimensional growth of crys-
tals used in nonlinear optics applications, where the nom-
inal parameters and uncertainties were quantified from
experimental data (Ma et al., 1999a,b; Ma and Braatz,
2001). Robustness estimates were provided with reason-
able computational requirements. It was found that a
temperature deviation of ±0.1K from the optimal pro-
file could result in substantial reductions in the product
quality.

Simulation

A significant roadblock to the development of estimation
and control strategies for crystallization processes, espe-
cially for crystals that change shape during the growth
process, is the lack of efficient simulation schemes for the
population balance equations. Many simulation studies
on crystal growth have been directed toward the solu-
tion of the population balance equation for unidirectional
crystal growth:

∂f

∂t
+

∂{G[c(t), T (t), r]f}
∂r

= h(r, t) (6)

where f(r, t) is the crystal size distribution, t is time, r
is the internal spatial coordinate (e.g., crystal size), c is
the solute concentration, T is the temperature, G is the
growth function, and h is the crystal creation/depletion
function. This equation is augmented with associated al-
gebraic and/or integro-differential equations to describe
the energy balance, aggregation, breakage, growth, and
nucleation phenomena. Simulating these equations is
challenging because the crystal size distribution can be
extremely sharp in practice, and can span many orders
of magnitude in crystal length scale (0.01 nm to 200 µm)
and time scale (20 µs to 100 min).

Several numerical techniques have been proposed
(Ramkrishna, 1985). The techniques can be separated
into four broad categories:

1. method of moments, in which only lower order mo-
ments of the crystal size distribution are simulated,
and unknown parameters of an assumed distribu-

tion are fitted to the computed moments (Hulburt
and Katz, 1964)

2. weighted residuals/orthogonal collocation methods,
in which the solution is approximated as linear com-
binations of basis functions (Singh and Ramkrishna,
1977)

3. finite difference methods/discretized population bal-
ances, in which (6) is replaced by difference schemes
(Kumar and Ramkrishna, 1996a)

4. Monte Carlo simulation, in which the histories of in-
dividual particles are tracked, each exhibiting ran-
dom behavior in accordance with a probabilistic
model (Maisels et al., 1999; Shah et al., 1977; Song
and Qiu, 1999).

The advantage of the method of moments is that only
a small number of ordinary differential equations needs
to be solved when the moments are closed (that is, form
a finite number of equations describing the lower order
moments which are not a function of the higher order mo-
ments). A weakness of the method of moments is that
the moment equations are not closed for most processes,
leading to an infinite number of coupled ordinary differ-
ential equations to solve. Another weakness is that, even
when the moment equations are closed, the numerical er-
rors in a fitted assumed distribution can be arbitrarily
large if the assumed distribution does not accurately pa-
rameterize the true distribution. Hence a general numer-
ical solution of the population balance equation cannot
be developed based on the method of moments. How-
ever, the method of moments does apply to many well-
mixed batch and continuous crystallizers with nucleation
and growth. These assumptions can be reasonable in
bench scale crystallizers such as used in teaching labora-
tories (Braatz et al., 2000a). The method of moments is
also useful for testing the accuracy of more sophisticated
numerical simulation codes.

In the application of the method of weighted resid-
uals to the population balance equation, the popula-
tion density is approximated by a linear combination
of user-specified time-independent basis functions with
time-dependent weighting factors. The basis functions
are selected so that the population density can be well
approximated with only a finite number of terms. The
linear combination of basis functions is substituted into
the population balance equation, and ordinary differen-
tial equations for the coefficients are derived with the
intent to minimize the error (or residual) in the popu-
lation balance equation. The system of ordinary differ-
ential equations can be solved using any standard solver
(Barton et al., 1998). A fast numerical algorithm results
when only a small number of terms are needed in the
expansion, which has been demonstrated for some crys-
tallizers (Rawlings et al., 1992; Witkowski and Rawlings,
1987). The primary weakness of the method of weighted
residuals is that basis functions that work well for one
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type of crystallization process may not work well for an-
other, which makes it difficult to derive a general fast al-
gorithm for crystallization simulation using this method.
This also applies to orthogonal collocation, which is es-
sentially a class of weighted residual algorithms. Re-
views of early work on the method of weighted residuals
are available (Ramkrishna, 1985; Rawlings et al., 1993),
including summaries of algorithms that combine orthog-
onal collocation with finite elements (Gelbard and Sein-
feld, 1978).

Several discretizations of the population balance equa-
tion have been investigated and have been applied to var-
ious particulate systems (Gelbard et al., 1980; Hounslow,
1990; Hounslow et al., 1988; Marchal et al., 1988; Muhr
et al., 1996). This includes an application to the simu-
lation of a crystallization process in which the crystals
have two characteristic growth axes, so that changes in
the crystal shape distribution are simulated (Puel et al.,
1997). Many of these algorithms were formulated with
the intent to conserve moments of the computed popula-
tion density. Different algorithms conserve different mo-
ments, and several choices of discretization points have
been investigated (Batterham et al., 1981; Kumar and
Ramkrishna, 1996b; Litster et al., 1995). Kumar and
Ramkrishna (1996a) provide a critical review of these
algorithms, including pointing out technical errors in
some of the papers. Various numerical problems can
occur when performing direct discretizations of the pop-
ulation balance equations. An approach that removes
these problems is to combine the discretization with
the method of characteristics (Kumar and Ramkrishna,
1997; Sotowa et al., 2000), which has been applied to
particulate processes with pure growth, simultaneous ag-
gregation and growth, and simultaneous nucleation and
growth (Kumar and Ramkrishna, 1997).

High resolution finite difference schemes also avoid the
numerical problems typically associated with discretiz-
ing population balance equations (Ma et al., 2001). The
high resolution methods are able to obtain second-order
accuracy without the undesirable oscillations that can
occur with naive second-order methods. A high resolu-
tion method that exploits sparsity and efficiently man-
ages memory resulted in a highly accurate dynamic sim-
ulation of the multidimensional crystal size distribution
for a system with an extremely sharp distribution (see
Figure 7), with the entire computation time in less than
10 minutes on a workstation. This was a simulation of
a batch crystallizer which produced prism-like crystals
with two characteristic length scales and nonlinear nu-
cleation and growth rates. Numerical analysis indicates
that the method can allow a coarse time discretization,
which is one of the main reasons for the short computa-
tion times (Ma et al., 2001).

The use of computational fluid dynamics (CFD) codes
is suitable for the simulation of crystallizers that are
not perfectly mixed, since in this case the simulation

Figure 7: Population density function for rod-like
crystals produced by nucleation and growth.

is best handled by solving the complete transport equa-
tions (Sha et al., 1999). CFD codes use either finite
elements or finite volume methods, in which the con-
servation equations are applied directly to subregions to
obtain numerical values for the variables of importance
(Koenig, 1998). While such codes should probably be
applied in the design of any industrial scale crystallizer,
the computations are rather intensive for such simula-
tions to be used for the development of estimation and
control algorithms.

Monte Carlo methods are especially suitable for sim-
ulating stochastic population balance equations, and for
especially complex systems (Ramkrishna, 1985). The
number of papers applying Monte Carlo techniques has
rapidly grown in recent years. Processes that have been
simulated include:

1. a continuous crystallizer with size-dependent growth
rate (Lim et al., 1998),

2. protein crystal growth (Durbin and Feher, 1991),
including the case where both monomers and aggre-
gates attach to the crystal surface (Ke et al., 1998;
Strom and Bennema, 1997)

3. imperfectly mixed draft tube baffled and forced cir-
culation crystallizers (Lim et al., 1999)

4. a crystallizer with attrition, in which there is a dis-
tribution of volumetric shape factors (Lim et al.,
1999)

5. crystallizers with simultaneous growth rate disper-
sion and aggregation (Van Peborgh Gooch and
Hounslow, 1996; Van Peborgh Gooch et al., 1996)

6. continuous crystallization of sodium chloride (Sen
Gupta and Dutta, 1990b) and sucrose (Sen Gupta
and Dutta, 1990a)
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An advantage of Monte Carlo methods is that such code
is relatively easy to write. A disadvantage of Monte
Carlo methods is that they can be rather computa-
tionally expensive, which is a drawback when incorpo-
rating such models into estimation and control algo-
rithms. Also, the main capabilities provided by Monte
Carlo methods—the ability to handle nearly arbitrary
stochastic phenomena and to handle extremely complex
systems—may not be needed for most industrial scale
crystallizers. The measurement noise is probably larger
than other stochastic phenomena for most industrial
scale crystallizers (Rawlings et al., 1993), in which case
an adequate model can be obtained by appending addi-
tive stochastic variables to the results of a deterministic
population balance equation simulation. Recent papers
have shown that non-Monte Carlo simulation techniques
(such as method of moments and finite differences) can
be applied to more complex multidimensional crystalliza-
tion processes, without requiring a significant increase in
algorithm complexity (Ma et al., 1999, 2001; Togkalidou
and Braatz, 2000).

Optimal Operation

The quality of crystals is determined by various factors
including mean size, crystal size and shape distribution,
and purity. An optimal operation problem of a crystal-
lizer is formulated as a problem of finding the operating
conditions that optimize an objective function defined by
these factors. This section focuses on such optimization
problems for an existing crystallizer, and the optimal siz-
ing problem of crystallizers will not be dealt with.

The study of optimal operating conditions for crystal-
lizers was initiated by Ajinkya and Ray (1974). Subse-
quent studies on the optimal operation of crystallizers
have usually focused on maximizing the crystal mean
size or minimizing the coefficient of variation. The rea-
son for this is as follows. The crystals produced in a
crystallizer are separated from the mother liquor in its
downstream processes in order to avoid both inclusion
of mother liquor as impurities and formation of bonding
between crystals. When the crystal mean size is small, a
large amount of mother liquor is retained between crys-
tals due to capillary attraction. In order to facilitate fil-
tration and drying operation, it is desirable to produce
large and mono-dispersed crystals.

Usually, formation of an excessive number of nuclei
results in smaller crystals with broad distribution. Thus,
it is important to operate the crystallizer in such a way
that unnecessary nucleation can be minimized.

Most of the studies on the optimal operation of batch
crystallizers focus on the derivation of the optimal tem-
perature profile in batch cooling crystallization. When a
batch cooling crystallizer is operated in a natural cooling
mode, the slurry temperature decays just like the step
response for a first order system. This means that at

the beginning of the operation, the reduction in tem-
perature is very quick, and a large number of nuclei
arise as a result of high supersaturation. On the other
hand, temperature changes only slowly near the end of
operation, and the nucleation rate becomes small. The
first discussion on the temperature profile that increases
the mean size is conducted by Mullin and Nyvlt (1971).
They suggested that in order to produce large crystals,
the crystallizer temperature should be changed in such a
manner that the nucleation rate remains constant during
the whole operation (Mullin and Nyvlt, 1971; Jones and
Mullin, 1974). Rohani and Bourne (1990b) presented a
simple method to calculate the temperature profile that
makes nucleation rate or supersaturation constant dur-
ing the operation. A method for calculating the opti-
mal supersaturation level in batch crystallization is sug-
gested by Mersmann (1995) and Kuehberger and Mers-
mann (1997a).

In the aforementioned studies, the optimal tempera-
ture trajectory has been derived on the assumption that
constant nucleation rate or constant supersaturation is
optimal. On the other hand, there are studies in which
the temperature profile is obtained as the solution of an
optimization problem using the quality of product crys-
tals as the objective function. Jones (1974) employed
the maximum principle to obtain the temperature profile
that maximizes the size of the seed crystals at the final
time. Chang and Epstein (1982) employed the mean size,
total crystal volume, and the variance of distribution as
the objective function, and the optimal temperature pro-
file for each objective is calculated using the maximum
principle.

In recent studies, the problem of deriving the opti-
mal temperature profile is formulated as a nonlinear op-
timization problem, which is then solved using general
purpose optimization algorithm. In Miller and Rawlings
(1994), the temperature profile that maximizes the ratio
of final seed mass to mass of nucleated crystals was ob-
tained using a successive quadratic programming (SQP)
code. Lang et al. (1999) used collocation on finite ele-
ments and reduced SQP to obtain the optimal temper-
ature profile of a cooling medium that maximizes the
mean size of product crystals produced by an unseeded
batch crystallization.

In cooling crystallization, the temperature profile is
often taken as the only optimization variable, although
there are many other factors that determines the quality
of the product crystals. Chianese et al. (1984) exam-
ined the impact of various parameters associated with
the operation of batch crystallizers on the crystal size
distribution of the product. They showed that the ag-
itation rate, mass of seed crystals, and the distribution
of seed crystals as well as temperature profile are im-
portant parameters that strongly affect the crystal size
distribution of products.

There are several studies that report the influence of
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the mass and size of seed crystals on the product qual-
ity. Moore (1994) argued that, to have consistent crystal
product quality in batch crystallizers, the operating con-
dition should be determined so that three-σ variation in
the initial conditions should not affect the final product
qualities. In such an operation, the seed mass is at least
0.5-2.0% of the product mass, which is much greater than
the seed mass employed in some conventional crystallizer
operations.

Jagadesh et al. (1996) showed that when a sufficiently
large amount of seed crystals is loaded, a large and mono-
sized crystals are obtained even under natural cooling.
They also presented a “seed chart” that can be used to
analyze experimental data to find the seed mass above
which formation of secondary nuclei becomes essentially
negligible. Doki et al. (1999) experimentally verified
their approach using a 600-liter pilot scale crystallizer.

Chung et al. (1999) formulated an optimal opera-
tion problem in which the seed mass, the mean size of
seed crystals, the width of the seed crystal size distribu-
tion, and the temperature profile were decision variables.
Three objective functions were studied: the mean size of
product crystals, the ratio of standard deviation to mean
size, and the ratio of nucleated crystal mass to seed crys-
tal mass at the end of operation. The optimal solution
for each objective function was calculated using SQP. A
parametric analysis showed the significant importance of
optimization of the seed distribution for a wide range of
possible nucleation and growth kinetics.

Agitation affects the secondary nucleation rate as well
as the degree of mixing. Currently, there is no general
model that predicts the effects of agitation on the sec-
ondary nucleation rate and the crystal growth rate, as
it depends on the dimension of the vessel and impeller.
As a result, despite its strong influence on the product
qualities (Chianese et al., 1984), the agitation rate was
not treated as an optimization variable in almost all pre-
vious studies. It is desirable that the impact of agitation
on the product quality should be modeled, so that the
agitation rate can be included in the decision variables
in the optimization problem.

As discussed in the Analysis section, the optimal oper-
ating condition derived from an off-line calculation may
not be the true optimal profile due to the uncertainties
in the model. Also, if there is an error in tracking the
optimal profile, the resulting product quality becomes
different from the optimal. Ge et al. (2000) focused on
the problem of plant-model mismatch and errors in the
initial condition, and suggested an optimization method
called iterative dynamical optimization, in which the op-
eration profile is modified from batch to batch to improve
the performance. In this approach, the operation data of
previous batch runs are used to derive the plant model,
and then the temperature profile is updated by solving
optimization problem using conjugate gradient method.

Under the presence of disturbance, modeling error, or

tracking error, the states of the crystallizer do not fol-
low the optimal path. One way to address this problem
is to incorporate robustness into the computation of the
optimal path (Ma and Braatz, 2000). However, the per-
formance of this approach will be limited by the chosen
measured variables and the use of open loop optimiza-
tion. Another way to address this problem is to choose
another measurable variable as the controlled variable in
the tracking control. As mentioned previously, the re-
alized temperature profile has a strong influence on the
quality of the product crystals. If the variation in prod-
uct quality due to the modeling or tracking errors can be
reduced by choosing a variable other than temperature
as the controlled variable, an alternative configuration of
the tracking control system should be studied. If such
a variable is not directly measurable, a state estimation
algorithm should also be developed.

Yet another approach is on-line optimization (Eaton
and Rawlings, 1990; Rawlings et al., 1993). If the opti-
mal profile is recomputed at regular intervals based on
the state variables at each instance, the effects of vari-
ous disturbances and uncertainties can be reduced. To
carry out dynamic optimization using a physical model,
estimates of the state variables must be known at each
instance. Thus, the on-line optimization system should
consist of the following subsystems (Noda et al., 2000):

1. A subsystem that estimates the current values of the
state variables from past and present measurements.

2. A subsystem that derives the optimal trajectory
from the current time.

3. A subsystem that controls the state variables ac-
cording to the optimal path calculated by subsystem
2.

4. A subsystem that modifies the process model using
the prediction and measurements.

There is a limited number of studies on the optimal
operation of continuous crystallizers. This is probably
due to the sustained oscillation of the crystal size distri-
bution which can be observed in the operation of many
continuous crystallization processes. Due to this phe-
nomenon, research on the operation of continuous crys-
tallizers have focused on development of stabilizing con-
trollers. Recently, Hasebe et al. (1999) discussed the op-
timal operation of a continuous DTB crystallizer. The
objective of their optimization was the maximization of
the production rate of crystals which are larger than a
specified size.

Under sustained oscillation, three different types of
operation can be readily identified. The first type is to
maintain the manipulated variables at the optimal value,
while the crystal size distribution is allowed to oscillate.
The second type is to periodically change the manip-
ulated variables according to the optimal patterns. In
the third type of operation, the oscillation is suppressed
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using a stabilizing controller, and the crystallizer is op-
erated at the optimal static steady state. Once a model
of the crystallizer is obtained, optimal operating condi-
tions for the first and the third types of operations can
be easily obtained by solving a constrained optimization
problem. However, it is difficult to derive the optimal
manipulation pattern in the second type of operation.
This is because the period of oscillation depends on the
manipulation pattern, and the period of oscillation under
optimal condition is not known before the optimization
calculation. To overcome the difficulty, the manipulated
variables can be defined as functions of the state vari-
ables rather than as functions of time (Hasebe et al.,
1999). In their study, one cyclic period of an oscillatory
variable was divided into eight phases according to the
sign of the gradient and the value of the variable. It was
assumed that the manipulated variable takes a unique
value in each phase. With this technique, the prob-
lem of finding the optimal operation pattern is converted
into a problem of finding eight optimal parameters, and
the converted problem can be solved using standard op-
timization algorithms. The result of the optimization
shows that a greater amount of large crystals can be ob-
tained by changing the manipulated variable according
to the optimal pattern, as compared with the case where
the manipulated variables are maintained at the optimal
values. It is extremely difficult to suppress oscillation of
crystal size distribution in an industrial scale continuous
crystallizer. However, the optimization result also shows
that the production rate of large crystals increases dra-
matically, if the behavior of the crystal size distribution
can be stabilized.

Sotowa et al. (1999a) demonstrated that the “ease
of control” varies greatly with the operating condition.
This study suggests that, when deriving the optimal op-
erating condition for a continuous crystallizer, it is im-
portant to take controllability issues into consideration.
Problems related to the interaction between the design
and control are discussed in a later section.

Control

The focus of this section is on feedback control.
Early investigations in crystallization control were di-

rected towards the stabilization of oscillations or other
fluctuations in continuous crystallizers (Beckman and
Randolph, 1977; Lei et al., 1971). An experimental study
showed that fluctuations in the CSD can be reduced by
feedback control, by measuring the crystal size distribu-
tion in the fines stream and manipulating the fraction of
fines recycled back to the crystallizer (Randolph et al.,
1987). A more recent study has shown that changes in
the operating condition for a crystallizer can greatly af-
fect the ability of a conventional controller to stabilize
open loop oscillations (Sotowa et al., 1999a,b).

Many industrial jacketed batch crystallizers use PI

control to follow a specified temperature trajectory, with
the manipulated variable being the setpoint to a lower
level control loop on the flow to the jacket. When manip-
ulating a fines dissolution rate, a self-tuning controller
outperformed a PI controller for a potash alum batch
crystallizer (Rohani and Bourne, 1990a). Model predic-
tive control has been used to follow a desired tempera-
ture trajectory in a batch jacketed crystallizer, using the
temperature of the incoming water to the jacket as the
manipulated variable (Matthews III, 1997; Miller, 1993).
The jacket water temperature was used as a setpoint to
a PID slave controller that adjusted a 3-way valve that
blended hot water and cold water streams. A nonlin-
ear model predictive control algorithm was applied to an
experimental crystallization apparatus with two inputs
and two outputs (Eek, 1995; Eek et al., 1995b). More
recently, a multivariable nonlinear model predictive con-
troller has been applied to a KCl cooling crystallizer (Ro-
hani et al., 1999b).

Non-MPC nonlinear feedback control algorithms have
been applied to crystallization processes (Chidambaram
and Malleswararao, 1990). Some recent efforts have been
directed towards taking model uncertainty into account
in the feedback controller design procedure. One ap-
proach is to combine an extended Luenberger-type ob-
server with a state feedback controller designed by geo-
metric control methods (Chiu and Christofides, 1999).
Associated analysis indicates that the nonlinear con-
troller possesses robust stability with respect to suffi-
ciently fast stable unmodeled dynamics. Simulations in-
dicated improved closed loop performance compared to
linear PI controller. A related strategy using Lyapunov’s
direct method explicitly handles time-varying uncertain
variables, provided that any unmodeled dynamics are
stable and sufficiently fast (Chiu and Christofides, 2000).

An alternative approach, which couples geometric con-
trol with bilinear matrix inequalities, allows the di-
rect optimization of robust performance (Togkalidou and
Braatz, 2000; Van Antwerp et al., 1997, 1999). In con-
trast to most approaches to robust nonlinear control,
this approach introduces no conservatism during the con-
troller synthesis procedure. Also, no prior limitations are
required regarding the speed of the unmodeled dynam-
ics; instead, engineering intuition is incorporated into
weights which bound the unmodeled dynamics, similarly
as to the linear time invariant case (Morari and Zafiriou,
1989; Skogestad and Postlethwaite, 1996). Application
to a crystallization process demonstrated robustness to a
wide range of nonlinear and time-varying perturbations
(Braatz et al., 2000b; Togkalidou and Braatz, 2000).

Interaction Between Design and Control

A method for designing a crystallizer with a given pro-
duction rate has been studied for a long time, and sum-
maries of the results are available (Bennet, 1993; Tavare,
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Figure 8: Influence of supersaturation on dissolution
of fines.

1995). This section does not deal with such design the-
ories but focuses on the interaction between the design
and control of crystallization processes.

Sustained oscillation is a commonly observed phe-
nomenon in the operation of continuous crystallization
processes. It is widely accepted by researchers in the
field of crystallizer control that, in order to suppress
the oscillation, the fines flow rate to the external heater
should be manipulated in such a way that the nuclei pop-
ulation density or the concentration of fine crystals be-
comes constant. In most of the studies on the control of
continuous crystallizers, the discussion on the controller
performance and stability has been conducted on the
assumption that the fines entering the external heater
dissolve completely. However, in a real crystallization
process, the fines do not always dissolve completely, be-
cause the residence time of the slurry in the external
heater is very short. Naito et al. (1999) developed a
model of an external heater by taking the dissolution
rate of fines into consideration. Using the model, they
have shown that the degree of dissolution depends on the
fines flow rate, but this relationship is strongly affected
by the supersaturation and the residence time in the ex-
ternal heater. Figure 8 shows a relationship between
the fines flow rate and the reduction in total crystal vol-
ume across the external heater. When the dissolution
rate is taken into consideration, the total volume of the
dissolved fines is significantly smaller, as compared with
that obtained with the assumption of complete dissolu-
tion of fines. Also, when the supersaturation increases
from its nominal value (∆C0) by a factor of two, the
amount of dissolution does not increase monotonically
with increase in the fines flow rate. As a result, if the
setpoint of the fines flow rate to the external heater is in-
appropriately determined, it is very difficult to regulate
the fines concentration by the fines flow rate. By adjust-
ing the total length and diameter of tubes in the heater,
it is possible to change the residence time of the slurry
in the external heater without changing the amount of
heat input. Sotowa et al. (1999) demonstrated that the
controller performance can be improved significantly, if

nn0 fine coarse
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Figure 9: Interaction among state variables in the
control system.

the external heater is designed in such a way that the
residence time of the slurry is sufficiently long.

At the design stage, the controllability assessment
can be easily carried out, given indices for evaluating
how easily the designed crystallizer can be controlled.
Hashemi and Epstein (1982) used the condition number
of the controllability matrix as such an index. A control-
lability study for a general class of systems described by
population balance equations is discussed by Semino and
Ray (1995). In their study, a crystallizer was taken as
an example process, and the inlet solute concentration is
taken as the manipulated variable. However, their result
cannot be easily applied to a real crystallizer, because
their analysis was carried out on the assumption that
the crystal growth rate takes a constant value regardless
of the supersaturation. Mathematical treatment of the
problem becomes complicated if the crystal growth rate
depends on the supersaturation.

Assume that, for a continuous crystallizer, we adopt
a controller that regulates the fines concentration in the
vessel by manipulating the fines flow rate to the exter-
nal heater. Figure 9 shows the qualitative relationship
among the state variables of the control system. The
crystal population density is represented by an oblong
rectangle in the middle of the figure, as it is a distributed
variable over the crystal size. The population density
of nuclei is denoted by n0. Two positive feedback ef-
fects, which are responsible for the sustained oscillation
of crystal size distribution, can be observed in the dia-
gram. One is the feedback effect arising from variations
in the nucleation rate, B. The other is due to varia-
tions in the supersaturation, ∆C. On the other hand,
the controller adjusts the amount of fines dissolution by
manipulating the fines flow rate so as to counteract the
positive feedback effects. The time constants of these
positive feedback loops are very long as compared with
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Figure 10: Block diagram of the fines subprocess.

the time constant of the controller. Thus, in order to ex-
amine the short term effects of the supersaturation, the
nucleation rate, and the fines flow rate on the fines con-
centration, a hypothetical process is defined by removing
the two broken arrows from Figure 9. In the following
the hypothetical process will be referred to as the fines
subprocess (Sotowa et al., 1999a,b).

Figure 10 shows a block diagram of a linear model that
describes the behavior of the fines subprocess near the
steady state. It is expected that oscillation of the crys-
tal size distribution can be suppressed, if the fines flow
rate can be manipulated in such a way that the fines con-
centration is kept constant regardless of the variations in
supersaturation and nucleation rate. Such control action
can exist only when the influence of the fines flow rate on
the fines concentration is stronger than those of super-
saturation and nucleation rate. Sotowa et al. (1999a,b)
proposed the following indices which evaluate the rela-
tive strength of the influence of the fines flow rate on the
fines concentration, as compared with those of supersat-
uration and nucleation rate:

R∆C =
Pu(0)

P∆C(0)
(7)

RB =
Pu(0)
PB(0)

(8)

Indices defined by Equations 7 and 8 are used as a mea-
sure of ease of control. When the absolute values of these
indices are small, it is difficult to stabilize the crystallizer.
It should be noted that these indices are only qualitative
measures of the ease of control.

Once a dynamic model of the process is obtained, the
steady state gains of the transfer functions in Figure 10
can be easily calculated, since the fines subprocess is a
stable process. The validity of these indices as measures
of the ease of control has been verified by simulation
studies (Sotowa et al., 1999a,b). Hamamura et al. (2000)
used these indices to study the interaction between the
design and control of a continuous crystallizer. In their
study, the cross sectional area of the annular settling
zone and the volume of the external heater were taken
as design variables. Through the study using the indices,
they derived a design condition at which a great amount

of large crystals can be produced and the crystallizer can
be easily controlled. This idea can be extended to a gen-
eral design problem of a crystallizer. For example, when
the equipment cost function is given, the design condi-
tion can be obtained as a solution of a multi-objective
optimization problem which derives the relationship be-
tween the ease of control and equipment cost.

Conclusions and Future Directions

The control of crystallization processes has been an ac-
tive research area in recent years. Now is a good time
to be working in this area, as advances in measure-
ment technologies and computing power are removing
the main factors that limited progress in the 1970s-1980s.
Also, the need for improved control of crystallization pro-
cesses has increased in recent years. Increased global
competition has refocused efforts in optimizing indus-
trial processes in general. Crystallization processes are
often the least optimized in a chemical facility, and hence
have the most to gain by optimization. Before a pro-
cess can be optimized, however, its behavior must be
understood. Also, the pharmaceuticals industry is con-
tinuing to grow faster than other segments of the pro-
cess industries, and most pharmaceuticals must undergo
multiple crystallization steps before arriving at the fi-
nal product. This has increased the relative importance
of crystallization processes within the process industries.
Although not discussed in this paper, the development of
some pharmaceuticals has been slowed by difficulties in
crystallizing proteins for the determination of structure
(which is then related to function). Process control en-
gineers could make significant contributions in this area
of crystallization.

Several trends in crystallization research can be iden-
tified. As discussed in the Measurements section, ex-
tracting accurate size shape information from in-process
sensors is a very challenging theoretical problem. Sub-
stantial research is needed in this area, with proposed
solutions likely to include the merging of digital imag-
ing and laser backscattering information. The papers in
the Measurements section and the book by van de Hulst
(1981) form a starting point for such investigations.

Additives are additional solutes, usually at low con-
centrations, that can change the crystal shape. Many
scientists and engineers have studied the effect of addi-
tives on crystal shape, and have proposed mechanisms
for how the additives affect the crystal growth process
(Dirksen and Ring, 1991). An exciting recent devel-
opment is that simulation models are becoming avail-
able for predicting the effect of solvent type and additive
concentrations on the crystal shape (Winn and Doherty,
2000). Industrial demand for such models ensures that
this area will receive a significant amount of attention
in future years. While there have been some successes,
work is needed to validate the model predictions for more
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crystal systems. This will likely result in improvements
in the assumptions underlying the simulation algorithms,
including better models for the interactions between the
solute and solvent molecules. Such simulation models
will enable the selection of solvents and additives to give
a desired crystal shape, and may someday reduce the
amount of experimental data needed to identify mod-
els for relating the manipulated variables to the shape
distribution in industrial crystallizers.

It is expected that it will become increasingly com-
mon to study crystallizers in which the fluid is not per-
fectly mixed (the case in practice). One approach is to
model the crystallizer as an interconnection of perfectly
mixed crystallizers (Bohlin and Rasmuson, 1996; Kramer
et al., 1996; Sha and Palosaari, 2000), as was discussed
in the Modeling section. This is already easily feasi-
ble with modern computing power. Others have started
to apply full-blown computational fluid dynamics codes
(Sha et al., 1999; Wei and Garside, 1997). It is expected
that stochastic modeling techniques will receive greater
attention in future years. Significant effort is expected
over the next decade to incorporate the understanding
obtained by these more complex simulation codes into
estimation and control algorithms.

Another trend is that advanced control algorithms
are beginning to be applied to crystallization processes.
Crystallization processes have all the characteristics that
makes an interesting control problem—partial differen-
tial equations, nonlinear dynamics, significant uncertain-
ties, unmeasured state variables, significant disturbances
and sensor noise, etc. Crystallization is among those
processes that can benefit from advanced process con-
trol. Crystallization processes pose a rich array of con-
trol problems that are expected to keep process control
engineers engaged for some time.
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