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Abstract— This tutorial paper provides an overview of where
techniques based on hybrid dynamic models are suitable or
promising for designing controllers of industrial plants, in
particular chemical processing systems. After summarizing the
typical control tasks prevalent in the hierarchical automation
structure of industrial plants, the paper focusses on two
techniques employing hybrid models that recently have gained
much attention by the research community: the algorithmic
verification of safety-related discrete controls, and the optimal
control of large transitions, like startup, shutdown, or product
switch-over.

Index Terms— Automation, Hybrid Dynamics, Optimal Con-
trol, Safety, Supervisory Control, Verification.

I. INTRODUCTION

While continuous or quasi-continuous sampled data con-
trol has been the main topic of control education and research
for decades, in industrial practice discrete-event or logic
control is at least as important for the correct and efficient
functioning of production processes than continuous control.
A badly chosen or ill-tuned continuous controller only leads
to a degradation of performance and quality as long as the
loop remains stable, but a wrong discrete input (e.g. switch-
ing on a motor that drives a mass against a hard constraint
or opening a valve at the wrong time) will most likely cause
severe damage to the production equipment or even to the
people on the shop floor, and to the environment. In addition,
discrete and logic functions constitute the dominant part of
the control software and are responsible for most of the effort
spent on the engineering of control systems of industrial
processes.

Generally, several layers of industrial control systems
can be distinguished (see Fig. 1). The first and lowest
layer of the hierarchy realizes safety and protection related
discrete controls. This layer is responsible for the prevention
of damage to the production site including the personnel.
For example, a robot is shut down if someone enters its
workspace, or the fuel flow to a burner is switched off if
no flame is detected within a short period after its start.
Most of the safety-related control logic is consciously kept
simple in order to enable inspection and testing of the correct
function of the interlocks and safety-trips. This has the
drawback that a part of the plant may be shut down if one
or two of the sensors associated with an interlock system
indicate a potentially critical situation while a consideration
of the information provided by a larger set of sensors
would have led to the conclusion that there was in fact no

critical situation. As shutdowns cause significant losses of
production, there is a tendency to install more sophisticated
interlock systems which can no longer be verified by simply
looking at the code or performing simple tests. In the sequel,
we do not distinguish between strictly safety-related and
emergency-shutdown systems (which have to be presented
to and checked by the authorities outside the plant), and
more general protection systems which prevent damage or
degradation of the equipment or unwanted situations causing
large additional costs or the loss of valuable products – from
a design and verification point of view, there is no difference
between the two. Clearly, the correct function of safety and
protection related controls depends on the interaction of the
discrete controller with the continuous and possibly complex
plant dynamics.

The second layer of the control system is constituted by
continuous regulation loops, e.g. for temperatures, pressures,
and the speeds of drives. These loops receive their set-points
or trajectories from the third layer which is responsible for
the sequence of operations required to process a part or a
batch of material. On this layer, mostly discrete switchings
between different modes of operation are controlled, but also
continuous variables may be computed and passed to the
lower-level continuous control loops. If these sequences are
performed repeatedly in the same manner, they are usually
realized by computer control. If there are a large variations
of the sequence of operations or of the way in which the
steps are performed, as in some chemical or biochemical
batch processes, sequence control is mostly performed by
the operators. The same is true for the start-up of production
processes or for large transitions between operating regimes,
which usually do not occur too often. On a fourth layer
of the control hierarchy, the various production units are
coordinated and scheduled to optimize the material flow.

A major part of the control code (or of the task of the
operators) on the sequential control layer is the handling
of exceptions from the expected evolution of the produc-
tion process: drills break, parts are not grasped correctly,
controlled or supervised variables do not converge to their
set-points, valves do not open or close, etc. While there
usually is only one correct sequence, a possibly different
recovery sequence must be implemented for each possible
fault. Exception handling in fact also is responsible for a
large fraction of the code in continuous controllers.

Safety and protection related discrete controls and sequen-
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tial discrete or mixed continuous-discrete controls are of key
importance for the safe and profitable operation of present-
day production processes. Their correctness and efficiency
cannot be assessed by testing the logic independently as
they are determined by their interaction with the (mostly)
continuous dynamics of the physical system. This calls for
systematic, model-based design and verification procedures
that take the hybrid nature of the problem into account. In
practice, however, discrete control logic is usually developed
at best in a semi-formal manner. Starting from partial and
partly vague specifications, code is developed, modified after
discussions with the plant experts, simulated using a very
crude plant model or with the programmer acting as the plant
model, and then tested, debugged and modified during start-
up of the plant. The main reason that this approach does
not lead to complete failure is that for the most part logic
control software from other projects is re-used and only small
modifications and extensions are added. However, taking into
account the low-level programming languages used and the
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Fig. 2. Supervisory controller as SFC.

lack of formal documentation, such software systems may
become harder and harder to maintain.

In the remainder of this paper, we try to highlight the
potential of the application of hybrid systems and control
techniques in the area of industrial controls. We focus on
the two layers on which the hybrid nature of the controlled
plant is most relevant, safety and protection related controls,
and sequence control. In the latter area, we describe some
recent work on one of the most interesting problems, the
control of large transitions in processing plants. This topic
is most challenging because it requires taking continuous
dynamics of considerable complexity into account as well
as a large number of discrete and continuous variables over
long horizons, rendering brute-force approaches not very
promising.

II. VERIFICATION OF SAFETY-RELATED
LOGIC CONTROLLERS

In order to be accepted by practitioners, verification proce-
dures for safety and protection related industrial controllers
must be able to handle the control logic as it is imple-
mented on the control hardware, usually a programmable
logic controller (PLC) or a distributed control system (DCS).
For the implementation of logic controls, the standard IEC-
61131-3 [1] defines several standard formats. Among these,
sequential function charts (SFC) are best suited to represent
sequential behaviors and the parallel (simultaneous) or al-
ternative execution of program steps, and to structure logic
control programs. Control code written in other IEC-61131-
3 languages (Ladder Diagrams, Instruction List, Structured
Text, or Function Block Diagrams) can be embedded in SFC.
According to [1], SFC consist of alternating sequences of
steps and transitions, where actions are associated with steps
and conditions with transitions. As an example, Fig. 2 shows
the graphical representation of SFC, in which rectangles
denote the steps (with actions blocks attached to the right),
bold horizontal lines the transitions (including conditions),
and vertical lines the flow of execution (from top to bottom).
Action blocks contain a list of actions which are either
simple manipulations of logical variables (most importantly
the outputs to the plant), or activities that are limited to a
specified period of time (or start after a given delay), or
the activation of other SFC. The transition conditions may
involve Boolean expressions of sensor readings and internal
program variables.

The goal of the verification of this type of logic controllers
is to guarantee that the controller prevents the plant from
reaching unwanted or dangerous states and/or ultimately
steers it to the desired terminal state. Therefore, the plant
dynamics must be described formally by an (untimed, timed
or hybrid) automaton model, and a formal specification must
be provided in a temporal logic framework (see e.g. [2]).
Before model checking can be applied, the control logic (e.g.
an SFC) must be represented as a state transition system. For
logic control programs that contain timers or delayed actions,
timed automata (TA) are the most suitable format. After
composition of the plant model and the controller model, the
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overall model can be checked against the formal specification
using one of the available tools, e.g. SMV for purely discrete
models, UPPAAL for timed automata models, or the tools
sketched in [3] and [4] for hybrid models. The scheme of
the overall procedure is shown in Fig. 3. In the sequel, we
discuss the steps of the procedure in more detail for a specific
approach that implements this general idea.

A. Transformation of SFC into TA

As proposed in [5], the transformation of a controller given
as SFC into a set of timed automata can be accomplished by
a procedure that first uses a graph grammar to partition the
SFC into syntactical units. Such a unit is either a sequence
of steps and transitions including alternative branches or a
block representing parallel branches of the SFC. By scanning
the SFC controller in a top-down manner, a structure of
these two types of units is obtained such that a modular
timed automaton model can be generated in a straightforward
manner: each of the units is mapped into a single timed
automaton, and the activation of the automata according to
the execution of the SFC is established by synchronization
labels. The state-transition structure of the automata follows
directly from the step-transition sequences of the SFC. The
transition conditions, which involve either inputs from the
plant or internal variables of the SFC, are expressed by
synchronization labels as well. Finally, the actions associated
with the steps are modelled by separate automata, which can
include clocks for the case of time-dependent action quali-
fiers. For modeling the actions, the procedure proposed in [5]
uses a scheme that explicitly accounts for the cyclic scanning
mode in which SFCs are executed on programmable logic
controllers.

B. Model Composition and Verification

In order to consider the plant behavior, the part of the plant
which is affected by the safety-related controller should be

identified, and the behavior of this part is represented by a
suitable model. If the verification aims at analyzing that the
controller drives the plant into particular sets of continuous
states (or just prevents the plant from reaching them) a hybrid
dynamic model, like hybrid automata [6], is an appropriate
choice. The communication between the controller and the
plant model can be realized by synchronization of transi-
tions, or by shared variables between both models. If the
verification is carried out by the approach of abstraction-
based and counterexample-guided model checking [4], the
modular model is next transformed into a single composed
hybrid automaton. The principle of abstraction-based and
counterexample-guided model checking method for verifying
safety properties can be summarized as follows: An initial
abstract model, given as a finite automaton, follows from
abstracting away the continuous dynamics of the composed
hybrid automaton. Applying model checking to the abstract
model identifies behaviors (the counterexamples) for which
safety property is violated. In a validation step, it is analyzed
whether for these particular behaviors counterexamples exist
also for the hybrid automaton. If this applies, the procedure
terminates with the result that the hybrid automaton does
not fulfil the safety requirement. If none of the counterex-
amples for the abstract model can be validated for the
hybrid automaton, the safety of the latter is proved. The
validation step involves the evaluation of the continuous
dynamics of the hybrid automaton, i.e. sets of reachable
hybrid states are determined for locations encountered along
the potential counterexample. Each time a counterexample
of the abstract model is invalidated, the information about
enabled or disabled transitions (according to the reachable
hybrid states in the respective locations) is used to refine the
abstract model.

If the verification reveals that the composed hybrid au-
tomaton satisfies all relevant requirements, the original SFC-
model of the controller represents an implementable supervi-
sory controller. Otherwise, the counterexample correspond-
ing to the requirement violation must be examined in order
to identify in which respect the SFC controller has to be
modified.

C. Application to an Evaporation System

In order to illustrate the verification procedure, it is applied
to the case study of a batch evaporation system [7], [8].
As shown in Fig. 4, the system consists of two tanks (T1,
T2) with heating devices, a condenser with cooling (C1),
connecting pipes with valves (V1, V2, V3) and a pump
(P1), as well as different sensors for liquid levels (LIS),
temperatures (TI), and concentration (QIS). The intended
operation is to evaporate the liquid from a mixture in T1 until
a desired concentration is reached, to collect three batches of
the product in T2, and to empty the latter afterwards through
P1. Figure 2 shows a possible SFC-controller which not only
realizes the desired procedure (left branch) but also includes
exception routines (right branch) for the cases of evaporator
breakdown (error1) and malfunction of the heating device of
T1 (error2).
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Since the SFC-controller contains two time-dependent ac-
tions (marked by ’D#200s’ and ’DS#200s’), it is transformed
into a set of timed automata following the procedure sketched
in Sec. II-A. Figure 5 shows the automata that represent the
SFC structure. The complete TA model additionally contains
automata that model the actions.

One possible verification objective is to check whether the
controller avoids safety-critical states, which are a critically
high and a critically low temperature of the mixture in T1, for
the two failure cases. Assuming that a condenser malfunction
occurs while the evaporation in T1 runs and T2 is partly
filled, the relevant plant behavior can be restricted to three
phases: P1 - heating in T1 while T2 is drained, P2 - draining
of T2 without heating in T1, P3 - transferring the content of
T1 into T2. The corresponding hybrid automaton contains
nonlinear differential equations for the temperature of the
liquid in T1, as well as the liquid levels in T1 and T2.
The verification procedure described above was applied to
the composition of all automata. As the set of reachable
continuous states in Fig. 6 shows, a critically low temperature
of 338K is not reached before T1 is emptied, i.e., it can be
concluded that the SFC-controller works as desired for this
configuration. This result was obtained within a computation
time of around one minute on a PC with a 1.8 GHz P4-CPU.
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Fig. 6. Reachable continuous set (the final set shows that a critically
low temperature (x1 = 338K) is not reached before Tank 1 is empty
(x2 ≤ 0.01m)) .

III. OPTIMAL STARTUP AND SHUTDOWN
OF INDUSTRIAL PLANTS

While most processing systems are operated by a com-
bination of continuous and discrete controls (see Sec. I),
both types of controllers are usually designed separately –
however, transition procedures like start-up, shutdown, or
product change-over, require the simultaneous consideration
of both types of controls to avoid opposing effects. This
section addresses the task of designing continuous and
discrete controls in an integrated fashion. In particular, we
consider the aspects of modeling the process dynamics by
hybrid automata, formulating the transition procedure as an
optimization problem, and computing the (optimal) control
inputs efficiently.

Different approaches to the optimization of hybrid systems
have been published in recent years, ranging from rather
generic formulations to specific methods for certain subtypes
of hybrid systems, see e.g. [9], [10], [11], [12]. One branch
of methods follows the idea of transforming the hybrid
dynamics into a set of algebraic (in-)equalities that serve
as constraints for a mixed-integer program [13], [14]. If all
constraints are written in linear form, mixed-integer linear (or
quadratic) programming can be used for the solution, i.e.,
standard solvers that employ branch-and-bound strategies,
where bounds are obtained from linear relaxations, can
be used. In [15], it has been shown exemplarily for the
approach in [14] that a drawback of this approach is the
limited applicability for larger systems. As an alternative,
the following section sketches a method with the following
characteristics [16], [17]:

(a) the discrete degrees of freedom are determined by a
graph search algorithm with problem specific heuristics
to determine the optimal discrete control sequence with
low effort,

(b) the continuous degrees of freedom are obtained from
solving embedded nonlinear programming problems
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(NLP),
(c) the cost function is evaluated by hybrid simulation

which takes care of the state-dependent structural
changes of the model.

A. Graph Search with Embedded NLP

Figure 7 provides an overview of the method: The starting
point are the given plant dynamics and an informal listing of
the requirements for the controlled behavior of the plant. The
dynamics is represented by a deterministic hybrid automaton
as introduced in [16], i.e. characterized by continuous and
discrete input variables, autonomous switching between dif-
ferent continuous models, and possible resets associated with
transitions. For given trajectories of the continuous (φu) and
discrete (φv) inputs, the formal definition of the automaton
defines feasible state trajectories φσ as a series of hybrid
states σ = (z(t), x(t)), which consist of a discrete location
z(t) and a continuous state x(t).

The requirements of the transition procedure are formal-
ized by specifying the initialization of the hybrid model
σ0 = (z0, x0), a set of hybrid target states Σtar (in which
the plant has to be driven by the controller), a set of hybrid
forbidden states F = {F1, F2, . . .} (that must never be
encountered), and a cost criterion Ω. The latter specifies a
performance measure, such as the startup time or the resource
consumption during startup, which has to be minimized. If
tf denotes the final time and σf := (z(tf ), x(tf )) the final
hybrid state, the following optimal control problem is posed:

min
φu∈Φu,φv∈Φv

Ω(tf , φσ, φu, φv) (1)

s.t. φσ = (σ0, . . . , σf ) with: σf ∈ Σtar, and for

φσ applies in each phase of cont. evolution:

σ /∈ Fj ∀ Fj ∈ F.

The solution of the optimization problem returns the input
trajectories φ∗

u, φ∗

v that lead to a feasible run φ∗

σ which
minimizes Ω.

The key idea in solving the optimization approach is
to separate the optimization of the continuous and of the
discrete degrees of freedom in the following sense: The
discrete choices (i. e., the input trajectories φv) are deter-
mined by a graph search algorithm resembling the well-
known principle of shortest-path search. For each node ni

contained in the search graph, an embedded optimization
for the continuous degrees of freedom (and optionally for
relaxed discrete degrees of freedom for future steps) is
carried out. Within this embedded nonlinear programming,
numerical simulation is employed to evaluate the hybrid
dynamics of the hybrid automaton, leading to a cost value
for the corresponding evolution of the system. These costs
are used in the graph search to apply a branch-and-bound
strategy, i.e., upper (and lower) bounds on the optimal costs
for the transition procedure are iteratively computed to prune
branches of the search tree as early as possible.

B. Application to a Chemical Reactor

The method is illustrated for the start-up of a continuous
stirred tank reactor (CSTR), as described in [14]. The system
consists of a tank equipped with two inlets, a heating coil,
a cooling jacket, a stirrer, and one outlet (see Fig. 8). The
inlets feed the reactor with two dissolved substances A and
B which react exothermically to form a product D. The inlet
flows F1 and F2 (with temperatures T1 and T2 ) can be
switched discretely between two values each. The outlet flow
F3 is controlled continuously. In order to heat up the reaction
mixture to a desired temperature range with a high reaction
rate, the heating can be switched on (denoted by a discrete
variable sH ∈ {0, 1}). The continuously controlled cooling
flow FC serves as a means to remove an excess of heat once
the reaction has started. The objective for this system is to
determine the input trajectories that drive the initially empty
reactor into a desired operation in which the liquid volume
VR, the temperature TR, and the concentrations cA and cB

have reached nominal ranges. Additionally, the regions of
the state space where TR ≥ 360 or VR ≥ 1.6 are forbidden.

To model the system, the state vector is defined as
x := (VR, TR, cA, cB)T, the continuous input vector as
u := (F3, FC)T, and the discrete input vector as v :=

F1
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R
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Fig. 8. Scheme of the CSTR.
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(F1, F2, sH)T. Depending on the continuous state, the system
dynamics can be written as ẋ = f(z, x, u, v) where:

• for z1 with VR ∈ [0.1, 0.8] :

f I =

⎛
⎜⎜⎜⎜⎜⎜⎝

F1 + F2 − F3

(F1(T1 − TR) + F2(T2 − TR))/VR

+ FCk1(TC − TR)(k2/VR + k3) − k4q

(F1cA,1 − cA(F1 + F2))/VR + k9q

(F2cB,2 − cB(F1 + F2))/VR + k10q

⎞
⎟⎟⎟⎟⎟⎟⎠

• for z2 with VR ∈ ]0.8, 2.2] :

f II =(
f I
1
, f I

2
+ sHk6(TH − TR)(k7 −

k8

VR

), f I
3
, f I

4

)T

,

and q = cAc2

B exp(−k5/TR). The separation into two VR-
regions (and thus two locations and transitions in both
directions between them) accounts for the fact that the
heating is only effective above VR = 0.8. The initial state
is x0 = (0.1, 300, 0, 0)T and the target is given by z2 and
a hyper-ball with radius 0.1 around the continuous state
xtar = (1.5, 345, 0.4, 0.2)T. The optimization was run with
the cost criterion that the transition time for the startup
procedure is minimized. The strategy chosen is that depth-
first search is used until a first solution is found, then a
breadth-first strategy is applied. Figure 9 shows the state
trajectory representing the best solution obtained for a search
comprising 400 nodes. This result has been obtained within
2 minutes of computation time on a PC with a 2.0 GHz
Pentium processor.

IV. CONCLUSIONS

The tasks of verifying properties like safety or goal
attainment for industrial plants and of computing optimal
control trajectories for procedures like startup or shutdown
are two examples where the design procedure can be suitably
supported by the use of hybrid models. At the time being,
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Fig. 9. CSTR: The optimal x-trajectory (solid line) projected in the
(VR, TR, ca)-space. Explored nodes are marked by crosses.

a number of successful applications of such techniques
have been reported in literature – however, most of these
applications refer to relatively small parts of industrial plants,
or systems on a laboratory scale. The following two aspects
seem most important to achieve that industrial control engi-
neers include hybrid control techniques into their toolboxes:
(a) the awareness of existing hybrid modeling techniques
has to be increased, (b) the efficiency of methods for the
analysis, design, and optimization of hybrid systems must be
further improved to enhance the applicability to industrial-
size problems. These are two main objectives of the Network
of Excellence Hybrid Control (funded by the European
Union), which includes one area of activities that explicitly
aims at further developing hybrid control techniques based on
case-studies provided by (mainly) the processing industries.
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