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Abstract— This paper is a complement to the author’s pre-
sentation at the session Molecular Systems Biology & Control.
it focuses specifically on an approach to biological network
analysis which combines qualitative with quantitative data in
order to characterize global dynamics.

I. INTRODUCTION

Within the last few years, the field of “molecular systems
biology” has taken shape, having as its goal the unraveling
of the basic dynamic processes, feedback control loops,
and signal processing mechanisms underlying life. Leading
biologists have recognized that new systems-level knowledge
is urgently required in order to conceptualize and organize
the revolutionary developments taking place in the biological
sciences, and new educational programs are being established
at major universities.

The mini-tutorial “Molecular Systems Biology and Con-
trol” provides an introduction to the field of systems biology.
The paper accompanying the author’s presentation is pub-
lished as [26], and it provides a brief introduction to some
of the main molecular biology concepts and terminology, as
well as illustrations of systems-theoretic opportunities and
challenges afforded by the field. It also briefly describes an
approach, due to the author and collaborators, that combines
qualitative (graph-theoretic) knowledge with a relatively
small amount of quantitative (steady-state step response) data
for components in order to provide an understanding of
global dynamics. The goal of this short conference paper is
to provide some details and additional discussion regarding
this last approach. However, we first very briefly review some
basic notions. The full paper [26] should be consulted for
a detailed discussion of this tutorial material.
Cells. The fundamental unit of life is the cell. One may view
cell life as a collection of “wireless networks” of interactions
among proteins, RNA, DNA, and small molecules involved
in signaling and energy transfer, that process environmental
signals, induce appropriate cellular responses, and sequence
internal events such as gene expression, thus allowing cells
and entire organisms to perform their basic functions. These
control and communication networks may be incredibly so-
phisticated, involving multiple signal transduction pathways
in which information is relayed among enzymes through
chemical reactions (for instance, phosphorylation).

As an illustration, the diagram in Fig.1 shows the top-
level schematics of a wiring diagram of signaling circuitry
in the mammalian cell. It shows the main signaling pathways
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Fig. 1. Signaling circuitry in mammalian cells, with permission from [20]

for growth, differentiation, and apoptosis (commands which
instruct the cell to die). Highlighted in red are some of the
genes known to be functionally altered in cancer cells.

Research in molecular biology, genomics, and proteomics
has produced, and will continue to produce, a wealth of
data describing the elementary components of intracellular
networks as well as detailed mappings of their pathways and
environmental conditions required for activation.

The genome is the genetic information of an individual,
encoded in DNA molecules, which are arranged into chro-
mosomes. It provides a “parts list” which describes all the
proteins that are potentially present in every cell of a given
organism. The read-out of genetic information —bringing-
in the instructions into working memory for execution, in
a computer analogy— begins when DNA information is
transcribed letter by letter into mRNA. Translation is the
next step. The information in the mRNA is read, and proteins
are assembled out of amino acids.

Proteins are the primary components of living things, and
the main players shown in Fig.1. They form receptors that
endow the cell with sensing capabilities, actuators that make
muscles move (myosin, actin), detectors for the immune
response, enzymes that catalyze chemical reactions, switches
that turn genes on or off, provide structural support, help
in the transport of smaller molecules, and help direct the
breakdown and reassembly of other cellular elements such
as lipids and sugars. Ultimately, one might say that cell life
is about proteins and how and when they are produced.
Cells as Dynamical Systems. The term genotype refers to
the genetic blueprint encoded in the DNA of a given in-
dividual, while phenotype refers to the actual observable
physical manifestations of that information. Different species
may be close in genotype. Even in a given species, a
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mutation in a single letter in an individual’s DNA may
have a catastrophic phenotypical consequence, as with cystic
fibrosis in humans. There are surely many factors con-
tributing to the “discontinuity” in going from genotype to
phenotype, but one explanation that developmental biologists
and others have proposed is that cells behave as nonlinear
dynamical systems, and so bifurcation phenomena play a
major role. Proteins interact, often through feedback loops,
directly through enzymatic action or binding and indirectly
via control of gene expression. Feedback is a dynamic
phenomenon, where quantities (concentrations of proteins,
RNA, metabolites, etc.) are seen as functions of time.

Bifurcations, i.e. transitions between behaviors such as
mono- and multiple-stability, or the onset of oscillations,
are phenomena which frequently arise when parameters are
modified. In molecular biology modeling, a parameter may
represent a concentration of an external ligand, a voltage
applied to a voltage-gated channel, the concentration of a
signaling molecule (as an input to a cellular subsystem), an
enzyme concentration affecting a reaction, or the degree of
effective cooperativity (Hill coefficient) of a reaction.

An important theme in current molecular biology thought
is the understanding cell behavior in terms of interconnec-
tions of elementary “modules.” Cells are composed of sub-
systems involved in various processes such as cell growth and
maintenance, division, and death. The hope is that one should
be able to decompose into simpler subsystems and then study
the emergent properties of interconnections. The control and
systems-theory paradigm of input/output systems, built out
of simpler components interconnected according to certain
rules, is natural in this context, as it may permit the recur-
sive verification of important properties through the use of
standard analysis tools such as passivity, small-gain, or input
to state stability. Even if the entire system were autonomous,
in order to be able to define such interconnections, one
would be forced to consider subsystems that process time-
dependent input signals into output signals. But, in fact,
cells are not autonomous systems. They process external
information, provided by physical (UV or other radiation,
mechanical, temperature) or chemical (drugs, growth factors,
hormones, nutrients) inputs. They also produce signals which
we may view as outputs, such as chemical signals sent
to other cells, commands to motors that move flagella or
pseudopods, or the internal activation of transcription factors
which may be monitored by measurement technologies.
Thus, the control-theory formalism is natural. Once viewed
in control-theory terms, one can pose synthesis questions,
dealing with the control of cellular systems through drugs or
genetic modifications.

Control and systems researchers are, indeed, addressing
many of these questions for biomolecular systems. Neverthe-
less, the author has argued, in [25], [26], that in spite of its
immense success in engineering, “off the shelf” application
of known control theory is not always appropriate. This is
because detailed models are hard to come by: it is virtually
impossible to experimentally validate the forms of nonlinear-
ities in reaction terms or to accurately estimate coefficients

(parameters). In addition, issues such as robustness, multi-
scale modeling, continuous/discrete interfaces, and seam-
less integration of hybrid stochastic/deterministic systems,
although treated to various degrees in the control field,
cannot often be handled with the tools available, which were
developed for engineering applications. Even though many
problems in systems biology resemble standard problems
in control theory, on closer inspection they often turn out
to differ in fundamental ways, and these differences are
challenging and worth exploring. See more discussion, and
examples, in [25], [26]. The remaining part of this article
will focus on one particular topic.
The “Data-Rich/Data-Poor” Paradox. Although an im-
pressive amount of qualitative network (schematic modeling)
knowledge of the type shown in Fig.1 is available, little
of this knowledge is quantitative at the level of precision
demanded by most control and system theoretic analysis
tools. The problem of exploiting this qualitative knowledge,
and effectively integrating relatively sparse quantitative data,
is among the most challenging issues confronting systems
biology. New tools must to be developed in order to bridge
this “data-rich/data-poor” dichotomy.

In systems biology, one often sets up a model based on
biological knowledge, estimates parameter ranges, and ex-
plores the spaces of parameters and initial conditions through
simulations, bifurcation analysis, and model reduction. There
are several shortcomings to this approach, however. The form
of nonlinearities often cannot be well-justified, and param-
eters such as reaction rates are based on rough guesses or
on data from different and perhaps inconsistent sources, and
usually are obtained from in vitro experiments as opposed
to in vivo measurements. In addition, parameter and state
spaces are of high dimension, which makes convergence of
numerical techniques questionable and at best local. Some
of these problems are intrinsic, and cannot be solved by
better technology or algorithms; for example, parameters
such as enzyme concentrations vary from cell to cell, even
within cells of the same type. In addition, a purely numer-
ical approach does not provide fundamental understanding.
This argues for the desirability of approaches which, while
taking advantage of the huge, and growing, amount of
qualitative network “schematic” knowledge such as shown
in Fig.1, take into account the uncertainties inherent in
biological measurements and effectively integrate relatively
sparse quantitative data. We describe next one such approach,
based upon the systems theory paradigm of I/O systems and
combining information on network structure with steady-
state step response data on subsystems.

II. CONSISTENCY AND MONOTONICITY

Our main themes may be summarized as follows:
• Network structure (qualitative knowledge) constrains be-
havior (e.g. periodic behavior may not be possible).
• The forms of reactions and parameters matter (bifurcation
phenomena), but such information is often unavailable.
• The interplay of structure and reaction forms can some-
times be fruitfully studied by breaking up systems into well-
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behaved building-blocks and using only a restricted amount
of input/output quantitative data (such as step responses) for
these subsystems in order to characterize global behavior.

A particularly appealing class of candidates for “well
behaved” subsystems are monotone systems, introduced by
Moe Hirsch in the 1980s. They are a class of dynamical
systems for which many behaviors (including “chaos”) are
ruled out. Even though they may have arbitrarily large
dimensionality, monotone systems behave in many ways like
one-dimensional systems. Bounded trajectories generically
converge to steady states, and there are no stable oscillatory
behaviors. Actually, see [1], one must extend the notion
of monotone system so as to incorporate input and output
channels.

An interconnection of monotone subsystems may or may
not be monotone: positive feedback (in a sense that can
be made precise) preserves monotonicity, while “negative
feedback” destroys it. Positive feedback is central to reg-
ulation, metabolism, and development, but oscillators such
as circadian rhythm generators require negative feedback
loops in order for periodic orbits to arise, and hence are
not themselves monotone systems, although they can be
decomposed into monotone subsystems (cf. [3]). A rich
theory is beginning to arise, characterizing the behavior of
monotone and non-monotone interconnections.

One way to introduce monotonicity is through a sign-
consistency property for the graph which describes how
each state variable influences each other variable in a given
system. We consider graphs whose edges are labeled by “+”
or “−” signs. Sometimes we use as in Fig.1, respectively
activating “→” or inhibiting “�” arrows; see Fig.2. Such

Fig. 2. A consistent and an inconsistent graph

a graph is said to be sign-consistent (or “coherent”) if all
paths between any two nodes have the same net sign, or
equivalently, all closed loops have positive parity, i.e. an
even number, possibly zero, of negative edges. (For technical
reasons, one ignores the direction of arrows, looking only at
undirected graphs. Also, self-edges are ignored.) Thus, the
first graph in Fig.2 is consistent, but the second one, which
differs in just one edge from the first one, is not (two paths
with different parity are shown).

Now consider a system of ordinary differential equations
ẋ=f(x), with no inputs nor outputs for the time being.
We assume that the system is sign-definite: for each two
components xi and xj , either xi always inhibits xj or xi

always activates xj , as in Fig.1. In molecular biological
applications, this is usually —though not always– a very
reasonable restriction (ambiguous effects can often be ex-
plained by an additional variable operating at a different time
scale). Mathematically, sign-definiteness means that ∂fi

∂xj
(x)

does not change sign as a function of x, for each pair of

distinct indices i and j, where fi denotes the ith component
of f (ignoring diagonal terms ∂fi

∂xi
(x)). To any sign-definite

system in R
n one associates an incidence graph G on the

nodes {1, . . . , n}, drawing an edge from node j to node i if
∂fi

∂xj
(x)�≡0, and assigning a + sign to this edge if ∂fi

∂xj
(x)>0

for some x, and − sign otherwise.
Systems whose incidence graphs are consistent are ex-

amples of monotone systems. A monotone system is one
for which there is some partial order in the state space
so that the evolution operator preserves the order. Denot-
ing the order by “≤” this means that x(0)≤y(0) implies
ϕ(t, x(0))≤ϕ(t, y(0)) for all t≥0, where we are denoting
by ϕ(t, ξ) the solution at time t of the initial value problem
ẋ = f(x), x(0) = ξ, and we assume for simplicity that
solutions are unique and defined for all t ≥ 0. An example
of a partial order in R

2 is the “Northeast” order, in which
we declare that (x, y) ≤ (x′, y′) provided that both x ≤ x′

and y ≤ y′, and more generally for every n, x ≤ y provided
that xi ≤ yi for each i = 1, . . . , n. More generally, one can
define partial orders associated to any possible orthant in R

n,
for example in R

2 the “Northwest” order: (x, y) ≤ (x′, y′)
provided that both x ≥ x′ and y ≤ y′, i.e., (x′, y′) − (x, y)
belongs to the second quadrant K = {(a, b) | a < 0, b > 0}.
A system with a consistent incidence graph is monotone with
respect to some such order: in each connected component of
the graph, just pick one node N , label it +, and assign to any
other node M in the same connected component the sign of
a path from N to M . In this way, an assignment of signs
to nodes is obtained, and the system can be easily shown
to be monotone with respect to the order associated to the
corresponding orthant.

Under an additional hypothesis of irreducibility (basically,
strong connectedness of the incidence graph), one obtains
what are called strongly monotone systems: x(0)≤y(0) but
x(0)�=y(0) implies that x(t)=ϕ(t, x(0))<ϕ(t, y(0))=y(t)
for t>0 in a strict sense which we not define here for general
orders, but which, for systems that are monotone with respect
to orthants, amounts to: xi(t)<yi(t) for every coordinate
i = 1, . . . , n. Strongly monotone systems are very well-
behaved in a dynamical sense. According to a beautiful result
of Hirsch (cf. [22]), almost every bounded solution of such
a system converges to the set of equilibria. By “almost any”
one means every solution except for a measure-zero set of
initial conditions, or, in a different version of the theorem,
every solution except for those starting from a thin set in
the Baire category sense. In particular, no chaotic or other
“strange” dynamics can occur; in fact, not even limit cycles
can arise in strongly monotone systems.

Often in applications, a system that is not monotone as
originally modeled turns out to be so under some simplifi-
cations. An elementary illustration of this phenomenon is as
follows. Suppose that an enzyme B catalyzes conversion of
C to A, as in the left panel of Fig.3. (The reverse reaction is
not required for the point to be made.) Thus, B negatively
affects the concentration of C, and positively affects that
of A. Let lower case variables a, b, c denote concentrations
of the three species; under simplifying assumptions, a set
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Fig. 3. Consistency after elimination

of ideal mass-action equations for this reaction is da/dt =
k1bc − k2a, db/dt = 0, and dc/dt = −k1bc + k2a. The
incidence graph for this set of differential equations will look
as the middle panel of Fig.3, and thus be inconsistent. It
would then appear that monotone theory cannot be applied
to this example. However, since there is a conservation law
a(t) + c(t) ≡ c0 constant, one may eliminate c (or a) from
the system of differential equations, leading to da/dt =
k1b(c0 − a) − k2a, db/dt = 0, and this reduced system
is now consistent, since there are no loops (remember self-
loops are ignored), cf. the right panel in Fig.3. To analyze
solutions of the differential equation, we may first restrict
to an appropriate hyperplane, which depends on the initial
conditions, and monotone theory can therefore be applied.
This observation is key in applications to signaling cascades,
where A and C might correspond to un-phosphorylated and
phosphorylated forms of the same protein, for example.
Very often, much less obvious eliminations and coordinate
changes are reqired to as to apply monotone theory; the
search for such transformations is an active area of research,
see e.g. [11], [13], [1], [2], [4], [12], [6].

Time-scale separation may also lead to monotonicity. A
non-monotone system might be a singular perturbation of a
monotone system. (The fast system a “quasi-steady state”
approximation.) A trivial linear example is ẋ=−x−y, εẏ =
−y+x, with ε>0. This is not monotone with respect to
any orthant. But, for ε � 1, the fast variable y tracks x,
so the slow dynamics is well-approximated by ẋ = −2x
(monotone, since every scalar system is). More generally,
one may consider ẋ = f(x, y), εẏ = g(x, y) such that the
fast system ẏ = g(x, y) has a unique globally asymptotically
stable steady state y = h(x) for each x (and possibly a mild
ISS-like requirement), and the slow system ẋ = f(x, h(x))
is (strongly) monotone. Then (see [27]) the original system
inherits global convergence properties for ε small enough.
This can be established in two ways: using the theory of
asymptotically autonomous systems (viewing y−h(x) as an
input to the slow system), or through geometric invariant
manifold theory. In the second approach, one uses the
existence of a manifold Mε invariant for the dynamics, which
attracts all near-enough solutions, with an asymptotic phase
property. The system restricted to the invariant manifold Mε

is a regular perturbation of the fast (ε = 0) system, and hence
inherits strong monotonicity properties. So, solutions in the
manifold will be generally well-behaved, and asymptotic
phase implies that solutions track solutions in Mε, and hence
also converge to equilibria if solutions on Mε do.

I/O Monotone Systems. A system ẋ=f(x, u), y=h(x) is
monotone if there are nontrivial orders in the state, input,
and output spaces, such that ξ1 ≤ ξ2 and u1 ≤ u2 imply
x(t, ξ1, u1) ≤ x(t, ξ2, u2) for all t ≥ 0, with respect to the
state and input orders, and the output map h preserves the
order as well. Here, x(t, ξ, u) is the solution at time t for ini-

tial state ξ at t = 0 and input u(·); and u1 ≤ u2 for controls
means that u1(t) ≤ u2(t) for all t. When there are no inputs
nor outputs, this reduces to the earlier definition of monotone
systems. (Discrete-time systems may be studied similarly,
as can delay-differential systems, reaction-diffusion PDE’s,
and more abstract flows in metric spaces, cf. [15].) The
generalization to I/O systems is from [1], [2], and it was
motivated by the types of problems that we are discussing
here. Orders are typically defined by positivity cones K, by
defining ξ1 ≤ ξ2 to mean ξ2 − ξ1 ∈ K, and similarly for
input and for output values. For cones, monotonicity can
be checked in infinitesimal terms, not requiring solution of
differential equations. A very special but most important case
is that of monotonicity with respect to cones that happen to
be orthants in Euclidean space. Suppose that a system is
sign-definite, meaning that we can draw unambiguous sign-
graphs for the Jacobians of f and h, analogously to what we
did for systems with no inputs nor outputs. More precisely,
(∂fi/∂xj)(x, u) has a constant sign εij ∈ {0, +,−} for
all (x, u) and all i �= j (we may ignore self-loops), and,
for all i, j and (x, u), (∂fi/∂uj)(x, u) has a constant sign
αij ∈ {0, +,−} and (∂hi/∂xj)(x) has a constant sign
βij ∈ {0, +,−}. A system is monotone with respect to some
orthant if and only if its incidence graph does not contain
any negative cycles (once again, ignoring direction of edges).
Properties of Monotone Systems. For the monotone sys-
tem ẋ = f(x, u), y = h(x) consider step, i.e. constant,
inputs u(t) ≡ u. One can prove, under weak boundedness
assumptions, that for each u, there is at least one steady state:
f(x, u) = 0, and that for each periodic input u(t+T ) = u(t),
there is a corresponding periodic solution. Now assume that
for each such constant input it holds that all solutions are
bounded (this is frequently the case in biological systems,
due to conservation laws), and that there is a unique steady
state xu corresponding to this value of the input. Under
weak additional hypotheses ([12]), one can the prove that xu

must be a global attractor, i.e. all solutions of ẋ = f(x, u)
converge to xu as t → ∞. We say in this case that the
system has a monostable steady-state step response and
define (composing with the output map) the characteristic
or steady state step response of the system as the map
u 
→ k(u) := h(xu).

Monotone systems with well-defined characteristics con-
stitute a very well-behaved set of building blocks for arbitrary
systems. In particular, cascades of such systems inherit
the same properties. Moreover, there are asymptotic gain
estimates: the omega-limit sets satisfy k(lim inf u(t)) ≤
Ω+[x(t, u)] ≤ k(lim sup u(t)) for any u(·), and in particular
if u(t) → ū, then the output satisfies y(t) → k(ū).

The most important fact in the present discussion is that
characteristics can often be measured experimentally. They
are often called dose-response curves, or signal vs input con-
centration, receptor activity, or steady-state phosphorylation
plots, and are usually interpolated from a large number of
measurements, (see [25], [26] for more discussion of this
fact). This is in contrast to actual system parameters (or
functional forms), which are typically hard to estimate. In
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our approach, we blend qualitative information about the
system, specifically monotonicity, with quantitative informa-
tion, specifically characteristics. We view this as one way to
bridge the “data-rich data-poor” gap, but we are also confi-
dent that other approaches, most probably totally unrelated
to monotonicity and characteristics, will be developed in the
future to similarly combine qualitative and quantitative data.
Some Theorems. Some of the main results for monotone
I/O systems characterize the location and stability of equilib-
ria of closed-loop systems. The results represent nontrivial
generalizations of elementary properties of one- and two-
dimensional systems.

For simplicity, we assume from now on that inputs and
outputs are scalar, i.e. m=p=1, and that the order in the
input and output value spaces is the usual one in R. The main
positive-feedback theorem is from [2], and is as follows.

Suppose given two monotone systems with well-defined
characteristics k, g and interconnected in feedback as shown
in Fig.4 (left), Interconnections of such systems form the

Fig. 4. Monotone systems with characteristics in feedback

basis of switches and other multi-stable systems that enable
memory and binary decisions in cells. Plot k together with
the inverse of g, and label each intersection between the two
graphs by an “S” or an “U” depending on whether the slope
of the graph of k is smaller (k′(u)<(g−1)′(u)), or larger
respectively, than that of g−1, Fig.4 (right). The conclusion is
then that steady-states of the closed-loop system, which are
in a one-to-one correspondence with the intersections, are
so that almost every bounded trajectory (with the possible
exception of a set of measure zero of initial conditions such
as those in the stable manifolds of saddle points associated
to values U) converges to a steady state associated to one of
the stable states associated to a value S.

The above statements assume that the graphs intersect
transversally, and a nondegeneracy assumption of strong
monotonicity for the closed-loop. See [18] for weakenings of
these assumptions, as well as allowing for set characteristics,
where the characteristics might be multi-valued. Generaliza-
tions to m, p > 1 are given in [16].

Moreover ([6]), often a complete bifurcation diagram can
be derived immediately, with no further computation, if the
graphs are parameterized, and hysteresis behavior can be
understood in this way, for systems for which the closed-
loop exhibits multiple stable steady states. In turn, a theory
of relaxation oscillations can be built in this fashion ([19]) if
there is a slow feedback adaptation of one of the parameters.

We also remark (see [25] for more discussion) that the
result remains true even if arbitrary delays are allowed
in the feedback loop (infinite phase margin) as well as if

diffusion is added. By the latter statement we mean that for
the reaction-diffusion equation ∂x

∂t = D∆x + f(x, u) for
x = x(t, q) with q belonging to a convex domain and with
no-flux (Neumann) boundary conditions, diagonal diffusion
matrix D, and assuming a discrete set of equilibria, almost
all solutions converge to one of the uniform states predicted
if the corresponding ODE is analyzed. In other words, no
Turing-like pattern formation due to diffusive instability can
occur. These results follow from the corresponding facts for
monotone dynamical systems surveyed in [22].

A feedback involving two monotone systems is still mono-
tone, so this result is one about monotone systems. The
main point is that conclusions about the closed loop system,
which may have arbitrarily large dimension, are derived from
looking at a simple one-dimensional picture.

Non-monotone systems arise when “negative feedback” is
involved. Let us discuss next a negative-feedback result, for
simplicity again restricting ourselves to the case m=p=1.
The theorem, from [1], is as follows. Let us call a system
anti-monotone if the internal dynamics are monotone but the
output map h inverts the order. Examples of such output
maps, if outputs are scalar, would be h(x) = −x (hence
the name negative feedback) or, in a biochemical context
where quantities cannot be negative, an “inhibition” function
h(x) = 1/(1 + x). Negative feedback underlies homeosta-
sis (regulation) as well as the construction of oscillators.
Suppose given two systems, one monotone and one anti-
monotone, with characteristics k and g respectively. We once
more plot k and g−1, see Fig.5. The intersection between the

Fig. 5. Monotone/anti-monotone systems with characteristics in feedback

plots, if it exists, is necessarily unique. We consider the scalar
discrete time (“spider-web”) iteration ui+1 = (g◦k)(ui). The
result is that, if this iteration has a globally attractive fixed
point ū (cf. Fig.5), then the closed-loop system, provided
that trajectories are bounded, has a globally attracting steady
state (corresponding to the i/o signal value ū). Once again,
a one-dimensional picture completely characterizes global
behavior, even for systems of arbitrary dimension.

As with the positive-feedback case, this result remains
true if arbitrary delays are inserted in the feedback loop,
and if diffusion is allowed. Extensions to m, p>1, and in
fact to a large class of systems evolving on Banach spaces,
including delay-differential equations, can be found in [15].
The extension to reaction-diffusion pde’s, saying roughly that
the same result holds when the diffusion terms are ignored,
is in [14]. Applications of the negative feedback monotone
system result to species competition problems are given
in [13], to circadian rhythm models in Drosophila in [3],
and to a model of testosterone dynamics in [17]. See [26]
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for an application to a model of Mitogen-Activated Protein
Kinase cascades, a common “signaling module” involved in
proliferation, differentiation, and development,
Almost-Monotonicity. Any sign-definite system may be de-
composed into an interconnection of monotone subsystems,
through the “pulling out” of “inconsistent” connections. The
original system is thus viewed as a “negative feedback” loop
around an otherwise consistent system. (In fact, even sign-
definiteness can sometimes be dispensed with, if an indefinite
term is be written as a difference of two increasing ones, and
one of the two terms is “pulled out” as feedback.) When at-
tempting to apply the theory reviewed above (with, generally,
m, p > 1), it tends to be the case that the fewer the number
of interconnections among components, i.e. the number of
variables being fed-back when viewing the decomposition as
a negative feedback, the easier it is to obtain useful conclu-
sions. Let us call the smallest number of edges that must be
removed in order to obtain a consistent graph the consistency
deficit (CD) of the graph. For example, for the particular
graph shown in Fig.6, one edge (the diagonal positive one)

�

� �

�

�
�

��

�

�

2

3 4

1

Fig. 6. Dropping the diagonal edge gives consistency

suffices. The paper [10] studies the computational complexity
of the question of computing CD; it provides a relaxation-
based polynomial-time approximation algorithm guaranteed
to solve the problem to about 87.9% of the optimum solution,
based on semidefinite programming relaxation and proves
that it is not possible to have a polynomial-time algorithm
with performance too close to the optimal. The algorithm
is applied to a Drosophila segmentation network and to an
Epidermal Growth Factor Receptor pathway model.

In addition, and independently from the theory mentioned
above, one might speculate that nature tends to favor systems
that are decomposable into small monotone interconnections,
since “negative” feedback loops, although required for home-
ostasis and for periodic behavior, have potentially destabiliz-
ing effects, especially if there are signal propagation delays.
Informally, let us say that a graph is almost-consistent —or
an associated dynamical system almost monotone— if the
CD is small compared to the original number of edges in
the graph. The work [21] examines an E. coli transcriptional
regulation map and estimates a much smaller CD than for a
randomized version of the same network. These preliminary
results provide a strong indication that almost-consistency
is ubiquitous in biological networks. In the same large-
network statistical analysis spirit, one may ask if smaller CD
is correlated with more ordered (less ”chaotic”) behavior.
It is hard to perform this type of analysis on differential
equations, but for Boolean networks, the paper [23], shows,
using a mean-field calculation of sensitivity, that networks
of Boolean functions behave in a sense in a more and more
“orderly” fashion the closer that their components are to
being monotone.
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