
Middleware and Abstractions in the Convergence of Control with
Communication and Computation�

Girish Baliga∗, Scott Graham∗∗ and P. R. Kumar†

Abstract— Control technology is entering what may ar-
guably be called its third computational generation, fea-
turing powerful computational facilities, general purpose
wire-line or wireless networks, powerful computational
services, and large numbers of possibly distributed sensor
and actuators: For the development and proliferation
of such control systems it appears that it is important
to address three challenges. What are the appropriate
abstractions and what is the corresponding architecture
of such systems? What are the middleware services that
are needed for ease of application development and
deployment? What are the appropriate theories to exploit
the capabilities of these systems? This tutorial is aimed at
addressing these three issues. The Etherware middleware
is described, an abstraction of virtual collaboration is
identified, and it is detailed how Etherware supports the
abstraction. The principle of local temporal autonomy is
described to address the need for reliability and robust-
ness. These issues are also illustrated on the experimental
and development testbed in the Convergence Laboratory
at the University of Illinois. Open theoretical problems
are identified, along with speculation on what a future
theory may entail.

I. INTRODUCTION

The purpose of this tutorial is to identify, formu-
late, and address issues that are important to the next
generation of control systems. Arguably, these control
systems can be regarded as “third generation” systems.
The first generation of control systems can be regarded
as analog control. This was accompanied by theories
such as that of Bode [1] or Evans that was important

�The research reported here has been supported by NSF under
Contract Nos. NSF ANI 02-21357 and CCR-0325716, USARO
under Contract Nos. DAAD19-00-1-0466 and DAAD19-01010-465,
DARPA/AFOSR under Contract No. F49620-02-1-0325, DARPA
under Contact Nos. N00014-0-1-1-0576 and F33615-0-1-C-1905,
and AFOSR under Contract No. F49620-02-1-0217.

∗CSL and Dept. of CS, University of Illinois at Urbana-
Champaign, Urbana, IL 61801, USA. email: gibaliga@uiuc.edu.

∗∗Maj. Scott Graham, Air Force Institute of Technology
AFIT/ENG, 2950 Hobson Way, WPAFB, OH 45433. email:
Scott.Graham@afit.edu.

†CSL and Dept. of ECE, University of Illinois at Urbana-
Champaign, Urbana, IL 61801, USA. email: prkumar@uiuc.edu.

for the technology. The second generation of control
systems can be regarded as comprising of digital con-
trol. This too was accompanied by theory, such as that
due to Kalman [2], [3], [4], which was well matched
to the technological needs. In particular, this second
generation saw the algorithm itself as the solution of
the problem, along with modest computation, as is well
exemplified by the discrete-time Kalman filter. Control
theory has, arguably, mainly focused on the possibilities
afforded by digital control for about the past forty
years. However, due to the rapid technological changes
of the past decade, there is the possibility of deploying
distributed control systems consisting of sensors and
actuators connected by shared wired or wireless net-
works, and involving powerful computational nodes as
well as software services. This tutorial addresses the
issues related to how to facilitate the proliferation of
such next generation control systems.

In the next sections we address the issues of middle-
ware, abstractions, and architecture, and the need for
theory, to support development and deployment of such
systems. We begin with a description of the laboratory
testbed.

II. THE CONVERGENCE LABORATORY

The Convergence Laboratory at the University of
Illinois features a number of radio controlled cars on
a plywood platform. Ceiling mounted video cameras
monitor the platform. The images are processed to
determine the locations and orientation of the cars.
There are several computers connected by a wire-line
Ethernet or IEEE 802.11 wireless ad hoc network.
Each car is individually controlled by a laptop over a
dedicated radio frequency. Figure 1 shows the physical
experimental platform.

Through the methods to be described in the sequel,
several operational application scenarios are feasible. In
one “city traffic” mode, safety (avoiding collisions) as
well as liveness (guaranteeing that each car reaches its
destination without deadlock) are provided via provably
correct algorithms. In a “collision avoidance” mode,

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeA03.3

0-7803-9568-9/05/$20.00 ©2005 IEEE 4245

Fig. 1. Convergence Laboratory experimental testbed

cars automatically resort to safety maneuvers to avoid
head-on collisions. In another “pursuit-evasion” sce-
nario, a human driven evader is followed by cars in
a certain formation.

The central feature of the entire system is that the
supporting middleware, as well as the principles of
application development, allow for rapid development
and deployment of such scenarios with a multitude
of sensors, actuators, computational nodes, over a
communication network. In the sequel, we describe
the architecture, abstractions, services and principles
employed in the system.

III. COMPONENT ARCHITECTURE AND

MIDDLEWARE

Middleware is software residing between the operat-
ing system and the application, which seeks to facilitate
application development and deployment.

The starting point of the design is a component ar-
chitecture. This consists of software modules designed
for particular well-defined functionalities. For example,
Kalman-Filter, Predictive-Control, Traffic-Scheduling,
etc., are all examples of components. Components can
be developed independently and reused across applica-
tions. They can execute on any computer in the com-
puter network. They can also be migrated to a location
in the network that is best suited for them, given the
information flows in the network as well as the latencies

experienced in the network. Failed components can be
restarted after capturing their state, thus allowing for
reliability. These features allow the development of self-
optimized adaptive systems of a breed different from
traditional parameter-tuning based adaptive control. In
particular, they allow run-time optimization of network
resources vis-à-vis the control application.

EventsEvents

KERNEL

Shell Shell Shell

EventHandler Active
EventHandler Service

Scheduler

Fig. 2. Architecture of Etherware

To manage components, we have developed a
message-oriented middleware, called Etherware. It pro-
vides interfaces for the creation, upgrade, and migration
of components. It also allows components to interact
with collocated or remote components through com-
patible protocols. It allows application developers, for
example control engineers, to “address” a component
without regard to its actual physical location which,
in fact, can even vary during system operation due to
its migration. This is the property of “location inde-

4246

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

COMPUTER 1

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

COMPUTER 2

Fig. 3. OSI ISO Network Model

pendence”. The middleware has features such as state-
capture which are needed for component re-start as well
as migration. This state capture is done through the
Memento design pattern [7]. Virtual inter-component
connections, called MessageStreams, are also main-
tained across restarts.

The architecture of Etherware is based on the micro-
kernel concept [5] as illustrated in Figure 2. Briefly,
the Kernel represents the system invariant, and is the
only part of Etherware that cannot be changed at run-
time. It is a very simple and robust entity whose only
function is to manage components and deliver messages
between them. The Kernel uses a Scheduler to schedule
message delivery. All other Etherware services are
implemented as components. This highly modular ar-
chitecture support very specific service configurations
where unnecessary services can be easily excluded.
Further, failures in service components are tolerated,
and the services can even be upgraded at run-time.

IV. THE VIRTUAL COLLOCATION ABSTRACTION

The architecture of the OSI stack, shown in Figure 3,
below features several abstractions, that of “edge,”
“graph,” and “pipe.” The data link layer manufactures
the abstraction of an “edge,” which is used to man-
ufacture the abstraction of a “graph” by the network
layer, which in turn is used by the transport layer to
manufacture the abstraction of a “pipe.” The hierar-
chical TCP/IP based architecture of the Internet, along
with the peer-to-peer protocols, are well matched to
these abstractions. The end result is a plug-and-play
capability not only for the application, but also for

the individual layers themselves. This in turn promotes
system longevity by allowing for protocols to be re-
placed over time in a modular way, while also allowing
for modular development. The end result is massive
proliferation with over 300 million hosts on the Internet
today [6].

The question that arises in our context is: What
are the appropriate abstractions for the convergence of
control with communications and computing?

We propose an abstraction of virtual collocation.
To promote proliferation, we believe that it is critical
to shrink the development and deployment cycle-time.
The critical resource for this phase is the control
designer’s time.

Therefore our goal is to facilitate control system de-
velopment and deployment by providing an abstraction
to which control design is very well suited. We contend
that such an abstraction, taken almost as a default in
many electro-mechanical systems where delay is not
an issue, is that the distributed control system and
plant are actually collocated. For this purpose we need
to render invisible to the designer several distracting
details. One example is how to address different nodes.
In a system where nodes may be added or removed or
updated, and one which is always in a state of flux,
addressing details should be managed by a “services”
layer, and indeed our Etherware middleware does this.
It allows the control designer to refer to Kalman-Filter-
A as simply Kalman-Filter-A without reference to the
IP address of the node it is currently located at, and
indeed one which may change dynamically under the

4247

0 20 40 60 80 100 120 140 160 180
0

200

400

600

800

1000

1200

45 83 39

3219

46 42 128

time (seconds)

D
ev

ia
tio

n
fr

om
 tr

aj
ec

to
ry

 (
m

m
)

Deviation (mm)
Time of controller down
Time of controller up
Elapsed time to recover (ms)

Fig. 4. Car controller restarts in testbed

operation of a self-optimization policy at run-time, in
response to packet delays experienced in the network
at run-time. Thus the spatially distributed aspects of the
system are hidden from the control designer.

Another key feature provided as a service is that
of a uniform notion of “time.” No two clocks in a
distributed system are exactly the same, and we provide
a timing translation service [9], which enables any
node to regard its own clock as the global clock
with all message time stamps automatically translated
by services running over the middleware. Thus all
information gathered by sensors is automatically time-
stamped.

The net result of semantic addressing, location in-
dependence of components, and time-translation, is
to provide an abstraction of virtual collocation that
the control designers can design to. The design of
collocated control systems via linear design theories,
for example, is very well developed.

A second aspect, also related to time, is that of
estimating packet delays experienced over the network.
For this, a delay-metering service to provide a profile
of current delays being experienced between end-points
in the network at run-time is under development.

V. PRINCIPLE OF LOCAL TEMPORAL AUTONOMY

In a distributed control system it is useful to protect
components from the failures of other components.
This enhances reliability and robustness, besides mak-
ing deployment and system evolution easier [9].

We propose a principle of local temporal autonomy,
whereby the design has as its goal the enabling of a
component to be able to function for at least a limited
period of time in the face of failures of some other
components. During this limited period of autonomy,
procedures such as component restart or migration can
be invoked to ensure continued uninterrupted of the
system.

Controller

PLANT SensorActuator

Control
Buffer

State
Estimator

Fig. 5. Local Temporal Autonomy

An example is clarifying. If one directly uses po-
sition and orientation estimates provided by an image
processing algorithm, then failure of the image pro-
cessing on the communication network can disrupt the
actuation. A solution is to interpose a Kalman Filter as
an architectural construct. This can serve as a buffer,
and also provide predictions of the future state over a
window. These predictions can be repeatedly computed
en bloc and stored in an actuator buffer, as shown in
Figure 5.

4248

Monitor

Version 0 Version 1

Switch
Interface

Actuator PLANT Sensor

CONTROLLER

Fig. 6. Simplex based controller design

This allows for temporary disruptions up to the time-
window of the prediction and the actuation buffer,
thus protecting the actuator against temporary losses
of neighboring components.

This window of limited temporal autonomy can also
be used for failure recovery. For instance, one of the
failure recovery strategies implemented in Etherware is
efficient component restarts. To demonstrate this, we
conducted an experiment in the testbed where faults
were injected into a car-controller at run-time. The
deviation in the car trajectory during these restarts is
shown in Figure 4.

We see that for six of the seven faults, the controller
was efficiently and correctly restarted, and the error
in the car trajectory was minimal. This is primarily
due to local temporal autonomy of the actuator mod-
ule, complemented by efficient restart mechanisms in
Etherware. As a comparison, during the fourth fault in
the experiment, the local application process, including
middleware, was restarted. The subsequent large devi-
ation of the car from its trajectory demonstrates the
inefficiency of such an approach, and underscores the
need for recovery support in middleware.

Indeed the very process of ensuring local temporal
autonomy forces a discipline on the control designers
to make components as independent as possible. This
has the valuable by-product of facilitating other features
such as component migration.

VI. EVOLUTIONARY DESIGN OF SYSTEMS

The next aspect we touch on in this tutorial is that of
designing to a moving application target. Development
of large distributed systems, such as that for traffic
control, is often not done with a unifocal goal as a
one-time design effort. Rather the application grows as
a feature “bloat.”

To address this inevitable aspect of design, we sug-
gest an evolutionary approach to design, which is itself
designed to enhance reliability at all stages of design.
We grow the system by using the Simplex approach of
Sha, et. al [10].

In our context it consists of first building a “Mon-
itor” with a “switch” interface, as shown in Figure 6.
“Version 0” of a module is first deployed. When a
newer version is developed, then during its initial
deployment the older, more reliable, but perhaps less
performance oriented module is used to monitor it for
outlier decisions.

This approach has been successfully used for inter-
posing Traffic Scheduling Algorithms, Collision Avoid-
ance Maneuvers, etc. It can be regarded as a “Design
Pattern” [7] for the process of design.

VII. THE NEED FOR THEORY

We are currently in a situation where “theory” has
become a bottleneck. We can deploy functionalities
for which unfortunately theoretical understanding and
support is lacking. An example to consider is the self-
optimization of networked control systems at run-time.
In a distributed system, a component for traffic schedul-
ing or filtering can be located at any computer. Given
probability distributions of delays across a network, two
questions arise: (i) Where should such components be
migrated to?, (ii) What control feedback law is optimal
in scenarios where the estimator and the actuator are
not collocated, so that the estimator only has delayed
or even missing samples of actuator commands de-
ployed? Both problems are open. In the 1960s these
problems were investigated; see Witsenhausen [11].
While some special situations were found tractable,
see Ho and Chu [12], [13], the general outlook was
regarded as bleak with regard to obtaining exploit
optimal solutions; Witsenhausen [14]. However there

4249

is no need for either explicitness or even optimality.
Rather, attention can probably be directed to perfor-
mance improvement oriented solutions for distributed
control. This is reminiscent of the mode for algorithm
development in computer science. A second approach,
more speculatively, is whether one needs an altogether
different approach, akin, say, to how economic theory,
e.g., the consumption function, has developed; see
Keynes [15]1.

VIII. CONCLUDING REMARKS

In this tutorial, we have highlighted the importance
of abstractions, architecture, middleware, services, and
theory for the coming generation of distributed net-
worked control system. We have illustrated the issues
on the traffic control testbed Convergence Laboratory
at the University of Illinois.

This middleware and services, and the principles
themselves can be used in other contexts. The same
architecture can be used for building wide temperature
control systems by simply replacing code for cars by
code for thermostats. The goal is to move to an era
of “general purpose control systems” over shared com-
putational and network resources, in much the same
way as computational facilities and communication
networks are now shared. It is hoped that this approach
will lead to a similar proliferation of networked control
systems.

REFERENCES

[1] H. W. Bode, Network Analysis and Feedback Amplifier De-
sign. Van Nostrand, 1945.

[2] R. E. Kalman, “Contributions to the theory of optimal con-
trol,” Bol. Society Mat. Mexicana, vol. 5, pp. 102–119, 1960.

[3] R. E. Kalman, “A new approach to linear filtering and pre-
diction problems,” Trans. ASME. (J. Basic Eng.), vol. 92D,
pp. 34–45, March 1960.

[4] R. E. Kalman, “Canonical structure of linear dynamical sys-
tems,” Proceedings of the National Academy of Sciences,
vol. 48, pp. 596–600, 1962.

[5] A. Silberschatz, P. Galvin, and G. Gagne, “Applied Operating
System Concepts,” John Wiley and Sons Inc, 2000.

[6] Internet Systems Consortium, “ISC Internet Domain Survey”,
http://www.isc.org/ds/

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software.”
Boston, MA: Addison-Wesley, 1995.

[8] S. Graham, G. Baliga, and P. R. Kumar, “Issues in the
convergence of control with communication and computing:
Proliferation, architecture, design, services, and middleware,”
in Proceedings of the 43rd IEEE Conference on Decision and
Control, (Bahamas), pp. 1466–1471, December 14-17, 2004.

1We are grateful to Pravin Varaiya for this remark.

[9] S. Graham, G. Baliga, and P. R. Kumar, “Time in general-
purpose control systems: The control time protocol and an
experimental evaluation,” in Proceedings of the 43rd IEEE
Conference on Decision and Control, (Bahamas), pp. 4004–
4009, December 14-17, 2004.

[10] L. Sha, R. Rajkumar, and M. Gagliardi, “The simplex architec-
ture: An approach to building evolving industrial computing
systems,” in Proceedings of the International Conference on
Reliability and Quality in Design, (Seattle, WA, Anaheim,
CA), pp. 122–126, ISSAT Press, March 16-18 1994.

[11] H. S. Witsenhausen, “On information structures, feedback and
causality,” SIAM Journal on Control, vol. 9, pp. 149–160,
1971.

[12] Y. C. Ho and K. C. Chu, “Team decision theory and informa-
tion structures in optimal control problems - Parts I and II,”
vol. AC-17, no. 15-22, pp. 22–28, 1972.

[13] Y. C. Ho and K. C. Chu, “Equivalence of information struc-
tures in static and dynamic team problems,” vol. AC-18,
pp. 187–188, 1973.

[14] H. S. Witsenhausen, “A counterexample in stochastic optimal
control,” SIAM Journal on Control, vol. 6, pp. 131–147, 1968.

[15] J. M. Keynes, The General Theory of Employment, Interest
and Money. Macmillan Cambridge University Press, 1936.

4250

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

