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Abstract

In this paper we address the problem of the stability and
convergence of the stochastic approximation procedure

θn+1 = θn + γn+1[h(θn)+ξn+1].

The stability of such sequences {θn} is known to heavily
rely on the behaviour of the mean field h at the boundary of
the parameter set and the magnitude of the stepsizes used.
The conditions typically required to ensure convergence,
and in particular the boundedness or stability of {θn}, are
either too difficult to check in practice or not satisfied at
all. The most popular technique to circumvent the stability
problem consists of constraining {θn} to a compact subset
K in the parameter space. This is obviously not a satis-
factory solution as the choice of K is a delicate one. In
the present contribution we first prove a “deterministic”
stability result which relies on simple conditions on the se-
quences {ξn} and {γn}. We then propose and analyze an
algorithm based on projections on adaptive truncation sets
which ensures that the aforementioned conditions required
for stability are satisfied. We focus in particular on the case
where {ξn} is a so-called Markov state-dependent noise.

1. Introduction

In many contexts it is of interest to find the roots of pos-
sibly non linear equations of the form

h(θ) = 0, θ ∈ Θ, (1)

for some mapping h : Θ → R
nθ , where Θ ⊂ R

nθ for some
integer nθ . Most of the methods for solving the previous
equation are iterative, i.e. produce a sequence of iterates
{θn,n ≥ 0} which eventually converges to the set of solu-
tions of Eq. (1),

S := {θ ∈ Θ,h(θ) = 0} . (2)

Stochastic Approximation (SA) is a class of algorithms to
solve Eq. (1) in the situation where only noisy measure-

ments of h are available. In its simplest form, the Robbins-
Monro algorithm produces a sequence {θn,n ≥ 0} defined
recursively as follows,

θ0 ∈ Θ, θn+1 = θn + γn+1ζn+1, n ≥ 1, (3)

where {γn,n ≥ 1} is a sequence of stepsizes which satisfies
standard conditions (say γn ↓ 0 and ∑n≥1 γn = ∞) and for
any n ≥ 1, ζn is a noisy measurement of h(θn). It is useful
to introduce the sequence {ξn,n ≥ 1} defined as

ζn+1 = h(θn)+ξn+1, (4)

which will be referred to as the noise sequence. Conver-
gence of SA has been studied under various sets of as-
sumptions for the mean field h and the noise sequence
{ξn,n ≥ 1} since the early work by [14]; see e.g. [2],[13],
[15], [12] and the references therein. Essentially, conver-
gence of the SA sequence can be established toward an at-
tractive subset provided that the sequence {θn,n ≥ 0} is
with probability 1 (hereafter w.p. 1) in a compact subset
of Θ and is w.p. 1 infinitely often in the domain of at-
traction of this attractive subset. Showing in practice that
{θn,n≥ 0} satisfies these boundedness and recurrence con-
ditions proves to be a difficult task. The available results
hold under conditions which are still restrictive, despite
recent advances (see [1], [4], [3] and references therein).
This major drawback has motivated the design of modified
Robbins-Monro recursions. Probably the most widely used
method in practice consists of constraining the sequence
{θn,n ≥ 0} to some compact set K ⊂ Θ by means of a
reprojection onto K . This method has been thoroughly in-
vestigated in [15] (see also [5] and the references therein).
Although relatively easy to implement, and sound when
constraints about the system considered are available a pri-
ori, this approach becomes impractical and questionable in
many situations of interest.
Our contributions to solve the stability and convergence
problems are here twofold:

First we establish and prove in Section 2 a general re-
sult of stability, Theorem 1, for deterministic sequences of
the form given by Eqs. (3)-(4). This key deterministic re-
sult assumes the existence of a global Lyapunov function
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for the mean field h and mild general assumptions about
the noise and stepsize sequences. In contrast with previous
results, the conditions required on the growth of the Lya-
punov functions and the mean field h when θ approaches
the boundaries of the parameter set Θ are minimal. As a
consequence the result is applicable to quite general set-
tings. We then show that, under the conditions that guaran-
tee stability, the convergence of the deterministic sequence
Eq. (3)-(4) is ensured (see Theorem 2).

Our second contribution here consists of proposing a SA
algorithm (Section 3) for which the aforementioned noise
and stepsize conditions are satisfied w.p. 1. There are
many different applications of stochastic approximations
which imply markedly different types of assumptions on
the noise sequence {ξn}. Whereas our deterministic sta-
bility and convergence results mentioned above can be ap-
plied quite generally, we focus in this paper on the subtle
Markov state dependent noise (see [15, Chapter 6, Section
6.6] and Section 3 in this paper), for which the availability
of algorithms whose convergence can be established un-
der general but nevertheless verifiable assumptions is still
missing. The proposed algorithm is a modification of the
classical Robbins-Monro procedure described in Eq. (3)-
(4), based on truncations on adaptive truncation sets, in the
spirit of the seminal works [8] and [7].

The convergence of SA with adaptive truncation sets has
been considered under various conditions on the noise se-
quence {ξn}. These include state-independent noise con-
ditions (see for example [9, Section 2.4, pp. 42-44]) but
also state-dependent martingale differences ([17], [11], [6],
[9, Section 2.5, pp. 49-57]) or state-dependent φ -mixing
processes ([6], [9, Section 2.5, pp. 49]). However the ap-
plication of this strategy to the Markovian state dependent
case requires even more care, and it is therefore not surpris-
ing to find that the results on the topic are scarce, and have
been obtained under conditions that are more stringent than
those considered in the present paper; see [18], [10] and for
the special case of ARMAX models, [9, Chapter 6]. As we
shall see our procedure differs in some respects from the
original procedure proposed by [8] and [7], and offers ad-
ditional degrees of freedom. Our technique of proof for the
stability relies on a novel approach and offers as a byprod-
uct an explicit bound for the tail probability of the number
of reprojections, which is found to be super-exponential un-
der mild technical conditions.

2. Key deterministic results

In this section we establish both stability and conver-
gence results for deterministic recursions of the type de-
scribed in Eqs. (3)-(4). Before stating our first assump-
tions, some definitions and notation are needed. Let d be
a positive integer. An element v of R

d is denoted by its

column vector v and its transpose is denoted by vT. For el-
ements v,w of R

d , we denote < v,w > their inner product,
so that |v| =

√
< v,v > denotes the norm of v. Our first

assumption is the existence of a global Lyapunov function
w for the mean field h. Denoting WM := {θ ∈ Θ,w(θ) ≤
M} ⊂ Θ we assume,

(A1) Θ is an open subset of R
nθ , h : Θ → R

nθ is continuous
and there exists a continuously differentiable function
w : Θ → [0,∞) such that

(i) There exists M0 > 0 such that

L :=
{

θ ∈ Θ,
〈

∇w(θ),h(θ)
〉

= 0
}

⊂ {θ ∈ Θ,w(θ) < M0} ,

(ii) There exists M1 ∈ (M0,∞] such that WM1 is a
compact set,

(iii) For any θ ∈ Θ\L ,
〈

∇w(θ),h(θ)
〉

< 0,

(iv) The closure of w(L ) has an empty interior.

Our approach to prove our stability and convergence re-
sults can be decomposed into two distinct steps. In the first
step (this section), we establish deterministic conditions on
a noise sequence {ξn} and a stepsize sequence {ρn} upon
which a deterministic sequence {θn} defined as

θ0 ∈ Θ θn+1 = θn +ρn+1[h(θn)+ξn+1] for n ≥ 0,
(5)

has the following properties: (i) it remains in a compact
subset of Θ (see Theorem 1) and (ii) provided that {θn} re-
mains in a compact subset of Θ, converges to L (Theorem
2). In a second step - which is probabilistic in nature and
depends on how the noise is generated - we develop a gen-
eral algorithm for the case where {ξn} follows a Markovian
state-dependent dynamic which allows one to show that the
required condition on {ξn} is satisfied w.p. 1.

Theorem 1 shows that under (A1) and mild additional
conditions on {ξn} and {ρn}, the sequence defined in Eq.
(5) remains in a compact subset of Θ.

Theorem 1. Assume (A1). For any M ∈ (M0,M1] there
exist δ0 > 0 and λ0 > 0 such that, for all n ≥ 1, all θ0 ∈
WM0 , all sequences {ρk} of non negative integers and all
sequences {ξk} of nθ -dimensional vectors satisfying

sup
1≤k≤n

ρk ≤ λ0 and sup
1≤k≤n

∣∣∣∣∣
k

∑
j=1

ρ jξ j

∣∣∣∣∣ ≤ δ0,

we have for k ∈ {1, . . . ,n}, w(θk) ≤ M, where θk = θk−1 +
ρkh(θk−1)+ρkξk.
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In the next proposition we show that whenever {θk}
stays in a compact subset of Θ, then under mild additional
assumptions it converges to L . The key result of this sec-
tion is the following theorem, adapted here from [11, The-
orem 2] (see [9] for a similar result). For an integer d and
A a subset of R

d , we define d(x,A) = inf{y ∈ A, |x− y|}.
For any set A ⊂ Θ and any δ > 0, we define Aδ := {θ ∈
Θ,d(θ ,A) ≤ δ}; for any function φ : Θ → R, we define
‖|φ‖|A := supθ∈A |φ(θ)|.
Theorem 2. Assume (A1). Let K be a compact subset of
Θ such that L ∩K 
= /0. Let {ρk} be a monotone non-
increasing sequence of positive numbers such that ρ0 ≤ λ0

(where λ0 is given in Theorem 1),

∞

∑
k=1

ρk = ∞ and lim
k→∞

ρk = 0.

Let {ξn} be a sequence in R
nθ satisfying

limsupk→∞ supl≥k

∣∣∑l
i=k ρiξi

∣∣ = 0. Assume that the
sequence defined by θk = θk−1 +ρkh(θk−1)+ρkξk, is such
that {θk} ⊂ K . Then, limsupk→∞ d(θk,L ∩K ) = 0.

Note that the boundedness is here one of the required as-
sumption. It is therefore natural to try to apply Theorem 1.
This is what motivates the next section, where we describe
a modification of the stochastic approximation algorithm
which ensures that the conditions of Theorem 1 are satis-
fied. We consider here the Markov state dependent noise
as it covers many applications of interest, encompasses the
exogeneous scenario and as we shall see leads to general
and verifiable conditions.

3. Markov state-dependent noise

In this section, we describe our stochastic approxima-
tion procedure with adaptive truncation sets and introduce
the relevant notation required in the Markovian state de-
pendent noise scenario (see [15, Section 6.6, p 159] for
a detailed description and numerous examples). We first
introduce a version without truncations of the algorithm in
this setting (Subsection 3.2), and describe our adaptive pro-
cedure in terms of this plain algorithm in Subsection 3.1.

3.1. Non-homogeneous chain

Let ρ = {ρn} be a monotone non-increasing sequence
with ρ0 ≤ 1, define the product space X̄ := X∪{xc}× Θ̄ :=
Θ∪{θc}, where θc 
∈ Θ and xc 
∈ X are two arbitrary ceme-
tery points, and define the non-homogeneous Markov chain
{Y ρ

n := (Xn,θn)} on X̄× Θ̄ as follows. Set θ0 = θ ∈ Θ,
X0 = x ∈ X, and for n ≥ 0, set

θn+1 = θn +ρn+1H(θn,Xn+1), Xn+1 ∼ Pθn(Xn, ·) (6)

if θn ∈ Θ and θn+1 = θc and Xn+1 = xc if θn 
∈ Θ. Consider
the following assumptions

(A2) For any θ ∈ Θ, the Markov kernel Pθ has a sin-
gle stationary distribution πθ , πθ Pθ = πθ . In addi-
tion H : Θ × X → Θ is measurable, for all θ ∈ Θ,∫
X
|H(θ ,x)|πθ (dx) < ∞.

The existence and uniqueness of the invariant distribution
can be guaranteed under classical irreducibility and recur-
rence conditions (see e.g. [16, Chapter 9,10]). We denote
h(θ) :=

∫
X

H(θ ,x)πθ (dx) the mean-field associated to this
stochastic approximation procedure and define the noise
sequence {ξn = H(θn−1,Xn)− h(θn−1)}. Following [2],
we will often write Hθ (x) as an equivalent expression for
H(θ ,x), hθ for h(θ), etc...

We denote F = {Fn,n ≥ 0} the natural filtration of
this Markov chain, with Fn := σ((Xl ,θl), l ∈ {0, . . . ,n})
and P

ρ
x,θ the probability measure on the canonical space(

(X×Θ)N,(B(X)⊗B(Θ))⊗N
)

generated by the non-
homogeneous Markov chain {Y ρ

n } started from the initial
conditions (X0,θ0) = (x,θ)∈X×Θ and using the sequence
ρ .

3.2. Homogeneous chain

Let {Kq,q ≥ 0} be a sequence of compact subsets of Θ
such that⋃

q≥0

Kq = Θ, and Kq ⊂ int(Kq+1), q ≥ 0, (7)

where int(A) denotes the interior of set A. Let γ = {γk}
and ε = {εk} be two monotone non-increasing sequences
of positive numbers and let K be a subset of X. Let
Φ : X× Θ → K×K0 be a measurable function and φ :
Z

+ → Z be a function such that φ(k) > −k for any k. Our
stochastic approximation algorithm with adaptive trunca-
tion sets is defined as an homogeneous Markov chain on
Z := X×Θ×N×N×N

{Zn := (Xn,θn,κn,ςn,νn)} ∈ Z
N, (8)

with the following transition at iteration n+1,

• If νn = 0, then draw (Xn+1,θn+1)∼Qγςn
(Φ(Xn,θn); ·);

otherwise draw (Xn+1,θn+1) ∼ Qγςn
(Xn,θn; ·).

• If |θn+1 −θn| ≤ εςn and θn+1 ∈ Kκn , then set: κn+1 =
κn, ςn+1 = ςn + 1 and νn+1 = νn + 1; otherwise, set
νn+1 = 0, κn+1 = κn +1, ςn+1 = ςn +φ(νn).

In words, κ , ς and ν are counters: κ is the index of the
current active truncation set; ν counts the number of iter-
ations since the last reinitialization; ς is the current index
in the sequences {γn} and {εn}, and therefore defines the
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current proposal kernel Qγ . The event {νn = 0} means that
a reinitialization occurs and the condition on φ ensures that
the algorithm is reinitialized with a value for γςn smaller
than that used the last time such an event occurred. Various
choices for the function φ can be considered. For example,
the choice φ(k) = 1 for all k ∈ N coincides with the proce-
dure proposed in [7]: in this case ςn = n. Another sensible
choice consists of setting φ(k) = 1 − k for all k ∈ N, in
which case the number of iterations between two succes-
sive reinitialisations is not taken into account.

The intuitive motivation for this modification of the
original stochastic approximation recursion lies in Theo-
rem 1. Indeed, in order to ensure the stability of the algo-
rithm it is required that the sizesteps be not too large and
that the average effect of the noise be small in order for the
drift h(θ) to dominate, and confine the recursion to a com-
pact set. The reprojections act as a -drastic- drift towards
the center of Θ when {θn} grows too rapidly and allow
one to reinitialize the algorithm with a smaller sizestep and
weaker noise inside a “ring” of the type {θ ∈ Θ : w(θ) ∈
(M0,M1]} (M0 and M1 are defined in (A1)) where the drift
is strictly positive. The fact that M0 and M1 are unknown a
priori is the reason for the adaptive truncations, which en-
sure that one eventually selects Kq large enough in order to
have L ∩Kq 
= ∅. As we shall see the limitation imposed
on the increments of the sequence {θn} is required in order
to ensure some type of homogeneity of the chain {ξn}, and
therefore ergodicity properties of the noise sequence {ξn}.

We now introduce some further notation and briefly
state our main result. For µ a probability on Z, we denote
P̄µ (resp. Ēµ ) the probability (resp. the expectation) on the
canonical space (ZN,B(Z)⊗N) associated to the Markov
chain {Zn} with initial distribution µ . For z ∈ Z we set
P̄z := P̄δz , Ēz := Ēδzand for (x,θ) ∈ X×Θ

P̄x,θ := P̄x,θ ,0,0,0 and Ēx,θ := Ēx,θ ,0,0,0. (9)

This probability measure depends upon the deterministic
sequences γ = {γn} and ε = {εn}; this will be implicit here-
after in order to alleviate notation. We define recursively
{Tn,n≥ 0} the sequence of successive reinitialisation times

Tn+1 = inf{k ≥ Tn +1, νk = 0} , with T0 = 0, (10)

where by convention inf{ /0} = ∞. In the following sections
we prove that under (A1), some regularity conditions on
the family of transition probabilities {Pθ ,θ ∈ Θ} and the
sequences γ and ε then

inf
(x,θ)∈K×K0

P̄x,θ

(
sup
n≥0

κn < ∞
)

= inf
(x,θ)∈K×K0

P̄x,θ

(
∞⋃

n=0

{Tn = ∞}
)

= 1,

i.e., the number of reinitializations of the procedure de-
scribed above is finite P̄x,θ -a.e., for every (x,θ) ∈ K×K0.
Convergence will then follow using Theorem 2 for exam-
ple.

4. Bound on P̄x,θ (Tn < ∞)

In this section we establish in Proposition 3 a bound
on P̄x,θ (Tn < ∞) in terms of the fluctuations of the noise
sequence of the algorithm between successive reinitializa-
tions. Let K be a compact subset of Θ and let ε = {εn} be
a non-increasing sequence of positive numbers. We intro-
duce σ(K ,ε) = σ(K )∧ν(ε) where

σ(K ) = inf{k ≥ 1,θk 
∈ K },
ν(ε) = inf{k ≥ 1, |θk −θk−1| ≥ εk},

and for a sequence a = {ak} and an integer l, we define
a←l = {a←l

k } as a←l
k = ak+l . Define, for any compact set

K ⊂ Θ, ε = {εk}, ρ = {ρk} and 1 ≤ l ≤ n the partial sum

Sl,n(ε,ρ,K ) := 1{σ(K ,ε)≥n}
n

∑
k=l

ρk(H(θk−1,Xk)−h(θk−1)),

(11)
and for any δ ≥ 0 and any M ∈ (M0,M1],

A(δ ,ε,M,ρ) :=

sup
θ∈K0

sup
x∈K

{
P

ρ
Φ(x,θ)

[
sup
k≥1

|S1,k(ε,ρ,WM)| > δ

]

+ P
ρ
Φ(x,θ)

[ν(ε) < σ(WM)]
}

, (12)

where K0 is defined in Eq. (7), WM , M0 and M1 are defined
in (A1).

Proposition 3. Assume (A1) and that K0 ⊂ WM0 (where
M0 is defined in (A1)). Then for any M ∈ (M0,M1] there
exist an integer n0 and a constant δ0 > 0 such that, for any
n > n0, we have

sup
(x,θ)∈K×K0

P̄x,θ [Tn < ∞] ≤
n−1

∏
l=n0

sup
q≥l

A(δ0,ε←q,M,γ←q),

where Tn is defined in Eq. (10).

Corollary 4. Assume (A1) and that K0 ⊂ WM0 (where M0

is defined in (A1)). Then for any M ∈ (M0,M1] and n ≥ n0,
there exists a constant C < ∞ such that for any m ≥ n,

P̄x,θ

[
sup
k≥1

κk ≥ m

]
≤C

(
sup
q≥n

A(δ0,ε←q,M,γ←q)

)m

,

where {κk} is the counter corresponding to the number of
reinitialisations defined in Eq. (8).
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5. Control of the fluctuations

Our aim is now to find a bound for A(δ ,ε,M,ρ) de-
fined in Eq. (12), which requires the following conditions
to hold. Define, for V : X → [1,∞) and g : X → R

nθ the
norm

‖g‖V = sup
x∈X

|g(x)|
V (x)

. (13)

Consider the following assumptions

(A3) For any θ ∈ Θ, the Poisson equation g−Pθ g = Hθ −
πθ (Hθ ) has a solution gθ . There exist a function
W : X → [1,∞] such that {x ∈ X,W (x) < ∞} 
= /0, con-
stants α ∈ (0,1], p ≥ 2 such that for any compact sub-
set K ⊂ Θ,

(i) supθ∈K ‖Hθ‖W < ∞, supθ∈K ‖gθ‖W < ∞,
supθ∈K ‖Pθ gθ‖W < ∞, and

sup
(θ ,θ ′)∈K

|θ −θ ′|−α×

{‖gθ −gθ ′‖W +‖Pθ gθ −Pθ ′gθ ′ ‖W} < ∞.

(ii) there exist constants {Ck,k ≥ 0} such that, for
any k ∈ N, for any sequence ρ = {ρk} and for
any x ∈ X,

sup
θ∈K

E
ρ
x,θ [W p(Xk)1{σ(K )≥k}] ≤CkW

p(x),

(iii) there exist ε > 0 and a constant C such that for
any sequence ρ = {ρk} and for any x ∈ X,

sup
θ∈K

E
ρ
x,θ [W p(Xk)1{σ(K )∧νε≥k}] ≤CW p(x).

where νε = inf{k ≥ 1, |θk −θk−1| > ε}.

Proposition 5. Assume (A3). Let K be a compact subset
of Θ and let ρ = {ρk} and ε = {εk} be two non-increasing
sequences of positive numbers such that limk→∞ εk = 0.
Then, for p as defined in (A3),

1. There exists a constant C such that, for any (x,θ) ∈
X×K and any integer l, any δ > 0

P
ρ
x,θ

(
sup
n≥l

|Sl,n(ε,ρ,K )| ≥ δ

)

≤Cδ−p

⎧⎨
⎩

(
∞

∑
k=l

ρ2
k

)p/2

+

(
∞

∑
k=l

ρkεα
k

)p
⎫⎬
⎭W p(x).

(14)

2. There exists a constant C such that, for any (x,θ) ∈
X×K ,

P
ρ
x,θ (ν(ε) < σ(K )) ≤C

{
∞

∑
k=1

(ε−1
k ρk)

p

}
W p(x).

(15)

(A4) The sequences γ = {γk} and ε = {εk} are non-
increasing, positive, and satisfy, ∑∞

k=0 γk = ∞,
limk→∞ εk = 0 and

∞

∑
k=1

{
γ2

k + γkεα
k +(ε−1

k γk)
p} < ∞,

where p and α are defined in (A3).

Theorem 6. Assume (A1) to (A4). Then, for any subset
K ⊂ X such that supx∈KW (x) < ∞, K0 ⊂ WM0 (where M0

is defined in (A1)) and any ρ ∈ (0,1), there exists a constant
C < ∞ such that, for all (x,θ) ∈ X×Θ,

P̄x,θ

[
sup
n≥1

κn ≥ k

]
≤Cρk.

Hence, under the stated conditions, the tail probability of
the number of reinitialization decreases faster than any ex-
ponential and supn≥1 κn is finite P̄x,θ -a.s. Combining this
result with Theorem 2, it is possible to obtain the following
global convergence result.

Theorem 7. Assume (A1) to (A4). Let K ⊂ X be such that
supx∈KW (x) < ∞ and that K0 ⊂ WM0 (where M0 is defined
in (A1)), and let {Zn} be as defined by Eq. (8). Then, for
all (x,θ) ∈ X×Θ, we have limk→∞ d(θk,L ) = 0, P̄x,θ -a.s.

6. Drift conditions

In this section, we give conditions which imply (A3) in
terms of a minorisation of the Markov kernel on a small set
and a drift condition toward this small set (see [16] for the
definitions and main results). Denote, for V : X → [1,∞),
LV := {g : X → R

nθ ,supx∈X ‖g‖V < ∞} where ‖ ·‖V is de-
fined in Eq. (13).

(DRI) For any θ ∈ Θ, Pθ is ψ-irreducible and aperiodic 1.
In addition there exist a function V : X → [1,∞), con-
stants p ≥ 2 and β ∈ [0,1] such that for any compact
subset K ⊂ Θ,

(DRI1) there exist constants 0 < λ < 1, b, κ , δ > 0 and a
probability measure ν such that ∀x ∈ C, ∀A ∈
B(X),

sup
θ∈K

PθV p(x) ≤ λV p(x)+b1C(x) (16)

inf
θ∈K

Pθ (x,A) ≥ δν(A). (17)

(DRI2) there exists C such that, for all x ∈ X,

sup
θ∈K

|Hθ (x)| ≤CV (x),

sup
(θ ,θ ′)∈K

|θ −θ ′|−β |Hθ (x)−Hθ ′(x)| ≤CV (x).

1We use in this article the standard terminology and the notations in-
troduced in [16, Chapter 4,5]

6660



(DRI3) there exists C such that, for all (θ ,θ ′) ∈ K ×
K ,

‖Pθ g−Pθ ′g‖V ≤C ‖g‖V |θ −θ ′|β ∀g ∈ LV ,
(18)

‖Pθ g−Pθ ′g‖V p ≤C ‖g‖V p |θ −θ ′|β , ∀g ∈ LV p .
(19)

Assumption (DRI1) is classical in the Markov chain litera-
ture; it implies the existence of a stationary distribution πθ
for all θ ∈Θ and V p-uniform ergodicity, i.e. for each θ ∈Θ
there exist constants Cθ < ∞ and ρθ ∈ [0,1), such that for
any function f ∈ LV p and any integer k > 0

‖Pk
θ f −πθ ( f )‖V p ≤Cθ ρk

θ‖ f‖V p .

Note that the constants Cθ and ρθ may be bounded over the
compact sets of Θ, i.e. for each K ⊂ Θ, there exists C̄ < ∞
and ρ̄ ∈ [0,1), such that supθ∈K Cθ ≤ C̄ and supθ∈K ρθ ≤
ρ̄ . The regularity of the kernels θ → Pθ expressed in V and
V p norm is naturally less classical. The main result of this
section is:

Proposition 8. Assume (DRI). Then (A2) and (A3) are sat-
isfied and for any 0 < α < β ,

sup
(θ ,θ ′)∈K ×K

|θ −θ ′|−α |h(θ)−h(θ ′)| < ∞. (20)
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