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Abstract— In this paper, we develop a framework for de-
signing controllers for automata which are robust with respect
to uncertainties. A deterministic model for uncertainties is in-
troduced, leading to a dynamic game formulation of the robust
control problem. This problem is solved using an appropriate
information state. We derive a Hidden Markov Model as the
maximum entropy stochastic model for the automaton. A risk-
sensitive stochastic control problem is formulated and solved
for this Hidden Markov Model. The two problems are related
using small noise limits.

I. INTRODUCTION

An automaton or finite state machine (FSM) [8] is a
discrete–time system defined by the model

xk+1 = f(xk, uk),
yk+1 = g(xk), k = 0, 1, . . . , M,

}
(1)

where the “state” xk evolves dynamically in a finite set X,
and the control uk and output yk take values in finite sets U
and Y, respectively. These sets have n, m, and p elements,
respectively. The behavior of the FSM is described by a
state transition map f : X × U → X and an output map
g : X → Y.

FSM models, and their extensions EFSM (extended
FSM), together with accompanying optimization, optimal
control and decision problems, have been used widely in ap-
plications However, it is typically the case that conventional
treatments of such application problems do not specifically
deal with model uncertainties or disturbances; e.g., as
arising from modelling errors, sensor noise, parametric vari-
ations, etc.. Yet in almost all applications performance and
operational robustness is of paramount importance. By that
we mean the design of system structures (in this case FSM
structures) and input strategies that can sustain desired per-
formance and operation despite model uncertainties and/or
signal disturbances. Such problems are widely known as
robust control-communication-signal processing problems.
In this paper we refer collectively to such problems as robust
decision and control problems, or simply robust control
problems. We propose and solve a general robust control
problem for FSMs, and in the process we develop a new
and deeper understanding of the fundamental principles that
support the framework that has been developed for linear
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systems (e.g. [4], [10]), as well as nonlinear systems [2],
[24], [25], [26], [27].

The starting point of our approach is motivated by the
method developed in [3], [11], [6], [2], [10], [1], [4],
[7], [24], [25], [26], [27]. We then develop a general
framework for robust output feedback control of FSMs, by
carefully studying two basic methodologies for representing
model uncertainties and signal disturbances: a deterministic
one and a stochastic one. We investigate the relationship
between the two resulting design methodologies for robust
output feedback control, and establish a certain “duality”
between them. Key to this linkage is the formulation of
the robust control problem as a dynamic game between
two players: nature (who selects model uncertainties and
signal disturbances) and the control designer (who selects
control strategies). When we use deterministic models for
the system uncertainties the corresponding game is a deter-
ministic game, while when we use stochastic models for the
system uncertainties the corresponding game is a stochastic
one. The relationship between the two design methods is a
consequence of the relationship between the deterministic
and the stochastic games.

When we model system uncertainties stochastically, the
FSM model of (1) is transformed to a Hidden Markov
Model (HMM) Over the last fifteen years the output robust
control problem has been investigated for various classes
of systems, within the context of the so-called H∞ con-
trol. This substantial body of research results established
the equivalence of the output robust control problem (or
“four-block problem”), with the problem of solving a non-
cooperative two player deterministic dynamic game, as
well as with the problem of solving a single player risk-
sensitive and partially observed stochastic optimal control
problem. The equivalence of these three problems has been
established for a great variety of system and performance
metric models, but it has principally been interpreted and
understood as a means for obtaining the solution of any
of these problems in terms of the solutions of the other.
A key conclusion from these earlier research results is that
risk-sensitive controllers are very closely related to robust
controllers, see [4], [7], [24], [25], [26], [27].

Yet, despite these developments, from a deeper systems
perspective, a key question that remained unanswered was
the following. It is clear that the risk-sensitive stochastic
control problem involved in these equivalences, represents
a particular randomization of the robust output feedback
control problem. As is true in many other problems this
randomization reduces the computational complexity of
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computing robust output feedback controls. In the present
paper we investigate exactly this deeper question. Namely,
what is the deeper fundamental principle leading to the
particular randomization used in the risk-sensitive stochastic
control formulation of the robust control problem? The
answer, established here, is that this randomization is in
fact equivalent to the construction of a maximum entropy
model [19], [20], [21], [22], which is a carefully constructed
HMM. In this paper we establish this result for automata
and HMMs. Establishing the result for more general sys-
tems including nonlinear systems and hybrid systems, will
be done elsewhere.

We establish the result by first reviewing our earlier
work [26]. We formulate the robust output feedback control
problem for a FSM and summarize the description of its
equivalence to a deterministic partially observed dynamical
game. We then formulate the robust output feedback control
problem for the maximum entropy randomization of the (1),
following ideas from [16], [28]. We then solve the risk-
sensitive stochastic optimal control problem for the resulting
HMM. Our solution, which is interesting in itself, leads
us to the solution of the robust output feedback control
problem for FSMs. Finally, we link the two problems in
yet another way by employing large deviation limits as in
[7].

The robust output feedback control problem for FSMs is
formulated in Section II; this entails defining a deterministic
uncertainty (disturbance) mechanism with associated cost
functions. In Section III, a stochastic uncertainty (distur-
bance) model is derived via the principle of maximum
entropy modelling [19], [20], [21], [22]. In the same Section
we also derive the duality of this randomization with a
risk-sensitive control problem. The risk-sensitive problem
is solved, and the large deviation principle is invoked (i.e.
a small noise limit is evaluated) and used in Section IV to
solve the robust output feedback control problem of Section
II.

II. OUTPUT ROBUST CONTROL PROBLEM WITH

DETERMINISTIC UNCERTAINTY MODELS

A. Deterministic Perturbation

We model the influence of disturbances by a FSM model
obtained by augmenting (1) with two additional (distur-
bance) inputs w and v:

xk+1 = b(xk, uk, wk),
yk+1 = h(xk, vk), k = 0, 1, . . . , M,

}
(2)

where, wk and vk take values in finite sets W and V
respectively. The range spaces of the maps b and h are
X and Y respectively. The functions b : X×U×W → X
and h : X × V → Y are required to satisfy the following
consistency conditions:{

there exists w∅ ∈ W such that
b(x, u, w∅) = f(x, u) for all x ∈ X, u ∈ U,

{
there exists v∅ ∈ V such that
h(x, v∅) = g(x) for all x ∈ X.

The symbols w∅ and v∅ [8] play the role of “zero inputs”,
so that when no disturbances are present (i.e. wk ≡ w∅, and
vk ≡ v∅), the behavior of (2) is the same as (1).

We will assume that there exists a null control u∅ ∈ U
and an equilibrium or rest state x∅ ∈ X such that

x∅ = f(x∅, u∅).

The set of possible initial states is denoted N0 ⊂ X,
and assumed to contain x∅, while the set of possible future
states for the disturbance model (2) is

NX(x, u) = {b(x, u, w) : w ∈ W} ⊂ X,

and the corresponding set of possible future outputs is

NY(x) = {h(x, v) : v ∈ V} ⊂ Y.

These sets can be thought of as “neighborhoods” of the
nominal future values f(x, u), g(x), and are determined by
the maps b and h. These can be designed as appropriate for
the application at hand.

B. Cost Functions

To quantify the effect of the disturbances, a measure of
their “sizes” is required. To this end, one specifies functions

φw : W×X×U → R, φv : V×X → R, β : X → R,

with the following properties:{
φw(w∅; x, u) = 0 for all x ∈ X, u ∈ U,

φw(w; x, u) ≥ 0 for all w �= w∅ ∈ W, x ∈ X, u ∈ U,{
φv(v∅; x) = 0 for all x ∈ X,

φv(v; x) ≥ 0 for all v �= v∅ ∈ V, x ∈ X, u ∈ U,

and, ⎧⎪⎨
⎪⎩

β(x∅) = 0,

+∞ > β(x0) ≥ 0 for all x0 �= x∅ ∈ N0,

β(x0) = +∞ for all x0 �∈ N0,

We think of φw(w; x, u) as the magnitude of the disturbance
w as it affects the system when it is in state x with control
u applied, and φv(v; x) as the magnitude of the disturbance
v when in state x. The cost function β specifies the amount
of uncertainty regarding the initial state.

Associated with these cost functions are quantities which
define the optimal cost of transfering from x to x′′ and the
optimal cost of producing the output y′′. These quantities
will be used in the solution of the robust control problem
below. They are defined by

U(x, x′′; u)
�
= minw∈W {φw(w; x, u) : x′′ = b(x, u, w)} ,

V (x, y′′)
�
= minv∈V {φv(v; x) : y′′ = h(x, v)} .

(3)
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We adopt the convention that the minimum over an empty
set equals +∞. Thus U and V are extended real valued
functions. Note that

U(x, f(x, u); u) = 0 for all x ∈ X, u ∈ U, (4)

U(x, b(x, u, w); u) ≥ 0 for all w �= w∅ ∈ W, x, u, (5)

U(x, x′′; u) = +∞ if x′′ �∈ NX(x, u). (6)

and

V (x, g(x)) = 0 for all x ∈ X, (7)

V (x, h(x, v)) ≥ 0 for all v �= v∅ ∈ V, x ∈ X, (8)

V (x, y′′) = +∞ if y′′ �∈ NY(x). (9)

C. Robust Control

As part of the problem specification, one defines an
additional output quantity

zk+1 = �(xk, uk), (10)

where zk takes values in a finite set Z, and � : X×U → Z.
We assume there exists a specific null element z∅ ∈ Z such
that

�(x∅, u∅) = z∅.

A cost function for this output is also specified, with the
properties {

φz(z∅) = 0,
φz(z) ≥ 0 for all z ∈ Z.

The output quantity z and its associated cost function φz

encode the performance objective of the problem at hand.
To summarize, the complete system is described by the
equations

xk+1 = b(xk, uk, wk),
zk+1 = �(xk, uk),
yk+1 = h(xk, vk), k = 0, 1, . . . , M.

⎫⎪⎬
⎪⎭ (11)

The state variable xk is not measured directly, and so the
controller must make use of information available in the
output signal y0,k; i.e., the controller must be an output
feedback controller. We denote by Ok,l the set of non–
anticipating control policies defined on the interval [k, l];
i.e., those controls for which there exist functions ūj :
Yj−k+1 → U such that uj = ūj(yk+1,j) for each j ∈ [k, l].

The output feedback robust control problem is the fol-
lowing [26] : given γ > 0 and a finite time interval [0, M ]
find an output feedback controller u ∈ O0,M−1 such that

M−1∑
k=0

φz(zk+1) ≤ β(x0)+γ
M−1∑
k=0

(φw(wk; xk, uk) + φv(vk; xk))

(12)
for all (w, v) ∈ WM × VM , x0 ∈ X.

D. Dynamic Game

The robust control problem formulated above can be
recast as a dynamic game problem, see, e.g., [24], [25], [26].
The payoff function for a controller u ∈ O0,M−1 (player 1)
and disturbances (w, v, x0) ∈ WM × VM × X (player 2)
is given by

Jγ(u, w, v, x0)
�
= −β(x0) +

M−1∑
k=0

φz(zk+1)

− γ (φw(wk; xk, uk) + φv(vk; xk)) . (13)

We consider the upper payoff for this game given the
dynamics (2). Define

Jγ(u)
�
= max

(w,v)∈WM×VM
max
x0∈X

{Jγ(u, w, v, x0)} .

The bound

0 ≤ Jγ(u) ≤ M max
z∈Z

φz(z) (14)

is readily verified. The dynamic game problem is to find an
output feedback controller u∗ ∈ O0,M−1 such that

Jγ(u∗) = min
u∈O0,M−1

Jγ(u). (15)

Then if
Jγ(u∗) = 0, (16)

the robust control objective (12) is achieved.
We will solve this dynamic game problem in Section IV.

III. OUTPUT ROBUST CONTROL PROBLEM WITH

STOCHASTIC UNCERTAINTY MODELS

A. Random Perturbation

The random perturbation defined below is a stochastic
analog of the deterministic perturbation introduced in Sec-
tion II. Let S = {(x0, y0), (x1, y1), . . . (xM , yM )} , and let,

PM
1 (s) = Prob

[{
(x0, y0), (x1, y1), . . . (xM , yM )

}
= s

]
.

We choose the statistics of the stochastic system in the
least biased way [19], [20] by picking the joint process
probabilities

{
PM

1 (s)
}

that generate the maximum entropy
over the set S while at the same time describing the
observed levels of disturbances.

We want to maximize

−E log
(
PM

1 (s)
)

over all distributions on S that generate specified levels of
disturbances which are measured through the average costs
of the disturbances. So the distribution we pick must satisfy:

EU(xi, xi+1; u) = αi for 1 ≤ i ≤ M − 1,

EV (xi, yi) = βi for 1 ≤ i ≤ M,

Eβ(x0) = γ.

In addition, the probabilities PM
1 (s) must add up to one.

We thus have to maximize a strictly concave function on the
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simplex subject to linear constraints. The function achieves
the global maximum at the only critical point it has. The
Lagrangian is:

J =
M−1∑
i=1

λi [αi − EU(xi, xi+1; u)] +

M∑
i=1

µi [βi − EV (xi, yi)] + ν [γ − Eβ(x0)] +

κ

[
1 −

∑
s∈S

PM
1 (s)

]
− E log

(
PM

1 (s)
)
.

The critical point is found by solving the following equa-
tions:

− (
1 + log

(
PM

1 (s)
)) − M−1∑

i=1

λiU(xi, xi+1; u)

−
M−1∑
i=1

µiV (xi, yi) − νβ(x0) − κ = 0,

for s ∈ S, and,

αi −
∑
s∈S

PM
1 (s)U(xi, xi+1; u) = 0, for 1 ≤ i < M,

βi −
∑
s∈S

PM
1 (s)V (xi, yi) = 0, for 1 ≤ i ≤ M,

γ −
∑
s∈S

PM
1 (s)β(x0) = 0,

1 −
∑
s∈S

PM
1 (s) = 0,

which gives us the Gibbs distribution:

PM
1 (s) = exp

{
−

M−1∑
i=1

λiU(xi, xi+1; u)

−
M−1∑
i=1

µiV (xi, yi) − νβ(x0) − κ − 1
}

(17)

for s ∈ S, and,

αi

∑
s∈S

PM
1 (s) −

∑
s∈S

PM
1 (s)U(xi, xi+1; u) = 0, (18)

for 1 ≤ i < M , and,

βi

∑
s∈S

PM
1 (s) −

∑
s∈S

PM
1 (s)V (xi, yi) = 0, (19)

for 1 ≤ i ≤ M , and,

γ
∑
s∈S

PM
1 (s) −

∑
s∈S

PM
1 (s)β(x0) = 0, (20)

and,

exp {κ + 1} =
∑
s∈S

exp
{
−

M−1∑
i=1

λiU(xi, xi+1; u)

−
M−1∑
i=1

µiV (xi, yi) − νβ(x0)
}

. (21)

Now we introduce some simplifying notation.
For xi ∈ X, xi+1 ∈ X:∑

xi∈X,xi+1∈X

exp {−λiU(xi, xi+1; u)} =
∑

j

Ej ,

∑
xi∈X,xi+1∈X

U(xi, xi+1; u) =
∑

j

Fj .

The multiplier (λi) can be known by solving the following
equation:

αi

∑
j

Ej −
∑

j

EjFj = 0, for1 ≤ i ≤ M − 1. (22)

Now, we want to show that the multiplier (λi) is a mono-
tonic function of the corresponding disturbance level αi.
Consider the function:

f(λ) = αi

∑
j

Ej −
∑

j

EjFj =
∑

j

Ej(αi − Fj).

If λi is a zero then, 0 =
∑

j Ej(αi − Fj) , and,

0 =
∑

j Ej

(
1 − αi

dλi

dαi
Fj + dλi

dαi
F 2

j

)
. This gives us:

dλi

dαi
=

∑
j Ej∑

j Ej

(
αiFj − F 2

j

) .

The above expression is negative if its denominator D is.

D = ai

∑
j

EjFj −
∑

EjF
2
j

=

∑
j EjFj∑

j Ej

∑
j

EjFj −
∑

EjF
2
j

=

(∑
j EjFj

)2

− (∑
EjF

2
j

) (∑
j Ej

)
∑

j Ej
≤ 0.

In a manner entirely parallel to this, we can solve for
the multipliers {µi}, ν as well as prove that they decrease
monotonically as the disturbance levels are raised.

Also, when αi = minxi,xj
{U(xi, xj ; u)}, λi = ∞.

Thus when all the disturbance levels go down to zero, the
Gibbs distribution we get as the maximum entropy solution,
reduces to the unperturbed FSM we started with.

When we parametrize the expected disturbance levels so
that the Lagrange multipliers ({λi}, {µi}, ν) are all equal
to ε, the maximum entropy model we derived (17) is a
controlled Hidden Markov Model. It consists of an X valued
controlled Markov chain xε

k together with a Y valued output
process yε

k. We have:

Pu
(
xε

k+1 = x′′ |xk = x, x0,k−1, uk = u, u0,k−1

)
= Aε(u)x,x′′ ,

Pu
(
yε

k+1 = y′′ |xk = x
)

= Bε(x)y′′ ,

where,

Aε(u)x,x′′
�
= 1

Zε
x,u

exp
(− 1

εU(x, x′′; u)
)
,

Bε(x)y′′
�
= 1

Zε
x

exp
(− 1

εV (x, y′′)
)
,

⎫⎬
⎭ (23)
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where the functions U and V are defined by (3), and the
normalizing constants Zε

x,u and Zε
x are chosen so that∑

x′′∈X

Aε(u)x,x′′ = 1,
∑

y′′∈Y

Bε(x)y′′ = 1.

Similarly, the initial distribution is

ρε(x0) = 1
Zε

x0
exp

(− 1
εβ(x0)

)
.

Thus where Pu is the probability distribution on XM+1 ×
YM defined by a control policy u ∈ O0,M−1:

Pu(x0,M , y1,M ) = ΠM−1
k=0 Aε(uk)xk,xk+1B

ε(xk)yk+1ρ
ε(x0)

The probability distribution Pu is equivalent to a distri-
bution P† under which {yε

k} is iid uniformly distributed on
Y, independent of {xε

k}, and {xε
k} is a controlled Markov

chain as above:

P†(x0,M , y1,M ) = ΠM−1
k=0

(
Aε(uk)xk,xk+1

1
p

)
ρε(x0),

where p here denotes the number of outputs. Note that

dPu

dP† |Gk
= λε

k
�
= Πk

l=1Ψ
ε(xε

l−1, y
ε
l ),

where
Ψε(x, y′′)

�
= pBε(x)y′′ ,

and Gk is the filtration generated by (xε
0,k, yε

1,k).

B. Cost

The cost function is defined for admissible u ∈ O0,M−1 by

Jγ,ε(u) = Eu

[
exp

1
γε

M−1∑
l=0

φz (�(xε
l , ul))

]
(24)

and the output feedback risk-sensitive stochastic control
problem for the HMM (23) is to find u∗ ∈ O0,M−1 so
that

Jγ,ε(u∗) = min
u∈O0,M−1

Jγ,ε(u).

In terms of the reference measure, the cost can be expressed
as

Jγ,ε(u) = E†
[
λε

M exp
1
γε

M−1∑
l=0

φz (�(xε
l , ul))

]
. (25)

C. Information State

Following [7], [24], [25], [26], we define an information
state process σγ,ε

k ∈ Rn by the relation

σγ,ε
k (x) = E†

[
I{xε

k=x} exp
1
γε

k−1∑
l=0

φz (�(xε
l , ul)) λε

k | Yk

]
,

(26)
where Yk is the filtration generated by the observation
process yε

1,k, and σγ,ε
0 (x) = I{x=x∅}.

The evolution of this process is determined by a matrix
Σγ,ε(u, y′′) whose entries are defined by

Σγ,ε(u, y′′)x,x′′
�
= Aε(u)x,x′′ Ψε(x, y′′) exp

1
γε

φz (�(x, u)) .

(27)

Indeed, the information state is the solution of the recursion
(c.f. [7], [26])

σγ,ε
k = Σγ,ε ∗(uk−1, y

ε
k) σγ,ε

k−1

σγ,ε
0 = ρε,

}
(28)

where the ∗ denotes matrix transpose. We can also define
an adjoint process νγ,ε

k ∈ Rn by the recursion

νγ,ε
k−1 = Σγ,ε(uk−1, y

ε
k) νγ,ε

k

νγ,ε
M = 1.

}
(29)

Then relative to the inner product

〈σ, ν〉 =
∑
x∈X

σ(x)ν(x)

for σ, ν ∈ Rn, it is straightforward to establish the adjoint
relationships

〈Σγ,ε ∗σ, ν〉 = 〈σ, Σγ,εν〉,
〈σγ,ε

k , νγ,ε
k 〉 = 〈σγ,ε

k−1, νγ,ε
k−1〉

for all σ ∈ Rn, ν ∈ Rn, and all k.
Remark 3.1: The reason for introducing the information

state σγ,ε
k is to replace the original output feedback risk-

sensitive stochastic control problem with an equivalent
stochastic control problem with a state variable σγ,ε

k which
is completely observed, and to solve this new problem using
dynamic programming. This will yield a state feedback
controller for the new problem, or equivalently, an output
feedback controller for the original problem which is sepa-
rated through the information state [9], [3], [7], [24], [25],
[26].

As in [7], [26], the cost function can be expressed purely
in terms of the information state:

Jγ,ε(u) = E† [〈σγ,ε
M , 1〉] . (30)

D. Dynamic Programming

Consider the state σγ,ε on the interval k, . . . , M with
initial condition σγ,ε

k = σ ∈ Rn:

σγ,ε
l = Σγ,ε ∗(ul−1, y

ε
l ) σγ,ε

l−1, k + 1 ≤ l ≤ M,

σγ,ε
k = σ.

}
(31)

The corresponding value function for this control problem
is defined for σ ∈ Rn by

Sγ,ε(σ, k) = min
u∈Ok,M−1

E† [〈σγ,ε
M , 1〉 |σγ,ε

k = σ] . (32)

The dynamic programming equation for this problem is as
follows [7], [26]:

Sγ,ε(σ, k) = min
u∈U

E† [
Sγ,ε(Σγ,ε ∗(u, yε

k+1)σ, k + 1)
]

Sγ,ε(σ, M) = 〈σ, 1〉.

}
(33)

The next theorem is a statement of the dynamic pro-
gramming solution to the output feedback risk-sensitive
stochastic control problem.
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Theorem 3.2: [26] The value function Sγ,ε defined by
(32) is the unique solution to the dynamic programming
equation (33). Conversely, assume that Sγ,ε is the solution
of the dynamic programming equation (33). Suppose that
u∗ ∈ O0,M−1 is a policy such that, for each k = 0, . . . , M−
1, u∗

k = ū∗
k(σγ,ε

k ), where ū∗
k(σ) achieves the minimum in

(33). Then u∗ is an optimal output feedback controller for
the risk–sensitive stochastic control problem (§III-B).

Remark 3.3: Note that the controller u∗
k is defined as a

function of the information state σγ,ε
k , and since σγ,ε

k is a
non-anticipating function of yε

0,k, u∗
k is an output feedback

controller for the risk-sensitive stochastic control problem;
indeed, u∗ is an information state feedback controller.

E. Small Noise Limit

In [7], [24], [25], [26] it was shown that a deterministic
dynamic game problem is obtained as a small noise limit of
a risk–sensitive stochastic control problem. In this subsec-
tion, we carry out this limit procedure for the risk-sensitive
stochastic control problem defined above. We first obtain
a limit for the information state, and use this to evaluate
the appropriate limit for the value function. This yields
an information state and value function for the dynamic
game problem of Section II-D. These results will be used
in Section IV in the solution of the output feedback robust
control problem of Section II.

Define the matrix Λγ(u, y′′) by its entries

Λγ(u, y′′)x,x′′
�
= φz(�(x, u))−γ (U(x, x′′; u) + V (x, y′′)) .

(34)
Then we have

lim
ε→0

γε log Σγ,ε(u, y′′)x,x′′ = Λγ(u, y′′)x,x′′ . (35)

The action of the matrix Σγ,ε and its adjoint (transpose)
on vectors σ, ν in Rn is given by the usual matrix mul-
tiplication, i.e., sums of products of entries. The action of
the matrix Λγ(u, y′′) and its adjoint on vectors p, q in Rn

is instead defined in terms of maximization operations as
follows:

Λγ ∗(u, y′′)p(x′′)
�
= maxx∈X {Λγ(u, y′′)x,x′′ + p(x)} ,

Λγ(u, y′′)q(x)
�
= maxx′′∈X {Λγ(u, y′′)x,x′′ + q(x′′)} .

The inner product 〈 · , · 〉 is replaced by the “sup-pairing”

(p, q)
�
= max

x∈X
{p(x) + q(x)} , (36)

and in fact we have

lim
ε→0

γε log〈e
1
γε p

, e
1
γε q〉 = (p, q). (37)

The actions corresponding to the matrix Λγ(u, y′′) are
“adjoint” in the sense that

(Λγ ∗p, q) = (p, Λγq) . (38)

The limit result for the information state is the following:

Theorem 3.4: [26] We have

lim
ε→0

γε log Σγ,ε ∗(u, y)e
1

γε p = Λγ ∗(u, y)p,

lim
ε→0

γε log Σγ,ε(u, y)e
1

γε q = Λγ(u, y)q

⎫⎬
⎭ (39)

in Rn uniformly on U × Y × Rn.
In view of this theorem, we define a limit information

state and its adjoint by the recursions

pγ
k = Λγ ∗(uk−1, yk)pγ

k−1

pγ
0 = −β,

}
(40)

and
qγ
k−1 = Λγ(uk−1, yk)qγ

k

qγ
M = 0.

}
(41)

Note that
(pγ

k , qγ
k ) = (pγ

k−1, qγ
k−1)

for all k.
Turning now to the value function, we have:
Theorem 3.5: [26] The function W γ(p, k) defined for

p ∈ Rn by

W γ(p, k)
�
= lim

ε→0
γε log Sγ,ε(e

1
γε p, k) (42)

exists (i.e. the sequence converges uniformly on Rn), is
continuous, and satisfies the recursion

W γ(p, k) = min
u∈U

max
y∈Y

{W γ(Λγ ∗(u, y)p, k + 1)}
W γ(p, M) = (p, 0) .

}

(43)

IV. SOLUTION TO THE ROBUST CONTROL PROBLEM

A. Equivalent Game Problem

We now replace the deterministic output feedback game
problem (Section II) with an equivalent deterministic game
problem with pγ

k , defined in Section III-E, as a completely
observed state variable. The solution of this new problem
will result in an information state feedback controller, and
thus an output feedback controller for the original game
problem which is separated through the information state.

The next theorem shows that the cost function can be
expressed in terms of the information state [7], [24], [25],
[26].

Theorem 4.1: We have for all u ∈ O0,M−1

Jγ(u) = max
y∈YM

{(pγ
M , 0)} . (44)

Proof: We have, for all u ∈ O0,M−1,

max
y∈YM

{(pγ
M , 0)} = max

y∈YM
max
x′′∈X

{pγ
M (x′′)}

= max
w∈WM

max
v∈VM

max
x0∈X

{Jγ(u, w, v, x0)} = Jγ(u),

where we have made use of the definitions for the cost
functions U and V (Section II-B).
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B. Dynamic Programming

Consider now the state pγ on the interval k, . . . , M with
initial condition pγ

k = p ∈ Rn:

pγ
l = Λγ ∗(ul−1, yl)p

γ
l−1, k + 1 ≤ l ≤ M,

pγ
k = p.

}
(45)

The value function is defined for p ∈ Rn by

W γ(p, k) = min
u∈Ok,M−1

max
y∈YM−k

{(pγ
M , 0) : pγ

k = p} .

(46)
The solution of the game problem is expressed as follows.
Theorem 4.2: The value function W γ(p, k) defined by

(46) is the unique solution to the dynamic programming
equation (43). Further, if W γ(p, k) is the solution of (43),
and if u∗ ∈ O0,M−1 is a policy such that, for each
k = 0, . . . , M − 1, u∗

k = ū∗
k(pγ

k), where ū∗
k(p) achieves

the minimum in (43), then u∗ is an optimal policy for the
output feedback dynamic game problem (Section II-D).

Proof: Standard dynamic programming arguments.

C. Robust Control

The solution to the state feedback robust control problem
was expressed in terms of the solution f̄γ

k (x) of a dynamic
programming equation, and a state feedback controller
ũ∗

k(x) was obtained. The framework we have developed
in this paper allows us to characterize the solution of the
output feedback robust control problem in terms of the
solution W γ(p, k) of a dynamic programming equation,
and obtain an output feedback controller ū∗

k(pγ
k(· ; y1,k)).

Note that the information state pγ
k is also the solution of a

dynamic programming equation (40).
Theorem 4.3: (Necessity) Assume that there exists a

controller uo ∈ O0,M−1 solving the output feedback robust
control problem. Then there exists a solution W γ(p, k)
of the dynamic programming equation (43) such that
W γ(−β, 0) = 0. (Sufficiency) Assume that there exists a
solution W γ(p, k) of the dynamic programming equation
(43) such that W γ(−β, 0) = 0, and let ū∗

k(p) be a control
value achieving the minimum in (43). Then ū∗

k(pγ
k(· ; y1,k))

is an output feedback controller which solves the output
feedback robust control problem.

V. CONCLUSIONS AND DISCUSSION

In this paper we showed that the robust output feedback
control problem for automata is solvable using deterministic
and stochastic models for the uncertainties. The stochastic
model was shown to be a HMM derived via the maximum
entropy principle.

For future work, it would be interesting to investigate
connections with model complexity and extensions to more
general dynamical systems, including hybrid systems.
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