
On Constrained Covariance Extension Problems

Kaushik Mahata and Minyue Fu

Abstract— This paper aims at generalizing the well-known
covariance extension problem by considering additional con-
straints. We first consider degree constraints, i.e., we require the
interpolation function to have a given degree. Several results are
offered for testing the feasibility via linear matrix inequalities.
We then study the spectral zero assignment problem where the
the interpolation function is constrained to have the zeros of
the spectral factorization of the interpolation function at given
locations. A fast iterative algorithm is provided for this problem.
Numerical studies support that this algorithm works extremely
well, although we are yet to offer a theoretical proof for the
convergence of the algorithm.

I. INTRODUCTION

This is a companion paper of [1] which deals with
generalizations of the Nevanlinna-Pick interpolation problem
by considering additional constraints. In this paper, we are
concerned with similar generalizations but for the covariance
extension problem. It is well known that the two problems
are closely related and that most results for one problem have
parallel results for the other. However, the presentations of
the results and the technical tools used for developing these
results may often be quite different. Therefore, it is essential
that both problems are studied separately.

The classical covariance extension problem is stated as
follows: Given a set of real numbers {ck}

m

k=0 construct,
if possible, a rational function f(z) with a Laurant series
expansion

f(z) =

∞∑
k=0

fkz−k

such that

f0 = c0/2, fk = ck, k = 0, 1, . . . , m, (1)

and that f(z) is strictly positive real (SPR), i.e., f(z) is
analytic in |z| ≤ 1 and that

f(z) + f(z−1) > 0, ∀|z| = 1. (2)

Like the Nevanlinna-Pick interpolation problem, the covari-
ance extension problem has deep roots in the mathematical
literature [2] and have numerous applications in various
engineering fields, ranging from systems theory [3], [4] to
control design [5] and signal processing [6].

In most applications, it is important that the interpolating
function satisfies additional constraints. In this paper, we
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consider two important constraints. The first one is a degree
constraint, i.e., f(z) is required to be of a given degree
n < m. The second constraint is to assign the spectral
zeros of f(z). More precisely, let φ(z) be the unique spectral
factorization of f(z), i.e., φ(z) is stable with minimum phase
and satisfying

f(z) + f(z−1) = φ(z)φ(z−1) (3)

Then, the zeros of φ(z), which are referred to the spectral
zeros of f(z), need to be assigned at given locations. This
interpolation problem is of interest in spectrum analysis
applications [7]. This is also of interest if one wants to
parameterize all the solutions via spectral zeros.

In this paper, a number of new results are presented for
the aforementioned generalization problems using a new
approach. For the degree constraint problem, we first estab-
lish necessary and sufficient conditions for testing whether
a solution to the covariance extension problem exists for
m = 2n and m = n. This is followed by a relaxation
scheme which gives a sufficient condition for testing the
existence of a solution with any given n < m < 2n.
All the tests are based on linear matrix inequalities (LMIs)
and are thus computationally tractable. For the spectral zero
assignment problem, we propose a new iterative algorithm
which is substantially faster than the iterative algorithm in
[8]. In fact, the algorithm in [8] requires solving an algebraic
Riccati equation and searching an optimal Newton step size
in each iteration, whereas our algorithm amounts to solving
a Lyapunov equation plus some minor matrix computations
in each iteration. We have tested this algorithm extensively
in simulations. However, we are yet to establish theoretically
that our algorithm always converges to the correct solution.

II. DEGREE-CONSTRAINED COVARIANCE EXTENSION

PROBLEM

In this section, we consider the degree-constrained covari-
ance extension problem for different values of n.

It is well known that the covariance extension problem
without degree constraints is solvable if and only if an as-
sociated Pick matrix is positive definite [2]. If this condition
holds, there always exists a solution of degree n = m.
Another case of special interest is m = 2n. In this case,
the solution to f(z), if exists, is generically unique because
f(z) has 2n +1 coefficients and there are m +1 constraints
in (1). We will give a necessary and sufficient condition for
solving the covariance extension problem. We will also study
the intermediate situation when n < m < 2n. A relaxation
scheme is used to give a linear matrix inequality for testing
if a degree-constrained solution exists or not.
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We start by introducing a simple characterization of all
possible rational functions which satisfy the first m + 1
constraints in (1), but not necessarily the SPR condition. This
will help simplify calculations to a significant extent.

Lemma 1: Define the n × n matrix F0, and the n × 1
vectors a, b, c and h as

F0 =

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0

⎤
⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ , h =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ ,

a =
[

an an−1 · · · a1

]�
,

c =
[

c1 c2 · · · cn

]�
.

Then the degree-n rational function

f(z) = c0/2 + h�
[
zI − F0 + ba�

]−1
c (4)

satisfies the interpolation conditions given by (1) upto lag n
for any value of a. Furthermore, the denominator of f(z) is
given by

A(z) = zn + a1z
n−1 + · · · + an.

Proof: The result is well known, see for example [9].

Using the lemma above we can parameterize all possible
degree-n rational functions satisfying (1) via the free param-
eter vector a. As a determines the poles of the representation,
we see that for any choice of the poles of the rational
representation there exists a unique a and thus a unique f(z)
such that (1) is satisfied. However, not every a makes f(z)
satisfy the SPR condition (2).

A. The case m = n

In this case, the remaining n degrees of freedom can be
used to satisfy additional constraints. In [4], [8], [10], it
was shown that it is possible to specify n spectral zeros,
provided that they are inside the closed unit disc. Therefore,
the solution set is completely parameterized via spectral
zeros. In what follows next, we seek for an alternative
parameterization of the solution set when m = n.

Lemma 2: The rational function f(z) in (4) is SPR real
if and only if there exist a n × n positive definite matrix Q
and a n × 1 vector a� such that the following LMI (linear
in terms of Q−1 and a�) holds:

⎡
⎣ Q−1 Q−1h Q−1F�

0 − a�b
�

h�Q−1 c0 c�

F0Q
−1 − ba�

� c Q−1

⎤
⎦ > 0 (5)

If so, the vector a is given by

a = Qa�.

Proof: Let us denote

F = F0 − ba�. (6)

According to the Kalman-Yakubovitch-Popov lemma [11],
[12] , f(z) in (4) is SPR if and only if there exists a positive
definite matrix Q such that[

Q h
h� c0

]
−

[
F�

c�

]
Q

[
F c

]
> 0. (7)

Now using Schur complements this is equivalent to⎡
⎣ Q h F�

h� c0 c�

F c Q−1

⎤
⎦ > 0 (8)

Multiplying the first row of (8) by Q−1 from the left, and
the first column of (8) by Q−1 from the right, we obtain (5).

Lemma 2 provides us with an alternative approach to
parameterizing all the solutions of the rational covariance
extension problem via the LMI (5) in Q−1 and a�. Each
feasible solution (Q, a�) then gives us a feasible a. However
it is interesting to investigate the conditions on the given
data for the solvability of (5). This is established in the next
Theorem.

Theorem 1: Let us define

Ψ =

⎡
⎢⎢⎢⎣

c0 c1 · · · cn−1

c1 0 · · · 0
...

...
. . .

...
cn−1 0 · · · 0

⎤
⎥⎥⎥⎦

Then there exist a� and Q (Hermitian and positive definite)
such that (5) holds if and only if the following LMIs

Q−1 − F�
0 Q−1F0 < Ψ,

[
c0 c′

c Q−1

]
> 0, (9)

hold for some Q.
Proof: The LMI in (5) can be written as

R + Ua�V
� + V a�U

� > 0,

where

R =

⎡
⎣ Q−1 Q−1h Q−1F�

0

h�Q−1 c0 c�

F0Q
−1 c Q−1

⎤
⎦ ,

U =

[
In

0(n+1)×n

]
, V =

[
02n×1

−1

]
.

Now it is straightforward to construct the full-rank matrices
U⊥ and V⊥ orthogonal to U and V , respectively:

U⊥ =

[
0n×(n+1)

In+1

]
, V⊥ =

[
I2n

01×2n

]
.

Now by the elimination lemma [12], [13] there exists a� such
that (5) holds if and only if U�

⊥RU⊥ > 0 and V �
⊥ RV⊥ > 0.

The first condition gives the second inequality in (9). From
the second condition we get[

Q−1 Q−1

Q−1 Ψ + F�
0 Q−1F0

]
> 0. (10)

Applying Schur complement to (10) we get the first
(Lyapunov) inequality in (9).
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We now study the conditions for (9). It is natural to expect
that this condition is related to the Pick matrix associated
with the interpolation data. The Pick matrix P is defined as

P =

⎡
⎢⎢⎢⎣

c0 c1 · · · cn

c1 c0 · · · cn−1

...
...

. . .
...

cn cn−1 · · · c0

⎤
⎥⎥⎥⎦ (11)

The expected result is given below.
Corollary 2: The LMI conditions given by (9) are equiv-

alent to P being positive definite.
Proof: Let P̄ be P without the last row and column. Then

it is easy to verify that

P̄ = F�
0 P̄F0 + Ψ, P =

[
c0 c�

c P̄

]
. (12)

First we show the sufficiency. Suppose that P is positive
definite. This implies P̄ is positive definite. Now set Q−1 =
P̄ in (9). Comparing with (12) we see that the first inequality
in (9) becomes an equality if we have Q−1 = P̄ , while the
second inequality is satisfied. Therefore, it is possible to find
Q > 0 (by perturbing from P̄ a little) such that both the
inequalities in (9) hold.

Conversely, suppose that there exists Q > 0 such that the
LMIs in (9) hold. Then using the first equality in (12) in the
first inequality in (9) we get

F�
0 (P̄ − Q−1)F0 > P̄ − Q−1 ⇒ P̄ > Q−1 (13)

since F0 has all eigenvalues inside the closed unit disc. Now
we use the second equality in (12) and the second inequality
of (9). We get

P ≥

[
c0 c�

c Q−1

]
> 0,

which follows from (13), and the result is proven.

B. The case m > n

Suppose that f(z) in (4) satisfies the interpolation con-
straints in (1). Using the standard formula for the Laurant
series expansion of f(z) in (4) we get

f0 = c0/2, fk = h�F k−1c.

Let O = [ h F�h · · · (F�)n−1h ]� be the observ-
ability matrix. The realization in (4) gives O = In. Con-
sequently, we have

[ ck · · · ck+n−1 ]� = OF k−1c = F k−1c, ∀k > 0.

Therefore, it is straightforward that⎡
⎢⎣

ck+1

...
ck+n

⎤
⎥⎦ = F kc = F

⎡
⎢⎣

ck

...
ck+n−1

⎤
⎥⎦ , ∀k > 0.

The last row of the above veector valued equality gives

ck+n = −[ ck · · · ck+n−1 ]a, ∀k > 0,

where we have used (6). If the number of interpolation
constraints m > n, we get m − n additional known linear
constraints on a in the form

c̄ = −Ca. (14)

where C is a (m−n)×n Hankel matrix and c̄ is a (m−n)×1
vector given by

C =

⎡
⎢⎣

c1 · · · cn

...
. . .

...
cm−n · · · cm−1

⎤
⎥⎦ , c̄ =

⎡
⎢⎣

cn+1

...
cm

⎤
⎥⎦ . (15)

In the rest of this section, we assume that C has a full
row rank without any loss of generality. If C does not have
a full row rank, then the order of f(z) must be less than n.

The general solution for a can then be written as

a = a0 + C⊥α, a0 = −C�[CC�]−1c̄, (16)

where C⊥ is a full column rank matrix of size n × (2n −
m) such that CC⊥ = 0(m−n)×(2n−m), and α is a (2n −
m) × 1 free parameter vector representing 2n − m degrees
of freedom.

The case m = 2n is of special interest particularly
in spectrum estimation applications. Here it is natural to
estimate {ck}

2n

k=0 from the observed data. Subsequently a
rational function is used to fit the interpolation points. When
m = 2n, C is a nonsingular square matrix, and there is
no degree of freedom left. The solution to the interpolation
problem is unique where a = −C−1c̄. Using the standard
results in state space realization it is straightforward show
that the minimal degree of f(z) is the rank of C. Since
F is completely known for the case m = 2n, (7) gives a
necessary and sufficient condition for f(z). This is formally
stated below.

Theorem 3: Suppose m = 2n and C in (15) is invertible.
Then the interpolation problem has a unique solution given
by (4) with a = −C−1c̄. This solution is SPR if and only
if there exists a symmetric and positive definite Q to satisfy
the following LMI:[

CQC Ch
h�C c0

]
>

[
CF�

0 + c̄b�

c�

]
Q

[
F0C + bc̄� c

]
.

Proof: The solution to a follows from the discussion
prior to the theorem and the LMI condition follows from
Lemma 2 (see (7) in particular).

Next we investigate the case when n < m < 2n. Naturally,
in this case the solvability conditions become more stringent
as we increase m. In the following lemma we formulate the
solvability conditions.

Lemma 3: Assume that n < m < 2n. Then there exists
α as in (16) such that f(z) in (4) is SPR if and only if

Q−1 − F�
0 Q−1F0 < Ψ, (17)

and[
CQC� Ch
h�C� c0

]
>

[
CF�

0 + c̄b�

c�

]
Q

[
CF�

0 + c̄b�

c�

]�

(18)
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for some symmetric and positive definite Q.
Proof: First we modify the SPR condition in (8) by using

(16) to get⎡
⎣ Q h F�

0 − ba�
0

h� c0 c�

F0 − a0b
� c Q−1

⎤
⎦ + V α�Ū� + ŪαV > 0,

(19)
where V is given as in the proof of Theorem 1 and

Ū =

[
C⊥

0(n+1)×(2n−m)

]
.

It is readily verified that the columns of

Ū⊥ =

[
C 0(m−n)×(2n+1)

0(2n+1)×(m−n) I2n+1

]

spans the orthogonal complement of the row-space of Ū .
Therefore by the elimination lemma, there exist α and Q
such that (19) is satisfied if and only if (10) holds along
with⎡

⎣ CQC� Ch C(F�
0 − a0b

�)
h�C� c0 c�

(F0 − ba�
0 )C� c Q−1

⎤
⎦ > 0. (20)

The inequality (17) follows from (10) as before and (18)
follows by applying Schur complement to (20).

It is interesting to see how the additional interpolation
constraints impose more and more stringent requirements for
solvability of the problem. Comparing (20) with the second
inequality in (9) we see that when m = n we only need to
satisfy the inequality obtained by taking the last n + 1 rows
and last n + 1 columns of (20). The (n + k)-th interpolation
condition then adds the k-th row and the k-th column in
(20). It is straightforward to see that the solvabiliy for n +
k interpolation constraints implies solvability for n + k −
1 interpolation conditions, but converse is not true. Finally,
when m = 2n, the feasible set contain a maximum of one
point.

It is evident that Lemma 3 gives a non-convex set in Q,
and it is in general difficult to solve the LMIs in Lemma 3
using any numerical technique. For this purpose we propose a
relaxation scheme in the following. The idea of the relaxation
scheme is to find a convex subset of the set of feasible Q
given by Lemma 3.

Theorem 4: Consider the case when n < m < 2n. Then
there exists a solution to the interpolation problem if the
following LMI (linear in Q−1 and[

c0 c�

c Q−1

]
>

[
h�ΠC

F�
0 ΠC + bc̄�C†�

]

·Q−1

[
h�ΠC

F�
0 ΠC + bc̄�C†�

]�

(21)

is feasible in a positive definite matrix Q, where

C† = C∗(CC∗)−1, ΠC = C†C.

Proof: First note that feasibility of the LMI⎡
⎢⎢⎣

C�

⊥QC⊥ C�

⊥QC� 0 0
CQC⊥ CQC� Ch C(F�

0 − a0b
�)

0 h�C� c0 c�

0 (F0 − ba�

0 )C� c Q−1

⎤
⎥⎥⎦ > 0

(22)
in Q implies (20). Now taking the Schur complement of

(22) we have[
c0 c�

c Q−1

]
>

[
0 h�C�

0 (F0 − ba�
0 )C�

]
×

[
C⊥ C�

]−1
Q−1

[
C�

⊥

C

]−1 [
0 h�C�

0 (F0 − ba�
0 )C�

]�
(23)

Now note that [
C�

⊥

C

]−1

=
[

C†�
⊥ C†

]
,

which we substitute in (23) to get (21).

We point out that even if the LMI (21) is not feasible in
Q, the interpolation problem may still have a solution.

III. SPECTRAL ZERO ASSIGNMENT

In this section we reconsider the case m = n. Here our
objective is to derive a fast algorithm for the covariance
extension problem subject to spectral zero assignment. To
this end, we first recite a key result in [14], [15].

Theorem 5: Let the Pick matrix P in (11) be positive
definite and n = m. Then for every monic marginally Schur
stable polynomial σ̄(z) of order n, there exists a unique n-th
order monic Schur stable polynomial τ̄(z) such that

f(z) + f∗(z−1) = ρ2 σ̄∗(z−1)

τ̄∗(z−1)

σ̄(z)

τ̄ (z)
(24)

such that the interpolation conditions in (1) are satisfied,
where the gain ρ is determined by f(∞) = f0 = c0/2.

Proof: The result above comes from [4], [8], [10].

In contrast to the previous section we take a different
approach here. In the previous section we formulated a
state space realization of f(z) such that the interpolation
conditions in (1) are automatically satisfied. Here we pa-
rameterize the minimum phase spectral factor σ̄(z)/τ̄(z) of
f(z)+f∗(z−1) such that the spectral zeros are automatically
assigned to the desired points. Now the free parameters are
the coefficients of denominator polynomial τ̄ (z). Hence it
remains to tune only the coefficients of τ̄ (z) so that the
interpolation conditions in (1) are satisfied while maintaining
the SPR condition.

We express

σ̄(z) = zn + σ1z
n−1 + · · · + σn,

τ̄ (z) = zn + τ1z
n−1 + · · · + τn.

and denote

σ = [ σ1 · · · σn, ]�; τ = [ τ1 · · · τn ]�.
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Let us introduce the matrix

A = F0 − τh�. (25)

Hence the problem under consideration is to find τ such that
the interpolation conditions in (1) are satisfied. Using the
observable canonical state-space realization, we have

σ̄(z)

τ̄ (z)
= 1 + h�[zIn − A]−1(σ − τ). (26)

Then f(z) in (24) is given by [4]

f(z) =
ρ2

2
(1+h�Rh)+ρ2h�[zI −A]−1{ARh+(σ− τ)},

(27)
where R satisfies

R = ARA� + (σ − τ)(σ − τ)�. (28)

We now explore the relationship between τ and σ given
the interpolation conditions in (1).

Lemma 4: Let us define the Toeplitz matrix

L =

⎡
⎢⎢⎢⎣

c0 0 · · · 0
c1 c0 · · · 0
...

. . .
. . .

...
cn−1 · · · c1 c0

⎤
⎥⎥⎥⎦ ,

Then f(z) in (27) satisfies the interpolation conditions in (1)
if and only if

τ =
c0

1 + h�Rh
L−1(F0Rh + σ) − L−1c, (29)

and
ρ2 =

c0

1 + h�Rh
. (30)

where R satisfies (28).
Proof: Taking z → ∞ in (27) we get

f(∞) =
ρ2

2
(1 + h�Rh). (31)

Now imposing the the interpolation condition at z = ∞ we
get (30). Now expanding f(z) in (27) in Laurant series and
using the remaining interpolation conditions we get

c = ρ2O{ARh + (σ − τ)}. (32)

It can be verified that

O−1 = In + τ1F
�
0 + τ2(F

�
0 )2 + · · ·+ τn−1(F

�
0 )n−1. (33)

Also from (25) and (30) we see that

ρ2{ARh + (σ − τ)} = ρ2(F0Rh + σ) − c0τ. (34)

Combining (32), (33) and (34) we get

Lτ + c = ρ2(F0Rh + σ),

which leads us to (29) using (30).

Lemma 4 gives us a way to find τ . Note that (28) is
a generalized Riccati equation because (29) gives τ as a
function of R. Thus, solving (28) directly may be difficult.
Instead we can solve R using (28) and (29) repeatedly until

convergence. The Recursion is as follows. Initialize k = 0
and R0 = In. Then the following steps are repeated until
convergence:

1) ρ2
k

= c0

1+h�Rkh
,

2) τ (k) = ρ2
k
L−1(F0Rkh + σ) − L−1c,

3) Ak = F0 − τ (k)h�

4) Rk+1 = AkRkA�
k

+ (σ − τ (k))(σ − τ (k))�

Although we do not have a theoretical justification that
the recursion described above converges, extensive numerical
study has shown that the recursion does always converge. It
is also interesting to compare the above recursive algorithm
with the Byrnes-Georgiou-Lindquist algorithm proposed in
[4]. In [4], a generalized entropy functional is maximized and
the underlying optimization problem is shown to be convex.
The convex function is then minimized using a gradient
decent method. However, each iteration of the gradient
decent amounts to solving a Riccati equation. The proposed
algorithm involves solving a Lyapunov equation (Step 4) plus
some minor computations (Steps 1, 2 and 3). This makes
the proposed algorithm much more efficient from a practical
point of view.

IV. CONCLUSION

We have provided a number of new results on constrained
covariance extension problems. The results on degree con-
strained problems are derived based on a new parameteriza-
tion of the unconstrained solution set, as given in Lemmas
1 and 2. This leads to a number of LMI based tests for
the solvability of degree constrained interpolation problem.
For the cases of m = 2n, m = n and m = n + 1, the
tests are exact. For the case of n + 1 < m < 2n, it would
be interesting to see whether the relaxation scheme can be
further improved. For the spectral zero assignment problem,
our solution is based on a totally different parameterization
of the unconstrained solution set, as given in Lemma 4.
The result is a very fast iterative algorithm, although its
convergence is yet to be established theoretically.
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