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Abstract— When a stochastic approximation process satisfies
the conditions for convergence there are well-established meth-
ods to terminate the iterative process in a manner that allows
approximate statistics to be calculated on the final result. Many
of these use the asymptotic properties of convergent stochastic
approximation. However, such methods converge slowly due to
step size restrictions, so in practical application it is common
to use a step size that violates the conditions for convergence
in order to obtain an answer more quickly. Constant gain
stochastic approximation is a special case of this practice.
In these cases stopping rules based on asymptotic methods
are no longer analytically supportable, and other techniques
must be found. This paper presents one such method based
on the use of a surrogate process to calculate the stopping
condition. A discussion of this approach to stopping stochastic
approximation is offered in the context of a simple example,
including some empirical results.

I. INTRODUCTION

Consider a general, real-valued function L : R
p → R

defined for θ ∈ R
p. We are interested in the following

minimization problem:

min
θ

L(θ). (1)

We assume L(θ) is bounded from below. The exact form of

L(θ) is not known, and whatever observations we have of

the function are obscured by noise. We assume the existence

of the gradient of L, g : R
p → R

p, and that L(θ) has

a unique minimum denoted by θ∗. We do not require an

explicit mathematical expression for L(θ), and in the most

general case we may only be able to obtain a sequence of

noisy measurements (evaluations) of L or g (perhaps both).

In this paper we examine the “noisy gradient” case where,

perhaps in addition to noisy observations of L(θ), we also

have noisy observations of the gradient of L(θ). We denote

the sequence of gradient observations by {Ym(θ)}, and

model these observations by

Ym(θ) = g(θ) + em(θ),

where {em} a sequence of random vectors. If we can assume

the observations are unbiased, then the errors have mean

zero, and E[Ym(θ)] = g(θ). In accordance with Robbins-

Monro [1], problem (1) is solved as a root-finding problem

using the noisy observations Ym(θ), m = 1, 2, ..., n.
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Let θ̂k be an estimate for the optimal value θ∗ at iteration

k and ak a step size. We choose an initial estimate θ̂0 and

update it with the following scheme [1]:

θ̂k+1 = θ̂k − akYk(θ̂k), k = 0, 1, 2, · · · . (2)

A general discussion of the stochastic approximation method

may be found in Spall [2, sections 4.1 and 4.2]. The

asymptotic properties of θ̂k are well-known [2, sections 4.3

and 4.4], and under appropriate conditions the sequence of

iterates generated by (2) converges to θ∗ almost surely. See,

for example, [3, Thm. 2.1, p. 95], [4, Thm. 4.2, p. 88], or

[2, section 4.3]. Additionally, when properly scaled, the error

between θ̂k and θ∗ is normally distributed with mean zero as

k gets large (see [4, Thm. 5.1, p. 140] and [2, section 4.4]).

We denote the distribution of θ̂k by Fk, and the asymptotic

distribution by F ∗.

Almost all that is known about stochastic approximation

comes from limit theorems. The earliest analytical results

were by Robbins and Monro. They proved convergence in

quadratic mean of θ̂k to θ∗ for their algorithm under mild

conditions, thereby implying convergence in probability. A

slight tightening of these conditions enabled Blum [5] to

prove almost sure convergence (see also Gladyshev [6] or

Kushner and Clark [7]). Subsequent results have proved

asymptotic normality of the iterate θ̂k [6], [8], [9], [10],

a theoretical rate of convergence of O(k−1/2) [11], [12],

convergence probability bounds [13], and conditions that are

necessary and sufficient for convergence [7], [14].

The conditions required for convergence are stringent,

particularly those on the sequence of step sizes. From the

conditions in Spall we see that we must have ak > 0,∑
ak = ∞, and

∑
a2

k < ∞. The sequence generated

by ak = a/k for some small a satisfies the convergence

requirements and leads to the best theoretical rate of conver-

gence. But this sequence decreases rapidly, and the stochastic

approximation converges slowly.

It is common for practitioners of stochastic approximation

to use a larger step size that moves the iteration faster.

For example, the sequence generated by ak = a/kα gives

greater freedom in specifying the step size sequence. When

1/2 < α ≤ 1 the step size sequence satisfies the conditions

for convergence. However, when 0 ≤ α ≤ 1/2 the approxi-

mation process is no longer guaranteed to converge, but in a

practical application where a finite number of steps will be

taken, this is not restrictive.

Some applications work well with a constant step size

(α = 0), such as applications in adaptive tracking or control.

Other applications like neural networks may also use a
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constant step size. The approximation process is known to

not converge in this case, but the choice works well for

small samples and is easy, and therefore is acceptable (even

preferable) for many applications.

This practice is problematic, however, for stopping rules

that use an estimate of the asymptotic distribution found

by sequential estimation. Constant step size algorithms vi-

olate the conditions for convergence, and generally do not

converge. Additionally, the asymptotic distribution of the

standardized iterate is generally not multivariate normal [15].

In this case using the asymptotic distribution F ∗ as an

estimator for Fk in stopping calculations may make little

sense.

II. STOPPING RULES

The need for a stopping rule for stochastic approximation

was recognized by Kiefer and Wolfowitz [16]. Computer im-

plementations of stochastic approximation algorithms require

a stopping rule that terminates the computation after a finite

number of steps. Of course, the rule should relate to the

quality of the solution found.

We distinguish between a stopping criterion and a stopping

rule. A stopping criterion is an optimization objective stated

mathematically, the satisfaction of which means that we have

obtained the goal of our optimization. A stopping rule is

part of an optimization algorithm that contains one or more

stopping criteria, and perhaps other criteria as well, by which

the algorithm is stopped. A suitable stopping rule should do

the following;

1) Stop when the error is small enough.

2) Optionally, stop when improvements to the current

solution become small.

3) Stop when the iteration budget has been exhausted.

The first instance that any of these conditions are satisfied

should cause the algorithm to stop. The first condition repre-

sents a stopping criterion and should contain a mathematical

interpretation of what constitutes “small enough.” The second

condition, if used, is a heuristic criterion that we hope will

stop the algorithm when it is close to the optimal point in the

event we are unable to calculate the error. The third condition

is a fail-safe, and thus has no relation to stopping criteria;

it is included to prevent the algorithm from running forever

in the event the first two conditions fail to terminate the

algorithm.

The best case is that some proximity criterion can be

calculated or estimated and we stop when it becomes small,

for example, ‖θ̂k−θ∗‖ < δ for some suitable norm. Since the

estimates θ̂k are random, the preferred approach is to stop

when the probability is high that the tolerance condition has

been met. Let δ be a small positive number. We look for

conditions like

Pθ̂k

(
‖ θ̂k − θ∗ ‖ < δ

∣∣∣ θ̂0

)
≥ 1 − α (3)

(see also [17], [18]). Probability conditions involving

|L(θ̂k) − L(θ∗)| < δ are also possible. Given an α ∈ [0, 1]
and δ > 0, we stop at time equal to the smallest k such that

condition (3) is true. Stopping criteria of this type agree with

asymptotic theory in that k → ∞ as δ → 0.

Unfortunately, proximity criteria are hard to estimate di-

rectly since θ∗ is unknown, and in the general case, there

is no assured way to stop the algorithm when the error is

small. The task in developing a good stopping rule, then, is

not necessarily to find a good stopping criterion, but rather,

to find a good heuristic criterion.

Stopping heuristics principally aim at stopping the algo-

rithm when further expected improvements are unlikely or

have fallen below some threshold. There are two general

approaches to implementing this philosophy. The first is

to use a criterion based on estimate-to-estimate changes,

and variations on this approach (contraction criteria). The

second approach is to look at the distribution of the estimates

themselves (distributional criteria), checking to see if the

distribution is concentrating about its mean, and stopping

when the degree of concentration meets some threshold.

We favor the second approach due to the difficulty of the

calculations in the first.

There are many schemes that lead to valid stopping rules

based on distributional criteria. We look at a common rule

introduced by Yin [19], [20], [21] and an alternative based

on the distribution Fk.

1) Small-Volume Stopping Heuristic: The small-volume

stopping heuristic uses the asymptotic properties of converg-

ing stochastic approximation. When the step size sequence

is determined by ak = a/kα, the quantity kα/2(θ̂k − θ∗)
is asymptotically multivariate normal with mean zero and

covariance Σ∗. If we estimate Σ∗ at time step k by Σ̂∗
k,

where Σ̂∗
k → Σ∗, then we can approximate the distribution

of kα/2(θ̂k − θ∗) by N(0, Σ̂∗
k). The confidence region for

such a random variable is an ellipsoid defined by

Ek(c) = {θ : kα(θ̂k − θ)T(Σ̂∗
k)−1(θ̂k − θ) < c},

for some c > 0.

Let χ2
p denote the chi-square distribution with p degrees

of freedom, and let χ2
p(α) be the 1 − α percentile of χ2

p.

Then, in the limit, the random quantity in Ek is the sum of

centered, normalized normally distributed random variables,

that is, it is distributed χ2
p. We set cα equal to χ2

p(α) to

obtain

lim
k→∞

P (θ ∈ Ek(cα)) = 1 − α. (4)

Yin’s approach is to compute the volume of Ek, denoted

by V (Ek), and stop at a time κ equal to the first k such that

V (Ek) < δp for some δ > 0:

κ = inf {k ≥ ktp : V (Ek(cα)) ≤ δp} . (5)

(We have modified Yin’s condition somewhat by including

ktp, which denotes the “turning point” of the stochastic

approximation. The confidence ellipsoids Ek do not nec-

essarily decrease monotonically in size with increasing k.

Depending on the covariance of the initial estimate θ̂0,

V (Ek) typically increases sharply during the early iterations

after which it peaks and begins a slow, steady decline. The

point corresponding to ktp represents the peak.)
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In effect, we stop the iteration once the size of the 1 −
α confidence region for the normalized error falls below a

threshold level determined by volume. When V (Ek) is small,

we would expect θ̂k to be close to θ∗. Even when this is not

true, a small volume may indicate that there is little chance

further iteration will result in measurable improvement, and

stopping the algorithm is still desired.

Glynn and Whitt [22, p. 184–185] note that the stopping

times in (5) may terminate the process too early if the

estimator θ̂k is badly behaved for small k. Additionally,

they feel it is desirable that the stopping time agree with

asymptotic theory, and so we should expect κ → ∞ as

δ decreases to zero. They modify the condition slightly to

obtain this behavior. Let c(k) be a strictly positive function

that decreases monotonically to zero as k → ∞ and satisfies

c(k) = o(k−1/2). They define the small-volume stopping

times as

κ = inf {k ≥ ktp : V (Ek(cα)) + c(k) ≤ δp} . (6)

In small samples the confidence region may not be an

ellipsoid, but the same procedure applies, although comput-

ing the volume of the region Ek(cα) may be more difficult.

Often the sample covariance of the estimate θ̂k produces an

ellipsoidal region that approximates the actual region well,

though this requires a Monte Carlo approach.

A drawback to this stopping rule is that it provides no

insight on how to choose δ, and no understanding of how

small the errors are at termination. With this criterion, the

process stops when the confidence region is small, which

does not necessarily mean when θ̂k is close to θ∗. When

Ek(cα) is small it means only that the variability in the

normalized error is small. Since the average error is pre-

sumably centered at zero, this is equivalent to saying that

the error itself is small. Whether or not this statement is

valid depends on one’s belief that the normalized error is

exhibiting asymptotic behavior. Moreover, it is possible that

the confidence region could be long and narrow. Thus even

when the volume of the region is small and centered at zero,

long extremities of the region could allow θ̂k to be arbitrarily

far from θ∗ in some dimensions.

2) Spectral Stopping Heuristic: Suppose the confidence

region Ek is enclosed in a ball, which we denote by B(Ek).
If the estimates are normal, then the 1−α confidence region

Ek(cα) is an ellipsoid with axes um

√
λmχ2

p(α), where um is

a normalized eigenvector of Σk and λm is the corresponding

eigenvalue, for m = 1, . . . , p. Since Ek is a nonsingular

covariance matrix, none of the λm are zero.

The radius δ of the ball must therefore be greater than or

equal to the longest axis of the ellipsoid, which is related

to the largest eigenvalue of the covariance matrix Σk. This

leads to the specification of a stopping criteria based on the

covariance of the iterate θ̂k. The spectral radius of Σk is

defined as ρ(Σk) = maxm{|λm|}. We define the spectral

radius stopping rule as follows:

κ = min
{

k : ρ(Σk) ≤ δ2

χ2
p(α)

}
. (7)

In other words, stop when the largest eigenvalue of Σk is

less than δ2/χ2
p(α).

Again, when the confidence region is not ellipsoidal the

procedure works just as well by using as Ek an ellipsoid that

encloses the true confidence region. This ellipsoid is often

adequately approximated by using the sample covariance of

the estimate θ̂k.

The spectral stopping heuristic is superior to the small-

volume stopping heuristic in two important ways. First,

when the algorithm is terminated with the spectral stopping

heuristic, there is a greater than 1 − α probability that the

iterate is contained in the ball B(Ek). If θ∗ is also contained

in the ball, then ‖θ̂κ−θ∗‖ < 2δ with probability greater than

1−α. Thus the choice of δ is related directly to the desired

proximity tolerance.

The second advantage is that it does not rely on asymptotic

theory, making the approach suitable for the small sample

case, as well as for cases where the conditions for asymptotic

convergence are not satisfied. When the stochastic approxi-

mation process is nonconvergent, the analytical justification

for using the small-volume heuristic, which relies on asymp-

totic theory, is lost. The spectral stopping heuristic uses the

distribution of θ̂k which always exists. While the distribution

Fk is usually unknown and difficult to find, if it cannot

be determined directly, an estimator may be used in the

calculation. When the conditions for asymptotic normality

hold, the asymptotic distribution can be used as the estimator,

and it is computed in the same manner as in the small-volume

heuristic. If the conditions do not hold, one may be able

to approximate Fk by the use of surrogate processes (see

Hutchison and Spall [23]).

III. EXAMPLE

We illustrate these ideas by using a function from the

Moré et al. [28] suite of optimization problems, the so-

called variably-dimensioned function in two dimensions, to

generate stochastic for tests of the stopping rules. Let θ =
[t1 t2]T ∈ R

2 and LVD : R
2 → R. Then the variably

dimensioned function is defined as

LVD(θ) = (t1 − 1)2 + (t2 − 1)2

+ (t1 + 2t2 − 3)2(1 + (t1 + 2t2 − 3)2).

The gradient is

gVD(θ) =
[

4t1 + 4t2 + 4(t1 + 2t2 − 3)3 − 8
4t1 + 10t2 + 8(t1 + 2t2 − 3)3 − 14

]
.

This function satisfies the conditions for convergence of (2),

and there is a unique global minimum located at the point

θ∗ = [1 1]T.

For the purposes of this example, we suppose the form

of the loss function LVD is not known, but we are able to

provide inputs θ and observe the noisy gradient. We assume

the components of the noise ek are independent and normally

distributed with mean zero and variance σk
2. Now model the

stochastic approximation process as follows: for a sequence

of inputs {θ̂k} we have a sequence of observations {Yk}
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generated by Yk(θ̂k) = gVD(θ̂k) + ek. Let θ̂k = [t̂1k t̂2k]T.

Using the usual Robbins-Monro iteration the process is

θ̂k+1 = θ̂k − akgVD(θ̂k) − akek

=
[

t̂1k

t̂2k

]

−ak

[
4t̂1k + 4t̂2k + 4(t̂1k + 2t̂2k − 3)3 − 8

4t̂1k + 10t̂2k + 8(t̂1k + 2t̂2k − 3)3 − 14

]

−akek.

To compute a proxy for Fk we use a surrogate process based

on linearization of the gradient using an estimated Jacobian

as in [23]. Let θ̃k = [t̃1k t̃2k]T. The idealized process

linearized about [1 1]T is

θ̃k+1 =
[

t̃1k

t̃2k

]
− ak

[
4t̃1k + 4t̃2k − 8

4t̃1k + 10t̃2k − 14

]
− akek.

We denote the distribution function of θ̃k by Dk.

For this example, the surrogate process θ̃k is the sum

of scaled bivariate normal random variables for every k.

Therefore Dk is bivariate normal and can be calculated

exactly.

The true distribution function Fk is unknown and impossi-

ble to calculate for large k. However, it can be approximated

using a Monte Carlo experiment. We used Robbins-Monro

algorithm with step size ak = a/kβ . An initial estimate

of θ̂0 = [ 12 , 0]T was used in all cases, and noise was as

described with σk = 10. The algorithm was run for 10,000

steps to generate a stream of data. This data stream was then

used by each stopping procedure to calculate a stopping time

based on a tolerance δ = 0.1. This process was repeated

10,000 times, generating 10,000 stopping times.

Figure 1 shows the case for ak = a/k, the asymptotically

optimal step size. Figure 1a is a plot of the 95% confidence

regions at iteration k = 500 overlayed on a contour plot

of the variably-dimensioned function. The heavy solid line

is an approximation to the true confidence region of θ̂500

as determined by 10,000 Monte Carlo trials. The thin solid

line (small circle) is the confidence region determined using

F ∗, and the dotted line is the confidence region based on

Dk. Each of the two computed regions has been artificially

centered on the Monte Carlo approximation for purposes of

comparison.

When the procedure was stopped using the small-volume

heuristic using an estimate for the asymptotic distribution as

a proxy for the probability calculations, the rapid decrease

in the step size caused the confidence region to decrease

rapidly as well. As a result, the small-volume heuristic

stopped early in every case. Moreover, for any iterate, the

asymptotic distribution proved to be a poor proxy for the

actual distribution of the iterate.

Procedures stopped using the spectral heuristic with a

surrogate distribution as a proxy generally obtained better

results when measured by the average distance of the stopped

Min

0.5 1 1.5
0.5

1

1.5

(a) 95% confidence regions after 500 iterations.

10 15 20 25 30 35 40
0

50

100

150

Stopping Time (κ)

C
ou

nt

(b) Histogram of the stopping times based on the small-volume heuris-
tic.

0 50 100 150 200 250
0

20

40

60

80

100

120

Stopping Time (κ)

C
ou

nt

(c) Histogram of stopping times based on the spectral heuristic.

Fig. 1. A comparison of results from the test case with an asymptotically
optimal step size of ak = a/k.
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process from θ∗, though the difference was not statistically

significant. The reason for this lack of significance is that,

even though the process ran longer with the spectral rule, the

step size was so small that the estimate θ̂k hardly moved.

Figures 1b and 1c tell the story in terms of the distribution

of the stopping times for each heuristic. For the small-volume

case the average stopping time was κ = 19.3, while for the

spectral case the average was κ = 89.8 (the turning point

was ktp = 12 for this problem).

We note as an aside that in none of the empirical trials

did stopping based on δ imply that ‖θ̂k − θ∗‖ < δ. In both

the small-volume and spectral cases the average distance

of the stopped process from θ∗ was much greater than the

chosen δ. This is not a problem with the stopping calculation,

but rather with the basic assumption that θ∗ is contained

within the 1−α confidence region. We can see here that the

assumption does not hold, but in the general case, the truth

of the assumption can never be known. This serves to point

out that it is risky to draw conclusions about accuracy of

the final iterate based on tolerance used for stopping, even

though that is the intent.

Figure 2 shows the case for ak = a/k1/4. This step size

does not guarantee convergence, and the use of the small-

volume heuristic is not analytically valid (though we used it

anyway to observe its performance). Figure 2a is a plot of

the 95% confidence regions at iteration k = 500 overlayed

on a contour plot of the variably-dimensioned function. The

confidence regions are as described for Figure 1.

Note that using a more slowly decreasing step size resulted

in a mean θ̄κ that is closer to the optimal point θ∗ than did the

optimal step size, but also resulted in much greater dispersion

in the individual θ̂κ. One could compensate for this behavior

by beginning with a smaller step size or reducing it during

the iteration (see Kushner and Huang [29] for some possible

reduction schemes). As a result, more iterations are needed

to force the confidence region smaller. With a constant step

size, increasing the number of iterations does not produce

a noticeably better result. Based on empirical results, the

shape of the distribution of the final iterate changes little

with a deterministic κ ∈ {100, 200, 500, 1000, 5000, 10000}.

This behavior should be expected since with a constant step

size the only mechanism to reduce variability is the gradient

function.

We see from Figures 2b and 2c that the small-volume

heuristic continues to stop the process very early (mean

stopping time is κ = 23.1). The average stopping time for

the spectral heuristic was κ = 2160.4. The spectral stopping

heuristic also stops early, but this may be a consequence

of the poor quality of the surrogate Dk as a proxy for

Fk (as evidenced by Figure 1a). The distribution Dk was

calculated using a linearized gradient, linearizing about the

initial point θ̂0. However, after even just a few hundred

iterations the estimate has moved far from the initial point,

and the linearization is no longer a good one. A possible

solution to this problem is to simply re-estimate the Jacobian

and linearize about the current point.
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Fig. 2. A comparison of results from the test case with a step size of
ak = a/k1/4.
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Fig. 3. Mean stopping time plotted against the exponent β in the step size
ak = a/kβ . The case for β = 1 corresponds to the asymptotically optimal
step size; β = 0 corresponds to constant step size. The mean stopping times
for both the small-volume and spectral heuristics are shown, but the line
for the small-volume stopping times is indistinguishable from the horizontal
axis at the scale shown.

IV. CONCLUSIONS

Stopping rules based on probabilistic conditions require

a distribution for computation. Since actual distributions are

impossibly complex, asymptotic theory can provide a proxy

distribution to use instead. However, stopping rules tied

to asymptotic behavior have limitations. When asymptotic

theory does not apply, as in the use of step sizes that

violate convergence conditions, other proxies must be sought.

Surrogate processes seek to estimate the actual distribution at

each iterate, and may produce a suitable proxy distribution.

Even when the use of asymptotic distributions is appropri-

ate, the results can be poor. Figure 3 shows how the average

stopping time for each heuristic changes as the step size

changes from optimal to constant (by changing β). Among

other things, this change results in increased variability of

the estimates θ̂k. The mean spectral stopping time behaves in

the manner expected, increasing as the variability increases.

The average of the small-volume stopping time, however,

increases little (from 19.3 to 23.1). This indicates a peculiar

insensitivity to the algorithm, which augurs poorly for the

usefulness of that heuristic.

The stopping problem becomes more complicated when

constant step sizes are used since the confidence region

decreases extremely slowly in size, slowly enough, in fact,

that stopping with the methodologies as described in this

paper may not apply. Whether or not this is the case is highly

problem-dependent.
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