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Abstract— A quantum state subject to a continuous measure-
ment obeys a nonlinear stochastic differential equation called
the stochastic master equation. In this paper, we utilize the
technique of local reachability developed in control theory to
characterize a class of the measurement and the controller in
such a way that the local transition of the controlled quantum
state is restricted to a low-dimensional manifold. We examine
the proposed controller for single-spin systems with two typical
measurements.

I. INTRODUCTION

Since the feedback control method was developed by intro-
ducing the continuous measurement [1], the methodologies
to control quantum systems have been rapidly progressed.
Under the continuous measurement, a finite-dimensional
quantum state, which must be a positive semidefinite matrix
P ≥ 0 satisfying Tr P = 1, obeys the stochastic master
equation (SME) [2], [3], [4]:

dP = −i[uH,P ]dt +
[
CPC∗ − 1

2
C∗CP − 1

2
PC∗C

]
dt

+ [CP + PC∗ − 〈C + C∗〉P ][dy − 〈C + C∗〉dt], (1)

where 〈X〉 := Tr (PX), and the matrix C is the mathe-
matical expression of a measured physical observable. The
notation ∗ means Hermite conjugate. Our objective is to
control P (t) by adding an appropriate control Hamiltonian
H , which is also an Hermite matrix, with a control input
u(t) ∈ R. A control strategy based on the filtering theory
[3], [5] is as follows; The measurement data y(t) ∈ R is
associated with the standard Wiener process [6];

dy−〈C + C∗〉dt = dW, E[dW (t)] = 0, E[dW (t)2] = dt,

where E denotes the expectation. Hence, if we know the
initial value P (0), updating the filtering equation (1) with
the data y(t), we can obtain a perfect knowledge about the
time-dependent series of P (t), which eventually enables us
to control the quantum system via state-feedback. That is, the
objective is to control the stochastic dynamics of the form

dP = −i[uH,P ]dt +
[
CPC∗ − 1

2
C∗CP − 1

2
PC∗C

]
dt

+ [CP + PC∗ − 〈C + C∗〉P ]dW (2)
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with the state-dependent feedback law u(t) = u(P (t)). The
feedback control scheme mentioned above has been applied
to many quantum systems for the following purposes, for
example, position control of a particle [2] and spin control
of a multi-particle [4], [7], [8]. Although these are indeed
great successes, the proposed controllers are ad hoc due to
the highly-complicated structure of the SME, and there is still
no systematic way to design efficient control Hamiltonian H
with input u(t).

On the other hand, control theory has developed a lot of
useful tools to deal with a number of complex nonlinear
dynamics. One of the key techniques to investigate such
complicated systems systematically is reachability analysis
[9], which reveals the local transition of state variable driven
by system’s intrinsic evolution and the controller.

Hence in this paper, we utilize the technique of local
reachability to investigate the structure of the SME for
general finite dimensional quantum systems. Specifically, we
characterize a class of the measurement C and the control
Hamiltonian H such that the local transition of the controlled
quantum state is restricted to a low-dimensional manifold. In
this case, we may design a global controller efficiently by
using a visible topology of the dynamics. Moreover, we apply
the proposed Hamiltonian to the single-spin system with two
typical measurements, the Hermite type and the Nilpotent
type. Consequently, in terms of geometrical observations
in three dimensional space, the proposed controller will be
shown to be efficient for the Nilpotent type measurement.

Notation: 〈x, y〉: inner product of vectors x and y, i.e.,
〈x, y〉 := x∗y, L(Cn): the set of operators acting on C

n,
XT : transpose of a complex matrix X , X ⊗ Y : Kronecker
product of two matrices X and Y , [X,Y ]: Lie bracket of
X and Y , i.e., [X,Y ] := XY − Y X , dist{f1, · · · , fm}: the
distribution spanned by the vector fields fi.

II. THE THEORY OF LOCAL REACHABILITY

Consider a Stratonovich type stochastic differential equa-
tion of the form

dx = f ′(x)dt + u(t)g(s)dt + h(x) ◦ dW, (3)

where f ′(x), g(x) and h(x) are analytic vector fields on C
n.

Now we can directly apply the theory of local reachability
[9], which is usually considered for deterministic systems,
to the dynamics (3) because it allows the usual differential
calculus. Let P be the smallest distribution which con-
tains {f ′(x), g(x), h(x)} and is invariant under these vector
fields. That is, [f ′(x), φ(x)]L ∈ P , [g(x), φ(x)]L ∈ P and
[h(x), φ(x)]L ∈ P hold for all φ(x) ∈ P . Hence for instance
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[h(x), [f ′(x), g(x)]L]L ∈ P has to hold. Here the Lie product
is defined as

[µ(x), τ(x)]L :=
∂τ(x)

∂x
µ(x) − ∂µ(x)

∂x
τ(x),

where ∂τ(x)/∂x is the Jacobian matrix. If P is non-singular
at x(0) and dimP = n1 < n, there exists a coordinates
transformation Φ : x → z defined on a neighborhood of
x(0) such that the transformed equation is given by

dz1 = f ′

1(z1, z2)dt + u(t)g1(z1, z2)dt + h1(z1, z2) ◦ dW,

dz2 = 0,

where z = z1⊕z2 ∈ C
n1⊕C

n2 , n1+n2 = n [9]. The above
decomposed system shows that the trajectory starting from
z(0) = z1(0) ⊕ z2(0) is restricted to the set of the variable
z1⊕z2(0), the n1-dimensional manifold MR. Therefore, the
complement of the manifold MR in C

n is formed by the
points where the state variable starting from z(0) does not
reach locally with probability one.

III. LOCAL REACHABLE ANALYSIS FOR GENERAL SME

We shall utilize the method of local reachability to char-
acterize a pair of the measurement observable C and the
control Hamiltonian H such that the controlled quantum
state shows a low-dimensional transition. Since it seems
to be reasonable to follow the calculating rule of the Lie
products using standard column vectors, we introduce a
vector representation of a quantum state and aim to derive the
vector formed SME. Although some vector representations of
a quantum state P can be considered, we utilize a vectorizing
technique of a matrix that was originally developed in [10]
and has been applied to several studies, e.g., [11], [12].

A. The vector representation of a quantum state

For an arbitrary vector ϕ = [ϕ1 · · ·ϕn]T ∈ C
n and

an arbitrary matrix X = (xij) ∈ L(Cn), we define
ϕ̃ = [ϕ∗

1 · · ·ϕ∗

n]T and X̃ = (x∗

ij). That is, the tilde
operation is defined by φ̃ = (φ∗)T and X̃ = (X∗)T . Let
us consider the product space C

n ⊗ C
n. When we take

{ak} (k = 1, · · · , n) as an orthonormal basis in C
n, then

{ai ⊗ ãj} (i, j = 1, · · · , n) becomes an orthonormal basis in
C

n⊗C
n. Hence, any vector ϕ ∈ C

n⊗C
n can be written by

ϕ =
∑n

i,j=1 ϕijai ⊗ ãj with scalars ϕij . We here introduce
a specific vector in C

n ⊗ C
n given by

e :=

n∑
k=1

ak ⊗ ãk. (4)

For example in the case n = 2, taking {ak} as

a1 = (1/
√

2)[1 i]T , a2 = (1/
√

2)[1 − i]T ,

we have ã1 = (1/
√

2)[1 − i]T , ã2 = (1/
√

2)[1 i]T , and thus

e = a1 ⊗ ã1 + a2 ⊗ ã2 = [1 0 0 1]T . (5)

The vector e plays an essential role in order to introduce
the vector representation of a quantum state. The following
properties are used throughout this paper.

Lemma 1: The vector e is independent of the selection
of orthonormal basis, and it satisfies the following properties.

(X ⊗ I)e = (I ⊗ XT )e, ∀X ∈ L(Cn) (6)

e∗(X ⊗ I)e = Tr X, ∀X ∈ L(Cn). (7)

Proof: Expanding a matrix X ∈ L(Cn) with respect to
an orthonormal basis {ak} as X =

∑
i,j xijaia

∗

j , the left
hand side of (6) becomes

(X ⊗ I)e =
[ ∑

i,j

xijaia
∗

j ⊗ I
] ∑

k

ak ⊗ ãk

=
∑
i,j,k

xij〈aj , ak〉ai ⊗ ãk =
∑
i,j

xijai ⊗ ãj .

By the similar way, we can see that the right hand side of Eq.
(6) takes the above form. The relation (7) is easy to verify;

e∗(X ⊗ I)e =
∑
i,j

a∗

i ⊗ aT
i (X ⊗ I)aj ⊗ ãj =

∑
i

a∗

i Xai,

which is just Tr X . The first assertion in the statement of
the lemma can be proved by using the formula (6). �

We here define a vector associated with a quantum state
P ∈ L(Cn), as

p := (P ⊗ I)e ∈ C
n ⊗ C

n. (8)

Obviously, the vector p is in one-to-one correspondence with
P , which allows us to call p a quantum state. The equality
constraint of a quantum state, Tr P = 1, is rewritten as

〈e,p〉 = e∗(P ⊗ I)e = Tr P = 1, (9)

where we have used (7). In the case of n = 2, the matrix
representation of a quantum state P = (pij) is given by
using (5) as

p =

[
p11 p12

p∗12 p22

]
⊗

[
1 0
0 1

]
e = [p11 p12 p∗12 p22]

T .

B. The vector representation of the SME

In this subsection we shall write the SME (2) as a vector-
valued dynamics of p(t). Firstly it is readily seen that the
quantity 〈X〉 := Tr (XP ) is rewritten by using p as

〈X〉 = e∗(X ⊗ I)p, (10)

since from (7) the right hand side of (10) turns out to be
e∗(XP ⊗ I)e = Tr (XP ). We here introduce an operator
from L(Cn) to L(Cn ⊗ C

n) as follows;

Γ[X] := X ⊗ I + I ⊗ X̃ − 〈X + X∗〉I ⊗ I. (11)

We sometimes omit the identity matrix in the last term, i.e.,
Γ[X] = X ⊗ I + I ⊗ X̃ − 〈X + X∗〉. This operator has the
following properties.

Lemma 2: The operator Γ satisfies the following prop-
erties for any matrices X,Y ∈ L(Cn) and for any scalars
α1, α2 ∈ R and β ∈ C;

Γ[α1X + α2Y ] = α1Γ[X] + α2Γ[Y ], (12)

Γ[βI] = 0, (13)

e∗
Γ[X]p = 0, (14)[

Γ[X]p, Γ[Y ]p
]
L

= −Γ
[
[X,Y ]

]
p. (15)
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Proof: The first and the second properties are obvious.
The third is directly verified as follows.

e∗
Γ[X]p = e∗

[
X ⊗ I + I ⊗ X̃ − 〈X + X∗〉

]
p

= e∗
[
X ⊗ I + X̃T ⊗ I

]
p − 〈X + X∗〉〈e,p〉

= e∗
[
(X + X∗) ⊗ I

]
p − 〈X + X∗〉 = 0,

where we have used (6), (9) and (10). In order to prove (15),
we give an explicit form of the Jacobian matrix of Γ[X]p,
which is well defined since this is an analytic vector field:

∂Γ[X]p

∂p
=

∂

∂p

[
X ⊗ I + I ⊗ X̃ − e∗

[
(X + X∗) ⊗ I

]
p
]
p

= X ⊗ I + I ⊗ X̃ − 〈X + X∗〉 − pe∗
[
(X + X∗) ⊗ I

]
= Γ[X] − pe∗

[
(X + X∗) ⊗ I

]
. (16)

Due to the above formula, the left hand side of (15) becomes{
Γ[Y ] − pe∗

[
(Y + Y ∗) ⊗ I

]}
Γ[X]p

−
{
Γ[X] − pe∗

[
(X + X∗) ⊗ I

]}
Γ[Y ]p

=
[
(Y ⊗ I + I ⊗ Ỹ ), (X ⊗ I + I ⊗ X̃)

]
p

−
[
e∗

(
[Y,X] ⊗ I + I ⊗ [Ỹ , X̃]

)
p
]
p

= Γ
[
[Y,X]

]
p = −Γ

[
[X,Y ]

]
p.

This completes the proof. �

With the use of the operator Γ, we get the objective vector
representation of the SME;

Lemma 3: The SME (2) is equivalently rewritten by
using p ∈ C

N as

dp = f(p)dt + u(t)g(p)dt + h(p)dW

f(p) :=
[
C ⊗ C̃ − 1

2
C∗C ⊗ I − 1

2
I ⊗ C̃∗C̃

]
p,

g(p) := Γ[−iH]p =
[
− iH ⊗ I + iI ⊗ H̃

]
p

h(p) := Γ[C]p =
[
C ⊗ I + I ⊗ C̃ − 〈C + C∗〉

]
p.

Proof: Expanding the space C
n to C

n ⊗ C
n and

multiplying (2) by e from the right, we have

d(P ⊗ I)e = −iu(t)
[
(HP − PH) ⊗ I

]
edt

+
[(

CPC∗ − 1

2
C∗CP − 1

2
PC∗C

)
⊗ I

]
edt

+
[(

CP + PC∗ − 〈C + C∗〉P
)
⊗ I

]
edW.

By virtue of (6), for example we have[
(CPC∗) ⊗ I

]
e = (CP ⊗ I)(C∗ ⊗ I)e

= (CP ⊗ I)(I ⊗ (C∗)T )e = (CP ⊗ I)(I ⊗ C̃)e

= (C ⊗ C̃)(P ⊗ I)e = (C ⊗ C̃)p,

where we used the definition (8). Similar calculations yield
the objective expression of the SME. �

The vector-formed dynamics of p(t) satisfies the condition
(9). Actually, combining e∗f = 0 with the relations e∗g =
e∗

Γ[−iH]p = 0 and e∗h = e∗
Γ[C]p = 0, which are from

(14), we have d〈e,p〉 = 0. That is, 〈e,p(t)〉 take a constant
value. The next subject is to obtain the explicit form of the
corresponding Stratonovich SDE:

dp =
[
f − 1

2

∂h

∂p
h

]
(p)dt + u(t)g(p)dt + h(p) ◦ dW.

Note again that the Jacobian matrix ∂h(p)/∂p can be
defined since h(p) is an analytic vector field.

Lemma 4: The Stratonovich SME is given by

dp = f ′(p)dt + u(t)g(p)dt + h(p) ◦ dW,

f ′(p) := −Γ[C ′]p + 〈C + C∗〉Γ[C]p,

C ′ := (C∗C + C2)/2,

where the vector fields g(p) and h(p) are given in Lemma 3.
Proof: From (16), we have

∂h(p)

∂p
h(p) =

{
Γ[C] − pe∗

[
(C + C∗) ⊗ I

]}
Γ[C]p

= Γ[C]2p −
{

e∗
[
(C + C∗) ⊗ I

]
Γ[C]p

}
p.

The first and the second term are respectively calculated into

Γ[C]2 = (C ⊗ I + I ⊗ C̃)2 + 〈C + C∗〉2
− 2〈C + C∗〉(C ⊗ I + I ⊗ C̃)

= C2 ⊗ I + 2C ⊗ C̃ + I ⊗ C̃2 − 〈C + C∗〉2
− 2〈C + C∗〉Γ[C],

e∗[(C + C∗) ⊗ I]Γ[C]p

= e∗[C ⊗ I + I ⊗ C̃]
[
C ⊗ I + I ⊗ C̃ − 〈C + C∗〉

]
p

= 〈C2 + 2C∗C + C∗2〉 − 〈C + C∗〉2. (17)

Consequently, we have

∂h(p)

∂p
h(p) =

[
C2 ⊗ I + 2C ⊗ C̃ + I ⊗ C̃2

]
p

− 〈C + C∗〉2p − 2〈C + C∗〉Γ[C]p + 〈C + C∗〉2p
− 〈C2 + 2C∗C + C∗2〉p

= Γ[C2]p − 2〈C + C∗〉Γ[C]p + 2
[
C ⊗ C̃ − 〈C∗C〉

]
p,

which leads to

f(p) − 1

2

∂h(p)

∂p
h(p) = −1

2
Γ[C2]p + 〈C + C∗〉Γ[C]p

−1

2

[
C∗C ⊗ I + I ⊗ C̃∗C̃ − 〈C∗C + (C∗C)∗〉

]
p

= −1

2
Γ[C∗C]p − 1

2
Γ[C2]p + 〈C + C∗〉Γ[C]p.

Hence, the property (12) concludes the proof. �

C. The local reachability of the SME

Let us firstly compute the Lie product of h and f ′. Noting
that for any analytic function a(p) and analytic vector fields
f1(p) and f2(p),

[af1,f2]L = a[f1,f2]L −
〈∂a

∂p
,f2

〉
f1 (18)
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holds, we have

[f ′,h]L = −
[
Γ[C ′]p, Γ[C]p

]
L

+
[
〈C + C∗〉h,h

]
L

=
1

2
Γ

[
[C∗C,C]

]
p − [〈C2 + 2C∗C + C∗2〉 − 〈C + C∗〉2]h,

where we have used (15) and (17). We here consider the
system such that [f ′,h]L is included into the distribution
spanned by f ′ and h. In this case, from the theory of
local reachability there exist a local mapping that transforms
the dynamics to a decomposed one where the n2 − 2
variables take constants. (Note that p is an n2-dimensional
vector.) That is, we can describe the dynamics by only two
parameters. A simple sufficient condition for such kind of
systems to exist is given as follows.

Theorem 1: Suppose there exist a0 ∈ C and a1, a2 ∈ R

such that
[C∗C,C] = a0I + a1C + a2C

′

is satisfied. Then, [f ′,h]L(p) ∈ dist{f ′,h} holds.
Proof: From (12) and (13) we have

[f ′,h]L(p) =
1

2
Γ[a0I + a1C + a2C

′]p

−
[
〈C2 + 2C∗C + C∗2〉 − 〈C + C∗〉2)

]
h

=
a1

2
h +

a2

2

[
〈C + C∗〉h − f ′

]

−
[
〈C2 + 2C∗C + C∗2〉 − 〈C + C∗〉2)

]
h,

which is obviously included in dist{f ′,h}. �

A remarkable fact is that many typical continuous mea-
surements have the above striking feature. For example,
when C is included in the following sets:

(i) Hermite (ii) Skew Hermite (iii) Specific Nilpotent,

the condition in Theorem 1 is satisfied. Actually, if C is in
(i) or (ii), it satisfies [C∗C,C] = 0. We can find many kinds
of Hermite type measurements [2], [4], [7], [13], [14], and
some skew-Hermite type measurement [5]. The Nilpotent
type measurements usually appear in the case of a damped
atom [15], [16] or modified damped atoms [17]. In these
studies, the measurements are respectively given as follows;

C1 =

[
0 0
1 0

]
, C2 =

⎡
⎢⎢⎣

0 i i 0
0 0 0 0
0 0 0 0
0 −i −i 0

⎤
⎥⎥⎦ . (19)

Actually, they satisfy [C∗

1C1, C1] = −C1 and [C∗

2C2, C2] =
−4C2.

Let us consider a system such that C satisfies the condition
in Theorem 1. Then, we can expect that an efficient global
control of the SME is possible by using a controller that
realizes a low-dimensional transition of the state. Actually,
for the control problem of a two-spin system [17], a two-
dimensional description of the dynamics has played a central
role in designing stabilizing controllers.

Therefore, we here aim to obtain a condition of the control
Hamiltonian in such a way that the above-mentioned situ-
ation is attained. A typical control Hamiltonian is obtained

from the condition where both [h, g]L(p) and [f ′, g]L(p) are
included in the distribution dist{f ′, g,h}. Let us calculate
the Lie products. It is easy to get

[h, g]L =
[
Γ[C]p, Γ[−iH]p

]
L

= −Γ
[
[−iH,C]

]
p. (20)

A similar calculation yields

[f ′, g]L = −
[
Γ[C ′]p, Γ[−iH]p

]
L

+
[
〈C + C∗〉h, g

]
L

= −Γ
[
[−iH,C ′]

]
p + 〈C + C∗〉Γ[

[−iH,C]
]
p

+ 〈[−iH,C] + [−iH,C]∗〉Γ[C]p.

From the same reason as that in Theorem 1, we have the
objective condition.

Theorem 2: Suppose there exist a0 ∈ C and a1, a2, a3 ∈
R such that

[−iH,C] = a0I + a1C + a2C
′ + a3(−iH),

[−iH,C ′] = a0I + a1C + a2C
′ + a3(−iH)

are satisfied. Then, [h, g]L(p) ∈ dist{f ′, g,h} and
[f ′, g]L(p) ∈ dist{f ′, g,h} hold.

IV. APPLICATION TO THE FEEDBACK CONTROL OF

SINGLE-SPIN SYSTEMS

In this section we apply the results obtained so far to the
single-spin, the simple yet important quantum system with
dimension n = 2. Specifically, we aim to control the system
by adding a control Hamiltonian which satisfies the condition
in Theorem 2. We consider two typical measurements:

CH =

[
1 0
0 −1

]
, CN =

[
0 0
1 0

]
,

where here the measurement strength is set to unity for
simplicity. The former corresponds to the standard measure-
ment of the spin along an axis (z-axis). The latter, which
has already appeared in (19), represents a measurement
accompanied with damping. We now introduce a convenient
parameterization of the quantum state P ∈ L(C2) as follows:

P =
1

2

[
1 + z x − iy
x + iy 1 − z

]
,

where the real parameters x = (x, y, z) have to satisfy the
condition x2 + y2 + z2 ≤ 1 due to P ≥ 0. Here we follow
a standard control objective [4], [5]: stabilize the dynamics
at the point sup = (0, 0, 1), which corresponds to so-called
the spin-up state, Sup = diag{1, 0}.

A. Hermite case

The SME with the matrix CH is written by using x as

dx = −(x/2)dt + u(t)(py + qz)dt − xzdW,

dy = −(y/2)dt + u(t)(−px + rz)dt − yzdW,

dz = −u(t)(qx + ry)dt + (1 − z2)dW. (21)

The real parameters p, q, and r are defined by

p := h22 − h11, q := −2Im(h12), r := −2Re(h12),
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Fig. 1. The manifold in which the quantum state obeying the SME
associated with CH is limited. The parameter is k1 = 1/2.

where (hij) is the (i, j)-element of the control Hamiltonian
H . As seen in the previous section, the measurement matrix
CH satisfies the condition in Theorem 1, and thus, there
exists a two-dimensional manifold to which x obeying the
autonomous dynamics is restricted. This manifold is easily
obtained from the following computation:

d
( 1 − z2

x2 + y2

)
=

1 − (z + dz)2

(x + dx)2 + (y + dy)2
− 1 − z2

x2 + y2
= 0.

This implies that (1 − z2)/(x2 + y2) is invariant without
respect to the stochastic noise W (t). That is, x(t) is always
limited to the ellipse x2 + y2 = k1(1 − z2), where k1 is
constant value determined from the initial state. Figure 1
illustrates an example of the ellipse. We also see that y/x is
invariant. As consequence, x is not allowed to evolve in two-
dimensional space, but is subject to the more strict limitation
to a one-dimensional intersection between the plain y = k2x
and the ellipse x2 + y2 = k1(1 − z2).

We now derive the control Hamiltonian which satisfies the
condition in Theorem 2. Due to C ′ = I , the second condition
automatically holds. The first condition is written by

2i

[
0 h12

−h∗

12 0

]
= (a0 + a2)I + a1C − ia3

[
h11 h12

h∗

12 h22

]
,

which leads to h12 = 0, i.e., q = r = 0. Then, the control
Hamiltonian causes the rotation of the state x around the
z-axis. This implies that the controlled state is still restricted
to the ellipse and shows the two-dimensional transition.

Does this controller achieve our control object, x → sup

by using some feedback laws? Unfortunately, we immedi-
ately get a negative answer because the control Hamiltonian
only rotates x around z-axis and cannot control z-element
itself. Actually, the dynamics of z(t), which is given by dz =
(1− z2)dW , shows an undesirable behavior as follows; Let
us consider a function V (z) = 1 − z2 ≥ 0. Then, we easily
have LV = −V 2 ≤ 0, which leads to limt→∞ LV = 0
from Lemma 5 in Appendix. Therefore, the uncontrollable
convergence z(t) → −1 can occur as shown in Figure 2.
This point sdown = (0, 0,−1) corresponds to the spin-down
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Fig. 2. The stochastic bifurcation of z(t). The initial state is z(0) = 0.
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Fig. 3. The manifold in which the quantum state obeying the SME
associated with CN is limited. The parameter is k3 = −2.

state Sdown = diag{0, 1}. These observations indicate that
another control target cannot be also stabilized since x must
converge into sup or sdown. As a result, we have to conclude
that the proposed controller is not appropriate for the single-
spin system with the Hermite type measurement.

B. Nilpotent case

We next consider the nilpotent type measurement CN. The
variable x obeys the following equation;

dx = −(x/2)dt + u(t)(py + qz)dt + (−x2 + z + 1)dW,

dy = −(y/2)dt + u(t)(−px + rz)dt − xydW,

dz = −(z + 1)dt − u(t)(qx + ry)dt − x(z + 1)dW. (22)

Similar to the Hermite type measurement, the autonomous
SME is always constrained to evolve on a two-dimensional
manifold since CN satisfies the condition in Theorem 1.
Actually, the variable k3 = (x2 + z2 − 1)/y2 satisfies
d(k3) = 0, which leads to that x(t) is always on the manifold
x2 + z2 − k3y

2 = 1. Figure 3 shows this ellipse.
Let us consider the Hamiltonian that satisfies the condition

in Theorem 2. Although we here omit the actual derivation
for the condition, it is easy to get p = r = 0, which
corresponds to the Hamiltonian rotating the state around the
y-axis. Obviously, the controlled variable is still limited into
the ellipse x2 + z2 − k3y

2 = 1, and the controller does
not have ability to manipulate y-element. Actually, taking
a function V (y) = y2, we have LV = −y2(1 − x2) ≤ 0
without respect to the control input. From Lemma 5 this
implies LV → 0, or equivalently y → 0. (Note that x2 → 1
implies y → 0.) Then, the ellipse x2+z2−k3y

2 = 1 reduces
to a circle x2 + z2 = 1. Therefore, it turns out that the
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controlled dynamics becomes one-dimensional, which allows
us to parametrize the variable by (x, z) = (sin θ, cos θ).
Then, we have a dynamics on −π ≤ θ < π:

dθ =
[
u(t)+

1

2
sin θ cos θ+sin θ

]
dt+(cos θ+1)dW. (23)

A remarkable fact is that the dynamics has only one equilib-
rium point θ = π, which corresponds to the spin down state
S = diag{0, 1}, whereas our control target corresponds to a
non-equilibrium point θ = 0. Although the strict convergence
of the state into θ = 0 is impossible, we instead aim to let
the state go as close to the target as possible. This control
objective is attained as follows;

Proposition 3: For the dynamics (23), let us consider a
feedback law u(t) = −M sin(θ(t)/2), which is discontinu-
ous at θ = −π. Then, the following specification is attained;

E

[
sin2 θ(t)

4

]
≤ e−(M/2)t sin2 φ(0)

4
+

5

8M
.

Proof: The function V (θ) = sin2(θ/4) satisfies

LV =
[
u +

1

2
sin θ cos θ + sin θ

]∂V

∂θ
+

1

2
(cos θ + 1)2

∂2V

∂θ2

= −M

2
(1 + x)V − 1

4
x(x − 1

2
)2 +

5

16
x

where x := cos(θ/2). Noting that 0 ≤ x ≤ 1 due to
−π ≤ θ < π, the above equation can be evaluated as
LV ≤ (M/2)V + 5/16, which leads to the assertion from
Lemma 6. �

Clearly, a high-gain feedback control attains a suffi-
cient suppression of the variance-like function. That is,
E[sin2(θ(t)/4)] is close to zero as t → ∞ if M � 1, which
means that θ = 0 is approximately achieved.

V. CONCLUSION

In this paper, we have considered the highly-complicated
quantum system conditioned on the continuous measure-
ment. The key property in order to deal with the complexity
is the stochastic local reachability defined by the analogous
way to the deterministic case. Through the reachability
analysis base on the vector representation of the quantum
state, we have characterized a class of the measurement such
that the local transition of the state obeying the controlled
dynamics is restricted to a three-dimensional manifold. Then,
for the single-spin system with a specific type of the mea-
surement, the Nilpotent measurement, we could design a
global controller by selecting a control Hamiltonian satis-
fying the above requirement. This result suggests that the
same kind of controller will work well even for a multi-spin
system when we use the Nilpotent-type measurement.

APPENDIX

Consider an Ito SDE on R
n of the form

dx = f(x)dt + g(x)dW, (24)

where f(x) and g(x) are smooth vector fields on R
n.

Suppose that the dynamics (24) has an equilibrium point

xo satisfying f(xo) = g(xo) = 0. Define the infinitesimal
generator of x as

L :=
∑

i

fi
∂

∂xi
+

1

2

∑
i,j

(ggT )ij
∂2

∂xi∂xj
.

Then we have the following fact [18], [19];
Lemma 5: Let G be a bounded invariant set with respect

to the solution of (24) and xo ∈ G. Suppose there exists a
function V : G → R+ such that LV (x) ≤ 0 holds for all
x ∈ G. Then we have limt→∞ LV (x) = 0 a.s..

Lemma 6: Suppose there exist a C2 function V : Rn →
R+, constants α > 0 and β > 0 such that LV (x) ≤
−αV (x) + β for all x ∈ R

n and t ≥ 0. Then, there is
a unique solution of (24) for each x(0) and it satisfies

E[V (x(t))] ≤ V (x(0))e−αt + β/α.
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