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Abstract— In this paper, we study phase transition behavior
emerging from the interactions between multiple agents in
the presence of noise. We propose a simple discrete-time
model in which a group of non-mobile agents form either a
fixed connected graph or a random graph process, and each
agent, taking bipolar value either +1 or −1, updates its value
according to its previous value and the noisy measurements
of the connected agents’ values. We present proofs for the
occurrence of the following phase transition behavior: At a
noise level higher than some threshold, the system generates
symmetric behavior; whereas at a noise level lower than the
threshold, the system exhibits spontaneous symmetry breaking.
We also verify the phase transition using simulations. This result
may be found useful in the study of the collective behavior of
complex systems under communication constraints.

I. INTRODUCTION

Phase transition in a system refers to the sudden change of
a system property as some parameter of the system crosses a
certain threshold value. Phase transitions have been observed
in a wide variety of studies, such as in physics, chemistry,
biology, complex systems, computer science, and random
graphs, to list a few. It leads to long term attention in the
literature, from physicists such as Ising [1] in the 1920’s to
mathematicians such as Erdos and Renyi [3] in the 1960’s,
from complex systems theorists such as Langton [7] in the
1990’s to control engineers such as Olfati-Saber [11] in the
2000’s.

Ising and other physicists have thoroughly studied the
simple but “realistic enough” Ising model, for the under-
standing of phase transitions in magnetism, lattice gases, etc.
In an Ising model, each node can have two values, and the
neighboring nodes have an energetic preference to take the
same value, under the constraints such as a temperature one.
It is shown that, for an Ising model with dimension at least 2,
a temperature higher than a critical point leads to symmetric
behavior (e.g., “melt” of magnetization, or vapor), whereas
a temperature lower than that point leads to asymmetric
behavior (e.g., magnetization, or liquid). The Ising model
is a discrete-time discrete-state model, and is closely related
to the Hopfield networks and the cellular automata.

Erdos and Renyi [3] showed that, graphs of a size slightly
less than a certain threshold are very unlikely to have
some properties, whereas graphs with a few more edges are
almost certain to have these properties. This is called phase
transition of random graphs, see for example [5].

Jialing Liu was partially supported by NSF under Grant ECS-0093950.
The authors are with the Department of Electrical and Computer

Engineering, Iowa State University, Ames, IA 50010, USA. Email:
{liujl,vikasy,hullas,hfliu,jmolson,nelia}@iastate.edu

Viscek et al [14] showed that a two-dimensional nonlinear
model exhibits a phase transition in the sense of spontaneous
symmetry breaking as the noise level crosses a threshold.
This model consists of a two-dimensional square-shaped box
filled with particles represented as point objects in continuous
motion. The following assumptions are also assumed: 1) the
particles are randomly distributed over the box initially; 2)
all particles have the same absolute value of velocity; and
3) the headings of the particles are randomly distributed.
Each particle updates its heading using the average of its
own heading and the headings of all other particles within a
radius r, which is called the nearest neighbor rule. Included
in this model is a random noise with a uniform probability
distribution on the interval [−η, η]. The result of [14] is to
demonstrate using simulations that a phase transition occurs
when the noise level crosses a threshold which depends on
the particle density. Below the threshold, all particles tend
to align their headings along some direction, and above the
threshold, the particles move towards different directions.
Czirok et al [2] presented a one-dimensional model which
also exhibits phase transition for a group of mobile particles.
These two models are discrete-time continuous-state models.

Jadbabaie et al [4] provided a rigorous proof for the noise-
less scenario of the observed behavior in [14], with a slightly
modified model. The model in [14] is a switched linear
model, whereas the model in [2] is a switched nonlinear
model. Due to the noiseless assumption made in [4], the
phase transitions observed in [14] will not occur. This model
also assumes that over every finite period of time the particles
are jointly connected for the length of the entire interval.
Under these assumptions, Jadbabaie et al proved that the
nearest neighbor rule leads to alignment of all particles. One
may be interested in finding Lyapunov functions (preferably
quadratic) to show the convergence (alignment). However,
[14] showed that a common quadratic Lyapunov function
does not exist for this switched linear model. On the other
hand, a non-quadratic Lyapunov function can be constructed
to prove the convergence, as suggested by Megretski [8] and
later independently found by Moreau [10].

Schweitzer et al [13] studied the spatial-temporal evolution
of the population of two species, where the update scheme
depends nonlinearly on the local frequency of species. De-
pending on the probability of transition from one species
to the other, the system evolves to either extinction of
one species (agreement) or non-stationary co-existence or
random co-existence (disagreement).

We refer to [11], [12] for a recent study of phase tran-
sitions and the closely related consensus problems over
networks. Olfati-Saber [11] studied the consensus problem
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using a random rewiring algorithm [15] to connect nodes,
and showed that the Laplacian spectrum of this network may
undergo a dramatic shift, which is referred to as spectral
phase transition and leads to extremely fast convergence to
the consensus value.

In this paper, we propose a simple discrete-time discrete-
state model in which a group of agents form either a fixed
connected graph or a random graph process, and each agent
(node) updates its value according to its previous value and
the noisy measurements of the neighboring agent values. We
prove that, when the noise level crosses some threshold from
above, the system exhibits spontaneous symmetry breaking.
We may view that the high noise level corresponds to
high temperature (or strong thermal agitation), where the
molecules exhibit disorder and symmetry; and the low noise
level corresponds to low temperature, where the molecules
exhibit order and asymmetry.

We may also interpret our phase transition in the consensus
problem scenario, where the disagreement due to unreliable
communication is replaced by agreement when the commu-
nication quality improves to a certain level. However, unlike
the average-consensus problem (cf. [12]) with the properties
that, 1) there exists an invariant quantity during the evolution,
and 2) the limiting behavior reaches the average of the initial
states of the system, we reach a consensus without these
properties when the noise level is low. This is because the
presence of noise prevents the conserving of the sum of the
node values during the evolution. We conjecture that there
may exist an invariant quantity based on the entropy flows of
the system, see [9] for the study of entropy flows. We remark
that a more thorough study of the consensus problem raised
in this paper is beyond the scope of this paper and will be
pursued elsewhere.

Our results demonstrate how phase transition can occur
in rather simple models. The phase transition in a fixed
connected graph presented in this paper is simpler than the
phase transition in the Ising model (as one indicator, the
Ising model needs dimension 2 to generate phase transition,
whereas our phase transition occurs for any dimension).
To the best of our knowledge, this model is one of the
simplest that exhibits phase transition in a fixed graph,
and is mathematically provable to generate phase transition.
Additionally, the phase transition on a random graph is also
simpler than the phase transition on a random graph observed
in [3]. Compared with the models in [14] and [2], our models
have discrete-states and do not allow the mobility of agents,
which greatly simplifies the analysis of the phase transition
behavior.

The simplicity of our phase transitions may help us to
identify the essence of general phase transition phenomena.
Our study also sheds light on the research on the consensus
problems, cooperation of multiple-agent systems, and collec-
tive behavior of complex systems, all under communication
constraints.

Organization: In Section 2 we introduce the models. In
Section 3 we state our main results and provide the proofs.
In Section 4 we present numerical examples. Finally we

conclude the paper and discuss future research directions.

II. MODELS ON THE GRAPHS

This section introduces some of the terms that are fre-
quently used in this paper as well as the two models to be
investigated. We focus only on undirected graphs.

A. Graphs and random graph processes

A graph G := (V,E) consists of a set V := {1, 2, ..., N}
of elements called vertices or nodes, and a set E of node pairs
called edges, with E ⊆ Ec := {(i, j)|i, j ∈ V }. Such a graph
is simple if it has no self loops, i.e. (i, j) �∈ E if i = j. We
consider simple graphs only. A graph G is connected if it has
a path between each pair of distinct nodes i and j, where by a
path between nodes i and j we mean a sequence of distinct
edges of G of the form (i, k1), (k1, k2), . . . , (km, j) ∈ E.
Radius r from node i to node j means that the minimum
path length, i.e., the minimum number of edges connecting
i to j, is equal to r.

A fixed graph G has a node set V and an edge set E that
consists of deterministic edges, that is, the elements of E are
deterministic and do not change dynamically with time.

A random graph G consists of a node set V and an edge
set E := E(ω), where ω ∈ Ω, (Ω,F , P ) forms a probability
space. Here Ω is the set of all possible graphs (with total
number n := 2N(N−1)/2), F is the power set of Ω, and P
is a probability measure that assigns a probability to every
ω ∈ Ω. In this paper, we focus on the well-known Erdos
random graphs only [5], namely, it holds that

P (ω) =
1

n
. (1)

In other words, we can view that each E(ω) is the result of
N(N − 1)/2 independent tosses of fair coins, where a head
corresponds to switching on the associated edge. Notice that
the introduction of randomness to a graph implies that, all
results in random graph theory hold asymptotically and in a
probability sense, such as “hold with probability one”.

A random graph process is a stochastic process that
describes a random graph evolving with time. In other words,
it is a sequence {G(k)}∞k=0 of random graphs (defined on a
common probability space (Ω,F , P )) where k is interpreted
as time (cf. [5]). Thus, for a random graph process, the edge
set changes with k, and we denote it at time k as E(k). In
this paper, we assume that the edge formation at time k is
independent of that at time l, if k �= l.

The neighborhood Ni(k) of the ith node at time k is a
set consisting of all nodes within radius 1, including the
ith node itself. The value that a node assumes is its node
value. The valence or degree of the ith node is (|Ni(k)|−1),
where |Ni(k)| denotes the number of elements in Ni(k). The
adjacency matrix of G(k) is an N ×N matrix whose (i, j)th
entry is 1 if the node pair (i, j) ∈ E(k) and 0 otherwise.

B. System on a graph

A system on a graph consists of a graph, fixed or forming
a random process, an initial condition that assigns each node
a node value, and an update rule of the node values. In this
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paper, we assume that each node can take value either +1
or −1, and the update rule for the ith node at the (k + 1)th
instant is given by

xi(k + 1) = sign (vi(k) + ξi(k)) , (2)

where ξi(k) is the noise random variable, uniformly dis-
tributed in interval [−η, η] and independent across time and
space, and

vi(k) :=

∑
j∈Ni(k) xj(k)

|Ni(k)|
; (3)

that is, vi(k) is the average of the node values in the
neighborhood Ni(k). Here η is called the noise level. This
update rule resembles the one in [2], with their antisymmetric
function being replaced by a sign function. It may also be
viewed as a specific update rule for a Hopfield neuron with
noisy connections to others.

The state of the system at time instant k, denoted S(k), is
the sum of the current values of all the nodes in the graph. We
call a state transient if this state reappears with probability
strictly less than one. We call a state recurrent if this state
reappears with probability one. We call a state S absorbing
if the one-step transition probability from S to S is 1.

C. Model with a fixed graph

The first model considered is a system on a fixed graph.
In this model, the node connections or the edges remain
unchanged throughout. Hence, every node has a fixed neigh-
borhood at all time, and the degree of each node as well
as the adjacency matrix are constant. The node value gets
updated according to the update rule (2). We will assume
that the fixed graph is connected. An example of such a fixed
graph model is a communication network with fixed nodes
and fixed but noisy channels. Another example is a Hopfield
network with fixed neurons and fixed but noisy connections.

D. Model with a random graph process

The second model considered is a system on a graph
forming a random process. In this model, the node con-
nections, namely the edges of the random graph, change
dynamically throughout, and the edge formations at time k
are random according to distribution P (k). Hence every node
may have different neighborhoods at different times, and the
adjacency matrix and degrees change with time. The node
value gets updated also according to the update rule (2). An
example of this model could be an ad-hoc sensor network
in which the communication links between the sensors are
changing. Another example is an erasure network in which
the communication channels are noisy and erasing with some
probability, see for example [6].

In both models, the state of the system takes values in the
set N := {−N,−N +2, · · · , N−2, N}, where N ≥ 2 is the
total number of nodes (agents). Note that |N | = N +1 ≥ 3.
Both models also form Markov chains, since the next state
does not depend on previous state if the current state is given.

We use ξ(k) to represent (ξ1(k), · · · , ξN (k)), ξk

to represent (ξ(0), · · · , ξ(k)), and Gk to represent
(G(0), · · · , G(k)).

III. MAIN RESULTS AND PROOFS

Our main result states that, for a system on a fixed
connected graph or on a graph forming a random process,
there is a provable phase transition when the noise level
crosses some threshold. Here phase transition is used in
the sense that the symmetry exhibited at high noise level is
broken suddenly when the noise level crosses the threshold
from above, or equivalently the disagreement of the nodes
at high noise level becomes agreement below the threshold.
In what follows, we first discuss the case in which the graph
has a fixed structure, and then the case in which the graph
forms a random process.

A. Model with a fixed graph

Proposition 1. For any given fixed connected graph, let D
be the maximum number of nodes in one neighborhood.

i) If the noise level is such that η ∈ (1 − 2/D, 1], then
the system will converge to agreement, namely all nodes will
converge to either all +1s or all −1s.

ii) If the noise level is such that η > 1, then
ES(0),ξk−1S(k) tends to zero as k goes to infinity, i.e., the
system will converge to disagreement in which approximately
half of the nodes are +1s and the other half are −1s.

Remark 1. Notice that (1 − 2/D) is guaranteed to be
nonnegative for any connected graph with more than one
node, since D ≥ 2. Note also that if η < 1 − 2/D, the
system may converge to states not equal to ±N . To see this,
simply consider a one-dimensional cellular automaton with
N nodes forming a circle. The neighborhood of a node is
defined as one node to the left, one node to the right, and
itself. Therefore D = 3, and if η < 1/3, the update rule
becomes a majority voting rule. Then the initial state S(0) of
the system with alternate +1s and −1s will leads to constant
oscillations between S(0) and a left shift of S(0), i.e., it will
not reach agreement if η < 1/3. However, this does not mean
that in general our condition 1 ≥ η > 1−2/D is a necessary
condition for agreement; a sufficient and necessary condition
is under current investigation. Attractors like this S(0) may
be viewed as local attractors (whereas ±N may be viewed
as global attractors) but they can be removed by considering
a randomized graph, see the next subsection.

The proof of Proposition 1 needs the following lemmas.

Lemma 1. For any given fixed connected graph, if η ∈ (1−
2/D, 1], then the states ±N are absorbing, and all other
states are transient.

Lemma 2. For any given fixed connected graph, if η > 1,
then the states form an ergodic Markov chain with a unique
steady-state distribution for any initial condition.

Proof of Lemma 1: Notice that at state +N , the noise
is not strong enough to flip any node value. So ±N are
absorbing. On the other hand, all other states are neither
absorbing nor recurrent. To see this, let M �= ±N be any
state. In this case, M contains a mixture of +1s and −1s. For
M , we can always find a node with value xi(k) = −1 whose
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neighborhood Ni(k) (including xi(k) itself) contains both
+1s and −1s. If this were not true, then for any node with
value −1, its neighbors must be all −1s. By induction, any
nodes within any radius from a node with value −1 are −1s.
However, this contradicts the fact, due to connectivity of the
graph, that there must exist a path between an arbitrary −1
and an arbitrary +1. Thus such xi(k) and Ni(k) containing
both +1s and −1s exist.

Then for such xi(k), it holds that

|vi(k)| ≤
D − 2

D
, (4)

with equality if only one node in Ni(k) has a different sign
than all other nodes and if Ni(k) contains D nodes. Hence
a noise larger than (D − 2)/D flips xi(k). Precisely,

Pr(xi(k + 1) = +1|xi(k) = −1)
= Pr (vi(k) + ξi(k) > 0)

≥ Pr

(
ξi(k) >

D − 2

D

)

=
1

2

(
1 −

D − 2

Dη

)
> 0.

(5)

Thus, for state M , the probability that only si flips and
no other node changes its value is non-zero. This follows
that, with a positive probability M will increase to M + 2.
Similarly, with a positive probability M can decrease to
M − 2. Since M �= ±N is an arbitrary state, by induction,
the probability of transition (in possibly multiple steps) from
M to ±N is nonzero. So M is transient.

Proof of Lemma 2: It is sufficient to prove that the state
forms an irreducible and aperiodic Markov chain.

To see the irreducibility, note that if η > 1, M �= ±N
is transient, similar to Lemma 1. Additionally, ±N are not
absorbing. For state +N , it holds that

Pr(xi(k + 1) = −1|xi(k) = +1)

= Pr
(∑

j∈Ni(k) +1

|Ni(k)| + ξi(k) < 0
)

= Pr(ξi(k) < −1)
= η − 1 > 0,

(6)

so state +N can jump to N − 2 with a positive probability.
Similarly −N can also jump to −N + 2 with a positive
probability. Then this Markov chain is irreducible.

To see the aperiodicity, note that any state M can increase
to M + 4 or decrease to M − 4 with a positive probability,
if M + 4 ≤ N or M − 4 ≥ −N . Therefore, the loop M →
M + 2 → M − 2 → M has period 3, but the loop M →
M + 2 → M has period 2. Then M is aperiodic.

Proof of Proposition 1: If η ∈ (1−2/D, 1], from Lemma
1, the associated Markov chain will converge to either +N
or −N with probability 1, namely agreement. If η > 1,
from Lemma 2 we know that the associated Markov chain is
ergodic, and notice that the Markov chain has a symmetric
structure for state +M and −M . Then π(+M) = π(−M),
where π(+M) is the stationary probability of state +M .
Hence the expectation of state

EπS :=
∑

M∈N

π(M)M = 0. (7)

Therefore, ES(k) converges to zero, and asymptotically the
numbers of +1s and −1s will become roughly equal.

B. Model with a random graph process

For an Erdos random graph, we assume that the edge con-
nections are randomly and independently changing from time
to time. The randomization of the connections symmetrizes
the system behavior and leads to agreement for an arbitrarily
small but positive noise level.

Proposition 2. Consider an Erdos random graph process.
i) If the noise level is such that 0 < η ≤ 1, then the system

will converge to agreement, namely the state will converge
to +N or −N .

ii) If the noise level is such that η > 1, then
ES(0),ξk−1,Gk−1S(k) exponentially converges to zero with
decay exponent log η as k goes to infinity, i.e., the system
will exponentially converge to disagreement in which about
half of the node values are +1s and the other half are −1s.

Note that S(k) contains randomness of 1) the initial
condition S(0), 2) the noise ξk−1, and 3) the graphs Gk−1.
Then we write the expectation of S(k) over all randomness
as ES(0),ξk−1,Gk−1S(k). The proof of this proposition needs
the following lemmas. We remark that it is straightforward to
generalize the lemmas to a binomial random graph, in which
the probability of forming an edge is changed from 0.5 to
an arbitrary p ∈ (0, 1).

Lemma 3. For any Erdos random graph process, if 0 < η ≤
1, then ±N are absorbing, and all other states are transient.

Lemma 4. For any Erdos random graph process, if η > 1,
then it holds that ES(0),ξk−1,Gk−1S(k) exponentially tends
to zero as k goes to infinity from any initial state.

Proof of Lemma 3: If 0 < η ≤ 1, it is easy to see that
±N are absorbing. For any state M �= ±N , it holds that M
must be a mixture of both +1s and −1s. Hence we can find
in M that xi(k) = −1 and xj(k) = +1. Since each one of
the n graphs has a positive probability, the probability that
xi is connected to xj only is positive. Then vi(k) = 0 and
hence arbitrarily small but positive noise may flip xi with a
positive probability. In addition, all nodes other than xi have
a positive probability to keep their previous values, thus with
a positive probability M can increase to M + 2. Similarly,
with a positive probability M can decrease to M − 2. Thus
any M �= ±N are transient.

Proof of Lemma 4: For any Erdos random graph, if
η > 1, then no state is an absorbing one, since with a
positive probability the noise can flip any node value in any
configuration. Therefore, with a nonzero probability the state
of the system can jump to any other states.

Now let us analyze the evolution of ES(k). Fix the time
k. Assume xi(k) is given for each i. Then xi(k+1) is given
by (2). The randomness in xi(k+1) is due to the noise ξi(k)
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and the graph G(k). It holds that

Eξi(k),G(k)xi(k + 1)
= Eξi(k),G(k)sign(vi(k) + ξi(k))
= Pr(vi(k) + ξi(k) > 0) × (+1)

+Pr(vi(k) + ξi(k) < 0) × (−1)
= Pr(ξi(k) > −vi(k)) − Pr(ξi(k) < −vi(k))

=
∑
vi(k)

Pr(ξi(k) > −vi(k)|vi(k))Pr(vi(k))

−
∑
vi(k)

Pr(ξi(k) < −vi(k)|vi(k))Pr(vi(k))

=
∑
vi(k)

[
η + vi(k)

2η
−

η − vi(k)

2η

]
Pr(vi(k))

=
∑
vi(k)

vi(k)

η
Pr(vi(k)) =

1

η
EG(k)vi(k).

(8)

Note that the above computation is conditioned on xi(k), but
we omit the conditioning on xi(k) to simplify notation.

Then we compute EG(k)vi(k), the expectation of the
average of node values in a neighborhood, w.r.t. all possible
n graph structures. Let us count in the n graph structures the
number of different neighborhoods containing xi(k). Among
those neighborhoods containing xi(k), there are

2(N−1)(N−2)/2 ×

(
N − 1

m

)
(9)

types of neighborhoods with (m + 1) node inside, m =
0, 1, · · · , N − 1. Therefore,

EG(k)vi(k)

=
∑
G(k)

(vi(k)|G(k))Pr(G(k))

=
1

n

∑
G(k)

(
xi(k)

|Ni(k)|

∣∣∣∣ G(k)

)
+

1

n

∑
G(k)

( ∑
j∈Ni(k),j �=i xj(k)

|Ni(k)|

∣∣∣∣∣ G(k)

)

= c1xi(k) +
∑

j∈Ni(k),j �=i

c2xj(k),

(10)

where

c1 :=
2(N−1)(N−2)/2

n

N−1∑
m=0

(
N − 1

m

)
×

1

m + 1

c2 :=
2(N−1)(N−2)/2

n(N − 1)

N−1∑
m=1

(
N − 1

m

)
×

m

m + 1
.

(11)

This yields

Eξi(k),G(k)xi(k+1) =
1

η

⎛
⎝c1xi(k) + c2

∑
j �=i

xj(k)

⎞
⎠ , (12)

and hence
Eξ(k),G(k)S(k + 1)

=

N∑
i=1

Eξi(k),G(k)xi(k + 1)

=
1

η
(c1S(k) + c2(N − 1)S(k))

=
1

η
S(k)

1

2N−1

N−1∑
m=0

(
N − 1

m

)
=

1

η
S(k).

(13)

Therefore,

ES(0),ξk,GkS(k + 1)
= ES(0),ξk−1,Gk−1 [Eξ(k),G(k)S(k + 1)]

=
1

η
ES(0),ξk−1,Gk−1S(k).

(14)

Since η > 1, the above recursion converges to zero expo-
nentially, and the decay exponent is

−
1

k
log

ES(k)

ES(0)
= − log

1

η
= log η. (15)

Proof of Proposition 2: If 0 < η ≤ 1, from Lemma 3,
the system state will converge to the absorbing states with
probability 1, namely agreement. If η > 1, from Lemma
4, the system state will converge to zero exponentially with
probability 1.

Note that the proof of Lemma 3 is based on a rather
conservative argument only, but it utilizes the randomness
of graph structure and leads to the result easily.

IV. NUMERICAL RESULTS

A. Fixed graph case

Consider a fixed one-dimensional 500-agent system. The
agents are listed along a circle and each agent has two
neighbors. The initial value of every agent is arbitrarily
assigned to be +1 or −1. The simulation results demonstrate
the phase transitions, see Figure 1 (a) and (b). In Figure 1 (a),
the vertical axis represents the state of the system, and the
horizontal axis represents the simulation steps. Figure 1 (a)
shows that, if the noise level is such that 1/3 < η ≤ 1, then
all node values converge to agreement of all +1s or all −1s,
that is, the state of the system is +500 or -500. In Figure
1 (b), the vertical axis represents the time average of the
state, and the horizontal axis is for the simulation steps. By
ergodicity of the system, the time average should converge
to the ensemble average of the state. Figure 1 (b) shows that,
if the noise level is such that η > 1, then all node values
converge to disagreement in which about half of the node
values are +1s and the other half are −1s. Clearly, the noise
level equal to 1 is the critical level of the phase transition.
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Fig. 1. Fixed graph simulation. (a) Noise level is 0.75, and the state
converges to agreement of all +1s. (b) Noise level is 2, and the state
converges to disagreement in which about half of the states are +1s and
the other half are −1s.
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B. Random graph process case

For the random graph process case, in our simulation we
consider binary random graphs. In a binary random graph,
each edge has a probability p to be formed at each time
step and is independent of all other edges and other times.
This means that to generate such a binary random graph,
we only need to generate at each step an adjacency matrix
whose entries in the upper triangular part are independent
and identically distributed. The initial value of every agent is
randomly assigned to be +1 or −1 according to an arbitrary
distribution. The simulation results are shown in Figure 2 (a)
and (b), and are similar to the fixed connected graph case,
except that in the random graph case, an arbitrarily small but
positive noise level can lead to agreement.
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Fig. 2. (a) System is randomly connected, noise level is 0.005, p = 0.1,
and all states converge to agreement of all −1s. (b) System is randomly
connected, noise level is 2, p = 0.2, and the state converges to disagreement
in which about half of the states are +1s and the other half are −1s.

We can also compute the decay exponent of ES(k) from
the numerical results. Note that to obtain the probability
mean ES(k) numerically, we can run the random process
many times and take the average of the states. See Figure
3 for the simulated decay exponent and the theoretic decay
exponent log2 η, which are almost identical.
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Fig. 3. The simulated decay exponent (averaged over 10,000 independent
trials and η = 1.05) and the theoretic decay exponent.

V. CONCLUSIONS AND FUTURE WORK

We have shown that for fixed connected graphs, if the
noise level is greater than (1 − 2/D) and less than 1, all
the agents reach an agreement, i.e. the state of the system
converges to ±N , the only absorbing states of the system.
For noise level larger than 1, the group of agents fails
to reach any agreement. Thus, phase transition occurs at
η = 1. For random graph processes, the system reaches

agreement even for noise level smaller than (1 − 2/D).
This is because randomization is immune to the artifacts
(or unwanted local attractors) for smaller noise which stops
fixed graph from reaching any agreement. But the tradeoff is
that in randomization, the nodes’ neighbors are random, and
therefore the neighbors may not be “geographically close”,
which might not be feasible in practical situations. Our study
was concentrated on the leaderless case. The leader case is
when there is a leader with a fixed value, and will try to
convince all other agents to follow him. Simulation obtained
in this case suggested that a complete analysis is a bit
involved especially in the high noise regime, which is subject
to further research. Another direction could be to obtain a
suitable Lyapunov function for the models. One advantage of
doing so is that the Lyapunov function based approach may
be extended to rather general nonlinear systems, as suggested
by [8], [10]. The Lyapunov function is preferably a quadratic
one, leading to stability in the mean-square sense, which
is stronger than the stability in the mean sense obtained
in this paper. The applications of our approach and results
are also subject to future research, including the extension
of our approach to more realistic models; note that our
models in this paper are simple and not realistic enough,
though the simplicity helped us to completely characterize
the phase transition. We will also explore the connections
of our model to relevant models, such as the Ising models,
Hopfield networks, cellular automata, other random graphs,
etc.
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