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Abstract— Optimization-ready reduced-order models should
target a particular output functional, span an applicable range
of dynamic and parametric inputs, and respect the underlying
governing equations of the system. To achieve this goal, we
present an approach for determining a projection basis that
uses a goal-oriented, model-based optimization framework.
The mathematical framework permits consideration of general
dynamical systems with general parametric variations. The
methodology is applicable to both linear and nonlinear systems
and to systems with many input parameters. This paper focuses
on an initial presentation and demonstration of the methodology
on a simple linear model problem of the two-dimensional, time-
dependent heat equation with a small number of inputs. For this
example, the reduced models determined by the new approach
provide considerable improvement over those derived using the
proper orthogonal decomposition.

I. INTRODUCTION

Model reduction is a powerful tool that permits the system-

atic generation of cost-efficient representations of large-scale

systems that, for example, result from discretization of partial

differential equations (PDEs). The task of determining these

representations may be posed as an optimization problem:

determine the reduced model that provides the optimal

representation (with respect to some measure) of the large-

scale system behavior. For very large systems, determination

of the best reduced model via direct optimization has not

been pursued, due to challenges in solving the resulting

optimization problem. Instead, several reduction methods

have been developed that trade off optimality for tractability,

and these have been applied in many different settings with

considerable success, including controls, fluid dynamics,

structural dynamics, and circuit design. However, a number

of open issues remain with these methods, including the

reliability of reduction techniques, guarantees associated with

the quality of the reduced models, and the generation of

reduced models that are suitable for optimal design, optimal

control and inverse problem applications.

Recent advances in scalable algorithms for large-scale op-

timization of systems governed by PDEs have led to solution

of problems with millions of state and optimization variables

[1], [2]. The problem of determining a reduced model can be
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cast in such a model-constrained optimization context. In par-

ticular, we consider a goal-oriented formulation in which the

reduced model is chosen to optimally represent a particular

output functional. Whereas other large-scale reduction meth-

ods, such as the proper orthogonal decomposition (POD),

are purely data-driven and do not consider the underlying

equations, our model-based optimization approach enforces

the reduced-order governing equations as constraints. This

improves on a data-driven approach by bringing additional

knowledge of the reduced-order governing equations into the

construction of the basis.

Most large-scale model reduction frameworks are based

on a projection approach, which can be described in general

terms as follows. Consider the general linear, time-invariant

(LTI) dynamical system

Mu̇ + Ku = f, (1)

g = Cu, (2)

with initial condition

u(0) = u0, (3)

where u(t) ∈ IRN is the system state, u̇(t) is the derivative

of u(t) with respect to time, and the vector u0 contains the

specified initial state. In general, we are interested in systems

of the form (1) that arise from spatial discretization of PDEs.

In this case, the dimension of the system, N , is very large and

the matrices M ∈ IRN×N and K ∈ IRN×N result from the

spatial discretization of the underlying governing equations.

The vector f(t) ∈ IRN defines the input to the system and

the matrix C ∈ IRQ×N defines the Q outputs of interest,

which are contained in the output vector g(t).
A reduced-order model of (1)–(3) can be derived by

assuming that the state u(t) is represented as a linear

combination of m basis vectors

û = Φα (4)

where û(t) is the reduced model approximation of the

state u(t) and m � N . The projection matrix Φ ∈
IRN×m contains as columns the basis vectors φi, i.e., Φ =
[φ1 φ2 · · · φm], and the vector α(t) ∈ IRm contains the

corresponding modal amplitudes. This yields the reduced-

order model with state α(t) and output ĝ(t)

M̂α̇ + K̂α = f̂ , (5)

ĝ = Ĉα, (6)

M̂α(0) = ΦT Mu0, (7)

where M̂ = ΦT MΦ, K̂ = ΦT KΦ, f̂ = ΦT f , and Ĉ = CΦ.
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Projection-based model reduction techniques seek to find

a basis Φ so that the reduced system (5)–(7) provides an

accurate representation of the large-scale system (1)–(3) over

the desired range of inputs. An optimal reduced model can

be defined as one that minimizes the H-infinity norm of the

difference between the reduced and original system transfer

functions; however, no polynomial-time algorithm is known

to achieve this goal. Algorithms such as optimal Hankel

model reduction [3], [4], [5] and balanced truncation [6]

have been used widely throughout the controls community to

generate suboptimal reduced models with strong guarantees

of quality. These algorithms can be carried out in polynomial

time; however, the computational requirements make them

impractical for application to large systems such as those

arising from the discretization of PDEs, for which system

orders often exceed 104.

Considerable effort has been applied in recent years

towards development of algorithms that extend balanced

truncation to large-scale LTI systems [7], [8], [9]; however,

efficient algorithms for very large systems remain a chal-

lenge. The proper orthogonal decomposition (POD) [10],

[11] has emerged as a popular alternative for reduction of

very large dynamical systems; however, it lacks the quality

guarantees of methods such as balanced truncation.

Effective model reduction methods for optimal design,

optimal control and inverse problem applications remain

a challenge. Approaches developed for dynamical systems,

such as POD and Krylov-based methods, have been applied

in an optimization context [12], [13], [14]; however, the num-

ber of parameters in the optimization application was small.

A key challenge that must be addressed in order to provide

optimization-ready reduced-order models is the need for the

reduced models to capture variation over a parametric input

space, which, for many optimization applications, will be of

high dimension. In recent work for steady-state problems,

methods are presented for constructing reduced models that

are of guaranteed quality over a range of inputs via the use

of error estimates and adaptivity [15].

In this paper, we formulate the problem of determining

a projection basis using a goal-oriented, model-based opti-

mization framework. The mathematical framework permits

consideration of general dynamical systems with general

parametric variations. The methodology is applicable to both

linear and nonlinear systems and to systems with many input

parameters. This paper focuses on an initial presentation

and demonstration of the methodology on a simple model

problem that is linear and has a small number of inputs. We

propose an efficient solution strategy that borrows concepts

from the POD and employs recent methods for optimiza-

tion of systems governed by PDEs to make the approach

tractable for large-scale problems. The paper is organized

as follows. First, the general dynamical system framework

with parametric variations is described. This is followed by

a description of the goal-oriented basis optimization formu-

lation and the proposed model reduction methodology. The

approach is then demonstrated for a linear model problem

that considers the unsteady two-dimensional heat equation

with parametrically varying boundary control inputs. Finally,

we present conclusions and directions for future research.

II. DYNAMICAL SYSTEM FRAMEWORK

The standard LTI system framework is defined by (1)–

(3). In this section, we present the more general case that

includes parametric variation in the system.

A. Parametric input variations

We consider a finite set of instantiations of the governing

equations (1)–(3) that could arise from variations in the

coefficient matrices M and K, the input f , or the initial

state u0. For example, where (1)–(3) represent a spatially

discretized PDE, these variations stem from changes in

the domain shape, boundary conditions, coefficients, initial

conditions, or sources of the underlying PDEs. The general

dynamical system for S different instances is thus written

Mku̇k + Kkuk = fk, k = 1, . . . , S (8)

uk(0) = uk
0 k = 1, . . . , S (9)

gk = Ckuk, k = 1, . . . , S (10)

where the superscript k denotes the kth instance of the

system, which has corresponding state uk(t) and output

gk(t).
Using the projection framework described in the previous

section, a reduced-order model of (8)–(10) is obtained as

M̂kα̇k + K̂kαk = f̂k, k = 1, . . . , S (11)

ĝk = Ĉkαk, k = 1, . . . , S (12)

M̂kα(0)k = ΦT Mkuk
0 , k = 1, . . . , S (13)

where M̂k = ΦT MkΦ, K̂k = ΦT KkΦ, f̂k = ΦT fk, and

Ĉk = CkΦ.

B. Proper orthogonal decomposition

POD is a widely used approach to determine the reduced

basis Φ. POD can be applied efficiently to large systems

using the method of snapshots [10] as follows. Consider

the collection of “snapshots”, uk(tj), j = 1, . . . , T, k =
1, . . . , S, where uk(tj) ∈ IRN is the solution of the governing

equations (8) at time tj for parameter instance k. T time

instants are considered for each parameter instance, yielding

a total of ST snapshots. We define the snapshot matrix

U ∈ IRN×ST as

U =
[
u1(t1) u1(t2) · · · u1(tT ) u2(t1) · · · · · · uS(tT )

]
(14)

and we will refer to the ith column of U as the ith snapshot,

denoted by Ui.

The POD basis vectors are chosen to be the orthonormal

set that maximizes the following cost [16]:

φ = arg max
ϕ

〈|(u, ϕ)|2〉
(ϕ,ϕ)

, (15)

where (u, φ) denotes the scalar product of the basis vector

with the field u(t) evaluated over the domain, and 〈 〉
represents a time-averaging operation. In the case of the

discrete snapshots contained in U , (15) is maximized when
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the m basis vectors are chosen to be the first m left singular

vectors of U . For a fixed basis size, the POD basis therefore

minimizes the error between the original snapshots and their

representation in the reduced space defined by

E =
S∑

k=1

T∑
j=1

[
uk(tj) − ũk(tj)

]T [
uk(tj) − ũk(tj)

]
, (16)

where ũk(tj) = ΦΦT uk(tj). This error is equal to the sum

of the singular values corresponding to those singular vectors

not included in the basis

E =
ST∑

i=m+1

σi, (17)

where σi is the ith singular value of U .

The POD is an optimal basis in the sense that it minimizes

the data reconstruction error given by (16); however, it

is important to note that this optimality applies only to

the representation of a known state solution uk(tj) in the

reduced space, i.e. ũ is computed as ũk(tj) = ΦΦT uk(tj),
not by solution of the reduced model (ũ �= û). Therefore,

the error expression does not apply to the resulting POD

reduced-order model (5). In particular, the error expression

yields no rigorous information regarding the accuracy of

the solution of the reduced model and thus whether û is a

good approximation of u. Moreover, the POD basis does not

account for the system outputs, although methods to augment

the standard approach have been proposed that use adjoint

information [17], [18]. In addition, because no information

regarding the governing equations is included in the POD

process, the POD basis does not properly reflect the fact that

the snapshots uk(tj) are associated with different parametric

instances of the system.

In the following section we present an alternative method

to determine the reduced-space basis. This method seeks to

minimize an error similar in form to (16); however, we will

improve upon the POD, first, by minimizing the error in

the outputs (as opposed to states) and, second, by imposing

additional constraints that ûk(t) should result from satisfying

the reduced-order governing equations for each parameter

instance k.

III. OPTIMIZED REDUCED-ORDER BASIS

A. Constrained optimization formulation for projection basis

We pose the problem of selecting the basis Φ as a goal-

oriented optimization problem that seeks to minimize the

difference between the full-space and reduced-order output

solution over a selected set of inputs and the interval [0, tf ),
subject to satisfying the underlying governing equations. The

problem of determining the optimal basis, Φ ∈ IRN×m, can

be written as

min
Φ,α

G =
1
2

S∑
k=1

∫ tf

0

(
gk − ĝk

)T (
gk − ĝk

)
dt

+
β

2

m∑
j=1

(
1 − φT

j φj

)2
(18)

subject to

ΦT MkΦα̇k + ΦT KkΦαk = ΦT fk, k = 1, . . . , S (19)

ΦT MkΦαk(0) = ΦT Mkuk
0 , k = 1, . . . , S(20)

ĝk = CkΦαk, k = 1, . . . , S. (21)

In the case of a linear relationship between outputs and state

as in (10), the objective function can be written

G =
1
2

S∑
k=1

∫ tf

0

(
uk − ûk

)T
Hk

(
uk − ûk

)
dt

+
β

2

m∑
j=1

(
1 − φT

j φj

)2
, (22)

where Hk = CkT Ck can be interpreted as a weighting

matrix that defines the states relevant to the specified output.

While the first term in the objective function (22) has

similarities with that minimized by the POD, given by (16),

there are two important distinctions to note. First, the goal-

oriented nature of the formulation (22) focuses on reduction

of the error for a particular output functional rather than for

the general state vector. Second, through the optimization

constraints (19)–(21), the general optimization approach re-

quires satisfaction of the reduced-order governing equations

to compute û. The error minimized by the optimization

approach is thus tied rigorously to the reduced-order model,

whereas the POD is based purely on snapshot data. In both

cases, however, the definition of the error is limited to a

discrete set of observations.

The second term in (22) is a regularization term that

penalizes the deviation of the length of the basis vectors from

unity and β is a constant weighting. This regularization acts

only in the null space of the projected Hessian matrix of

the first term of (22). Therefore, the reduced output approx-

imation, ĝ, is unaffected by the regularization term, yet the

conditioning of the optimization problem is improved. Note,

however, that there remains a null space of the projected

Hessian matrix that admits arbitrary rotations of the basis

vectors; the optimization method chosen to solve (18)–(21)

should therefore be tolerant of singular projected Hessian

matrices. It is also important to note that the optimization

problem (18)–(21) is nonlinear and nonconvex; therefore,

there is no guarantee that a purely local optimization method

will converge to the global optimum. Therefore, generating

the initial guess is very important; strategies to address this

issue will be discussed in the next section.

B. Optimality conditions and the reduced gradient

The optimality conditions for the system (18)–(21) can be

derived by defining the Lagrangian functional

L(Φ, αk, λk, µk) =
1
2

S∑
k=1

∫ tf

0

(
uk − Φαk

)T
Hk

(
uk − Φαk

)
dt
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+
β

2

m∑
j=1

(
1 − φT

j φj

)2

+
S∑

k=1

∫ tf

0

λkT
(
ΦT MkΦα̇k + ΦT KkΦαk − ΦT fk

)
dt

+
S∑

k=1

µkT
(
ΦT MkΦα(0) − ΦT Mkuk

0

)
, (23)

where λk = λk(t) ∈ IRm and µk ∈ IRm are Lagrange multi-

pliers (also known as adjoint state variables) that respectively

enforce the state ODE system and initial conditions for the

kth sample. The optimality system can be derived by taking

variations of the Lagrangian with respect to the adjoint, state,

and basis vector variables.

Setting the first variation of the Lagrangian with respect

to λk to zero and arguing that the variation of λk is arbitrary

in [0, tf ), and setting the derivative of the Lagrangian with

respect to µk to zero, simply recovers the state equation and

initial conditions (19)–(20).

Setting the first variation of the Lagrangian with respect

to the αk to zero, and arguing that the variation of αk is

arbitrary in [0, tf ), at t = 0, and at t = tf , yields the adjoint

equation, final condition and definition of µ

−ΦT MkΦλ̇k + ΦT KkT Φλk = ΦT Hk
(
uk − Φαk

)
,

k = 1, . . . , S (24)

λk(tf ) = 0, k = 1, . . . , S (25)

µk = λk(0), k = 1, . . . , S. (26)

Note that, without loss of generality, M is assumed to be a

symmetric matrix.

Taking the derivative of the Lagrangian with respect to the

basis vector variables Φ yields the following matrix equation

δLΦ =
S∑

k=1

∫ tf

0

(
HkΦαkαkT − HkukαkT

)
dt

+ βΦ diag(1 − φT
i φi)

+
S∑

k=1

∫ tf

0

[MkΦ
(
λkα̇kT + α̇kλkT

)

+ KkT ΦλkαkT + KkΦαkλkT − fkλkT ] dt

−
S∑

k=1

Mkuk
0µkT = 0. (27)

The combined system (19)–(20), (24)–(26), and (27) repre-

sents the first-order Karush-Kuhn-Tucker optimality condi-

tions for the optimization problem (18)–(21).

To solve the constrained optimization problem (18)–(21),

we choose to eliminate the state variables αk and state equa-

tions (19) and solve an equivalent unconstrained optimization

problem in the Φ variables. Efficient solution of this un-

constrained optimization problem requires a gradient-based

method, which requires function and gradient evaluations.

In this case, the gradient of the unconstrained objective with

respect to Φ is given by δLΦ when the αk satisfy the state

equations and (λk, µk) satisfy the adjoint equations. The

procedure to compute the gradient of G for any value of

Φ can therefore be summarized as follows. First, solve the

state equations (19)–(20) to determine αk(t). Second, solve

the adjoint equations (24)–(26) to determine λk(t) and µk.

Finally, use the computed αk, λk, and µk in (27) to determine

the gradient.

C. Basis computation

The formulation defined by equations (18)–(21) provides

a mathematical definition of the desired optimal basis;

however, in practice this optimization problem may not be

tractable for large-scale problems. First, we may not be able

to afford storage of the entire time history for the full model,

which leads us to adopt a snapshot-based approach. As in the

POD, the time integrals in (18) are replaced by a summation

over a finite number of discrete time instants. Our method

therefore requires a priori computation of a set of high-

fidelity solutions over a pre-determined set of time instants

and input parameter values.

Second, even with this simplification, the number of opti-

mization variables is equal to mN — the desired number of

basis functions multiplied by the length of each basis vector

— where for many applications N ≥ O(106). Therefore, it

will be assumed that each basis vector can be represented as

a linear combination of snapshots:

φj =
ST∑
i=1

γj
i Ui j = 1, . . . , m (28)

where the coefficients γj
i are the variables in the modified op-

timization problem. This assumption reduces the number of

optimization variables from mN to mST , where, for large-

scale applications, typically ST � N . As a consequence,

neither the gradient computation nor the optimization step

computation (which dominate the cost of an optimization

iteration) scale with the full system size N . Moreover, using

adjoints ensures that the gradient computation requires just

2S reduced model solutions per optimization iteration, as

opposed to mST as with direct sensitivities. The assump-

tion that the basis vectors can be represented as a linear

combination of snapshots is motivated by the singular value

decomposition (SVD) theory underlying the POD, for which

the relation (28) is exact (this is equivalent to solving the in-

ner versus the outer SVD problem). As will be demonstrated

in the following results section, in the case of the optimal

basis formulation, numerical experiments suggest that this

formulation is still capable of yielding very good results.

Equation (28) can be written in matrix form as

Φ = UΓ, (29)

where γj
i is the ijth element of Γ ∈ IRST×m. Gradients of

the objective function with respect to Γ are related simply

to gradients with respect to Φ by

∂L
∂Γ

= UT ∂L
∂Φ

. (30)
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Fig. 1. Problem domain and boundary conditions: Neumann on right side,
Dirichlet on all other boundaries.

The modified optimization formulation offers no guaran-

tees of convexity and the choice of initial guess for the

basis is thus very important. In this paper, we present two

possible strategies. The first is to use the POD basis as

an initial starting point. Since a snapshot set is required

anyway, the additional cost of computing the POD basis is

small. A second strategy is to employ continuation on the

basis dimension. In this approach, the initial guess for the

case of m basis vectors is chosen to be the solution of the

optimization problem for m−1 basis vectors plus an arbitrary

mth vector. This iterative procedure can be initialized at any

value m ≥ 1 with the POD basis vectors as an initial guess

on the first iteration.

IV. MODEL PROBLEM AND RESULTS

A. Model problem description

Results are presented for a model problem that considers

the two-dimensional time-dependent heat equation. In this

case, the PDE is given by

∂ū

∂t
− k∇2ū = 0 in Ω (31)

ū = ūc on Γ (32)

ū = ū0 in Ω for t = 0 (33)

where ū(x, y, t) is the temperature field defined on the

domain Ω, ūc(x, y) is the boundary control function (which

is assumed to be constant in time) applied on the boundary Γ,

and ū0(x, y) is the given initial temperature field. The output

of interest is the temperature over a specified sub-region of

the domain.

A modification of the finite element formulation from [19]

is used to discretize the problem in space, yielding a dy-

namical system of the form (8)–(10), where uk(t) represents

the spatially discretized temperature field corresponding to

forcing input fk, and gk(t) contains those elements of uk that

lie within the specified region of interest. Figure 1 shows the

specific domain Ω that was used, which is discretized with

triangular elements. Results will be shown for a discretization

containing a total of N = 480 temperature unknowns.

The specified initial condition is u = 0 at t = 0, and

the selected time integration scheme is an implicit Euler

method with a constant time step over the time interval

[0, T ]. The boundary control is applied on Γc = {(0, y) :
0 ≤ y ≤ 3}, i.e., Dirichlet control on the left boundary of

the domain. Neumann boundary conditions are specified on

ΓN = {(3, y) : 1.5 ≤ y ≤ 3} and remaining part of the

boundary, ΓD, is fixed with zero Dirichlet conditions.

Snapshots were generated by performing a time simulation

of the system under different forcing conditions. The forcing

was generated by applying a temperature distribution along

the boundary Γc in Figure 1. For the results presented

here, the forcing functions considered were parameterized

using sinusoidal distributions with successively higher spatial

frequency. Snapshots were generated over S = 5 instances of

the control parameter forcing with T = 20 time instants for

each parameter instance. Using the optimization formulation

(18)–(21), we seek to select the m basis functions that

minimize the error defined by (18) while satisfying the

reduced-order state equations for each control instance. The

basis functions are assumed to be a linear combination of

available snapshots, hence there are mST = 100m design

variables in the optimization problem. The state and adjoint

equations each consist of m uncoupled ODE systems of

dimension ST = 100. An implicit backward Euler scheme is

used to discretize the ODEs (note that the adjoint equations

are marched backward in time). The resulting fully discrete

systems are lower and upper tridiagonal for the state and

adjoint, respectively, and thus can be solved very efficiently.

B. Optimized basis performance

For the first set of results, the output is defined to be

the temperature over a strip of the domain in the region

0.5 < x < 1.0, 0.5 < y < 2.5, yielding an output vector

of size Q = 47. To determine the goal-oriented basis, (18)–

(21) were solved by using (27) to compute analytical gradi-

ents and employing an unconstrained optimization algorithm

that uses a trust-region-based Newton method [20]. Figure

2 shows the resulting objective function values for bases

ranging in size from m = 1 to m = 10. Figure 2 also

shows the evaluation of (22) for the POD bases over this

range of m. It can be seen clearly that the optimized basis

outperforms the POD in all cases, particularly when m is

small.

In order to provide a quantitative metric by which to judge

the performance of the optimized basis, balanced truncation

was applied to this problem. The problem was converted to

standard LTI form by considering each parametric forcing

function as an independent input. Figure 2 shows the evalu-

ation of (22) for truncated balanced models of size m = 1
through m = 10. It can be seen that the optimized basis

provides a substantial improvement over POD when both

are compared to the results of balanced truncation. It is also

important to note that balanced truncation uses both a left

and a right projection basis, and thus has twice as many

degrees of freedom as the goal-oriented optimized basis.

C. Comparison with POD

A significant advantage of the goal-oriented approach is

that the basis can be optimized with respect to a particular

output functional, whereas the POD seeks to minimize the

reconstruction error over all states. Several different output

definitions were considered in order to gain insight to the

optimized basis results.
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Fig. 2. The error (22) versus number of modes for the goal-oriented
optimized basis, the POD basis, and balanced truncation.

If the output considered is to minimize the error of state

prediction over the entire domain, that is, Hk = 1 in (22),

then the goal-oriented approach seeks to minimize the same

error as the POD. However, it is important to note again the

difference in the representation of the term ũj , which for

POD is computed directly from the known solution uj , i.e.

ũj = ΦΦT uj . In this sense the POD is a purely data-based

method that does not account in any way for the underlying

governing equations. In contrast, our method computes ûj

in (22) by requiring the solution to satisfy the governing

equations in the reduced-order space.

Results for this case are shown in the first row of Table I.

Using the POD basis as an initial guess, the optimizer is able

to make almost no improvement in the objective function. As

shown in Table I, the reduction in the error is just 1%. For

different values of S, T and m, the POD basis is found to be

almost optimal with respect to state reconstruction error for

this example. Due to the symmetry properties of the system

(M and K are symmetric matrices), any congruent basis

transformation, such as the POD, is guaranteed to preserve

the stability of the system. Thus it is to be expected that the

POD should perform well on this heat conduction example.

As the results show, the additional error from solution of the

governing equations in the reduced space is not significant

in this case. In more complicated examples where this error

becomes significant, the optimized basis might be expected

to provide an advantage over the POD even in terms of

full state reconstruction. This is particularly true for non-

symmetric systems, such as those representing the Euler

equations, for which the POD basis can routinely produce

unstable reduced-order models.

Table I shows the results for other outputs corresponding

to various specified x−y regions (and thus different weight-

ings H in the objective function). Note that the POD basis

is computed in the standard way and thus is insensitive to

the choice of output functional. The values in the column

Gpod represent the standard POD basis evaluated using the

criterion defined by (22) for each different instance of H
(i.e. the metric Gpod is case-dependent). It can be seen that

by defining an output functional, the goal-oriented basis can

yield substantial improvements in errors over the POD basis.

It should be emphasized that our method does not simply

TABLE I

COMPARISON OF OPTIMIZATION RESULTS. THE OBJECTIVE FUNCTION

GIVEN BY (22) IS EVALUATED FOR THE OPTIMIZED BASIS (Gopt) AND

THE POD BASIS (Gpod).

Min. error over S T m Gopt Gpod

All states 5 20 5 28.9829 29.2762
x = 0.625, y = 0.625 3 20 5 2.9038e-3 0.01066

0.5 < x, y < 1 5 20 5 0.01282 0.1932
0.5 < x, y < 1 5 20 5 0.5555 0.8062

“ignore” states that lie outside of the region of interest, since

ûj is computed by solving the reduced-order equations over

the entire domain. Therefore the basis must represent all
states – but the optimization formulation allows the basis

energy to be focused appropriately to achieve the desired

objective. One might draw conceptual parallels between this

approach and a posteriori error estimates to manage grid

adaptivity.

Figure 3 shows the output errors in the case of an output

functional defined over the region 0.5 < x < 1, 0.5 < y < 1.

Each plot in the figure corresponds to one of the nine grid

points that lie within the region of interest (for clarity, just

four of the points are shown). The first T = 20 snapshots

correspond to the first instance of control forcing, the second

T = 20 correspond to the second instance, and so on. The

figure shows that for almost every snapshot in the ensemble,

the optimized basis results in a more accurate prediction of

the temperature at the point of interest. In many cases, the

error is reduced by almost an order of magnitude.
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Fig. 3. Error in temperature prediction for each snapshot using POD and
optimized basis. The optimized basis was selected so as to minimize the
error over the region 0.5 < x < 1, 0.5 < y < 1. Errors are shown for four
of the nine points contained within this region.

The reduced output errors shown in Figure 3 come at a

cost. Figure 4 shows the norm of the errors computed over

the entire domain for each snapshot. In order to reduce the

errors at the specified points, the optimized basis yields less

accurate predictions for other states. However, it is again

important to note that this trade-off in accuracy is done in

a systematic way using both the governing equations and

the defined output functional. According to the optimization

result, the larger errors observed in other areas of the domain

are compatible with the task of reducing the error in the

region of interest.
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Fig. 4. Norm of the error in temperature prediction over the entire domain
for each snapshot using POD and optimized basis. The optimized basis was
selected so as to minimize the error over the region 0.5 < x < 1, 0.5 <
y < 1.

Figure 5 shows an example solution for one particular

snapshot. The snapshot chosen corresponds to the first time

instant in the third control function (snapshot number 41 in

Figures 3 and 4). The output of interest is the temperature

over the region 0.5 < x < 1, 0.5 < y < 1, indicated by the

bold square in the figure. As can be seen from Figures 3

and 4, this snapshot corresponds to a case where the output

error is substantially reduced by the optimized basis. The

reductions in output error are approximately an order of

magnitude – for example, in the bottom plot in Figure 3 the

error in the output for this snapshot is reduced in magnitude

from -0.0209 to 0.0036. In contrast, the norm of the error

over the domain is substantially increased from 0.4675 to

0.8201. By comparing the plots in Figure 5, this effect can

be clearly seen. The optimized basis result indicates that the

large errors near the control boundary are acceptable (in

fact optimal) if one is concerned only with predicting the

temperature within the indicated region.
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Fig. 5. Reduced-order model temperature prediction for snapshot number
41 using optimized (left) and POD (right) basis. The optimized basis was
selected so as to minimize the error over the region 0.5 < x < 1, 0.5 <
y < 1.

V. CONCLUSIONS

The goal-oriented, model-based optimization approach

presented here provides a general framework for construc-

tion of reduced models, and is particularly applicable for

optimal design, optimal control and inverse problems. The

optimization approach provides significant advantages over

the POD by allowing the projection basis to be targeted to

output functionals, by providing a framework in which to

consider multiple parameter instances, and by incorporating

the reduced-order governing equations as constraints in the

basis derivation.
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