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Abstract— This paper considers linear time-invariant (LTI)
discrete-time systems with saturation and/or dead-zone non-
linearities, and proposes analysis and synthesis methods of
a regional l2 performance and/or a pole placement based
on a quadratic Lyapunov function via a generalized sector
and a polytopic approach. In particular, a new domain of l2
performance is defined by a region of initial states of the system
considering the l2 performance and/or the pole placement. For
analysis, the problems based on the two approaches can be
recast as linear matrix inequality (LMI) optimization ones
respectively, and in the special case of single saturation or
single dead-zone nonlinearity, it is proved that the generalized
sector approach is exactly the same as the polytopic approach.
Similarly, for synthesis, the problem based on the generalized
sector approach can be recast as an LMI optimization prob-
lem where the outputs of the nonlinearities are assumed to
be available for control. Next, the relation is clarified that
the analysis and synthesis conditions can be reduced to the
corresponding conditions for the continuous-time systems as the
sampling period goes to zero. Finally, it is pointed out that our
LMI-based approach is helpful through a numerical example
designing anti-windup control systems.

I. INTRODUCTION

The actuator saturation has been recognized as a very
important nonlinear element that could have a large im-
pact on the control performance, and there is substantial
body of literature on this subject [1]–[8]. Recently, non-
conservative analysis conditions [4]–[6] have been derived
from a quadratic Lyapunov function. These attractive results
are based on the same idea with a new regional sector
bound on the saturation and/or dead-zone nonlinearity: one
is a multiplier (generalized sector) approach [5], [6] and the
other is a polytopic one [4]. The relation between these two
approaches has been clarified in the special case of stability
analysis for the systems [7], however general relations still
remain largely open to be solved.

This paper considers a regional l2 performance analysis
and synthesis for discrete-time systems with saturation and/or
dead-zone nonlinearities based on the two approaches [7].
First, a new domain of l2 performance for the systems
is defined by a set of initial states with guaranteed an l2
performance and a stability performance of a pole placement
simultaneously to make it easy to apply the domain to actual
control design problems, as will be seen as a numerical
example in Subsection IV. C. Note that the domain in this
paper is a general extension of the existing one in [7].
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For analysis, the analysis conditions of the domain can be
recast as linear matrix inequality (LMI) conditions via the
two approaches, respectively. Moreover, we point out that the
conditions of the generalized sector approach are sufficient
ones of the polytopic approach. In particular, the two analysis
conditions are proved to be exactly the same in the case of
single saturation or single dead-zone nonlinearity.

For synthesis, the problem based on the generalized sector
approach can be recast as an LMI optimization problem
where the outputs of the nonlinearities are assumed to be
available for control [6]. Therefore, both a dynamic output
feedback and an anti-windup controller can be simultane-
ously designed by our derived linear matrix inequalities
(LMIs) where the anti-windup control system [1], [3], [6],
[8] achieves a given domain of l2 performance.

Next, this paper also clarifies the consistency of the analy-
sis and/or the synthesis conditions between the discrete-time
and the continuous-time systems where the conditions for the
discrete-time systems can be reduced to the corresponding
continuous-time case as the sampling period goes to zero.

Finally, the validity of our proposed approach is confirmed
by a simple numerical example, and then this paper illustrates
that the synthesis result of a saturating control input achiev-
ing a high control performance can be definitely obtained.

We use the following notation. The set of n × m real
matrices is denoted by IRn×m. For a matrix M , M ′ denotes
the transpose. For a vector x, xi is the ith entry of x.
For vectors x and y, x > y means that xi > yi for
all i, and similarly for x ≥ y. For a symmetric matrix
X , λmax(X) (λmin(X)) denotes the maximum (minimum)
eigenvalue. For a symmetric matrix X , X > 0 (X ≥ 0)
means that X is positive (semi)definite. For a square matrix
Y , He(Y ) := Y + Y ′. For a matrix M , M⊥ ∈ IR(n−r)×n

satisfies r = rank of M , M⊥M = 0 and M⊥M⊥′
> 0.

For a vector x, ‖x‖ means the Euclidean norm of x. For
a sampling period h and a function z ∈ l2, ‖z‖l2 :=
(h

∑∞
k=0 z′(kh)z(kh))1/2. For a sampling period h and a

function z ∈ l2k, ‖z‖l2k
:=

(
h
∑k

τ=0 z′(τh)z(τh)
)1/2

. For

given vectors w1, ..., wI (wi ∈ IRm), a convex hull is defined
by Co {wi : i ∈ [1, I]} :=

{∑I
i=1 αiwi :

∑I
i=1 αi = 1, αi ≥ 0

}
.

Finally, for shift-operator z, we use the “packed” notation

G(z) =:
(

A B
C D

)

for a transfer function G(z) = C(zI − A)−1B + D.
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II. CONTROL SYSTEM WITH DEAD-ZONE
NONLINEARITIES

First of all, let us start with the following generalized plant
G(s) of a linear time-invariant (LTI) continuous-time system
represented by

⎡
⎢⎢⎣

ẋ(t)
z(t)
zp(t)
y(t)

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

A B1 B2 B3

C1 D11 D12 D13

C2 D21 D22 D23

C3 D31 D32 0
0 I 0 0

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

x(t)
w(t)
wp(t)
u(t)

⎤
⎥⎥⎦. (1)

The following G(z) with shift-operator denotes the gener-
alized plant of an LTI discrete-time system given by step
invariant transformation of G(s) in (1) with zero-order-hold
and ideal sampler. This paper considers the feedback control
system in Figure 1 where the “disturbance” signal w is
measurable, i.e., G(z) is represented by

ϕ

G(z)

K(z)

�

�
H(z)

uy

�
��

�

w

wpzp

z

Fig. 1. Feedback control system with dead-zone nonlinearities.

⎡
⎢⎢⎣

x((k + 1)h)
z(kh)
zp(kh)
y(kh)

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

A B1 B2 B3

C1 D11 D12 D13

C2 D21 D22 D23

C3 D31 D32 0
0 I 0 0

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

x(kh)
w(kh)
wp(kh)
z(kh)

⎤
⎥⎥⎦,

w(kh) = ϕ(z(kh)) (2)

where x(kh) ∈ IRnp , u(kh) ∈ IRp, y(kh) ∈ IRq, wp(kh) ∈
IRk, zp(kh) ∈ IRl, w(kh) ∈ IRm and z(kh) ∈ IRm,
respectively, denote the discrete-time state, the discrete-
time control input, the discrete-time measured output, the
discrete-time exogenous input and output for evaluation of
l2 performance, and the discrete-time input and output of
ϕ : IRm → IRm are dead-zone nonlinearities (equivalently,
saturation nonlinearities φ : IRm → IRm), i.e.

w = ϕ (z)

⇔ wi = ϕi (zi) =

⎧⎨
⎩

zi + σi ( zi <−σi )
0 ( |zi| ≤ σi )

zi − σi ( zi > σi )
(3)

where positive scalars σi > 0 (i = 1, · · · , m).
Note that the following relation with the discrete-time

system (2) and the continuous-time system (1) on step
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�
�

�
�
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Fig. 2. Dead-zone nonlinearity ϕi(zi).

invariant transformation:

A = eAh, limh→0 A = I,

Bj =
∫ h

0
eAτdτBj, limh→0 Bj = 0,

Ci = Ci, Dij = Dij,
(i, j = 1, 2, 3)

(4)

is well known where the discrete-time system (2) with the
shift-operator does not become equal to the continuous-time
system (1) as the sampling period h goes to 0. However,
the relation between the discrete-time system (2) and the
continuous-time system (1) holds as follows:

limh→0(A − I)/h = A, limh→0 Bj/h = Bj,
(j = 1, 2, 3). (5)

One objective of this paper is to clarify whether analysis
and synthesis conditions for the discrete-time system derived
from below can be reduced to the corresponding conditions
[6] for the continuous-time system as h → 0.

For given scalars θ ≥ 0 and γ > 0,

W(θ, γ) :=
{

wp : ‖wp‖2
l2k

≤ 1
γ2

‖zp‖2
l2k

+ θ2

}
(6)

is defined. In this paper, consider the discrete-time exogenous
input wp with the bounded l2 norm in W(θ, γ). For this con-
trolled object, consider a dynamic output feedback controller
u = K(z)y with the discrete-time state xc(kh) ∈ IRnc , i.e.[

xc((k + 1)h)
u(kh)

]
=

[
Ac Bc

Cc Dc

] [
xc(kh)
y(kh)

]
. (7)

Denote a discrete-time state vector of the closed-loop system
by x(kh) ∈ IRn, i.e. x′ :=

[
x′ x′

c

]
and n := np +nc. Let

the closed-loop system H(z) in Figure 1 be described by⎡
⎣ x((k + 1)h)

z(kh)
zp(kh)

⎤
⎦ =

⎡
⎣ A B1 B2

C1 0 0
C2 D21 D22

⎤
⎦
⎡
⎣ x(kh)

w(k)
wp(kh)

⎤
⎦

=:
[

A B
C D

]⎡
⎣ x(kh)

w(kh)
wp(kh)

⎤
⎦ . (8)

For the use of the the generalized sector condition [4]–[6],
D11 = 0, D12 = 0 are assumed. This paper analyzes and
synthesizes the above control system.
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III. DOMAIN OF l2 PERFORMANCE

A. Preliminaries

In this subsection, we introduce a pole placement problem
for LTI discrete-time systems. The objective here is to extend
the existing domain of L2 performance [6] for continuous-
time systems to a domain of l2 performance for discrete-
time systems, and to clarify the relation between the pole
placement and an exponential stability performance.

We consider the following LTI discrete-time system:

x((k + 1)h) = Ax(kh), k = 0, 1, 2, . . . . (9)

where x(kh) ∈ IRn and h denote the state and the sampling
period. As shown in Figure 3, we consider the problem such
that eigenvalues λ(A) of the system (9) are restricted by a
circle area with the main coordinate δ and the radius ν. We
introduce the following lemma:

Fig. 3. Pole placement area.

Lemma 1: Consider the system defined in (9). Let scalars
|δ| < 1 and 0 < ν ≤ 1 − |δ| be given. All eigenvalues of A
are elements of the set

Λ :=

{
λ ∈ Cl :

[
λ̄
1

]′ [ −1 δ
δ ν2 − δ2

] [
λ
1

]
> 0

}

if and only if there exists a real matrix P > 0 satisfying

He

[
hP/2 (A− δI)P

0 ν2P/2h

]
> 0. (10)

Moreover, if there exists a real matrix P > 0 in (10), then
the initial state x(0) of system (9) satisfies

‖x(kh)‖ ≤
√

λmax(P)
λmin(P)

‖x(0)‖(|δ| + ν)k, k > 0. (11)

Proof: The proof is omitted for the convenience of
space.

In the next subsection, we define the domain of l2 per-
formance related to the exponential stability performance by
using Lemma 1, and derive sufficient conditions for analysis
and synthesis of the domain of l2 performance.

B. Analysis

For a given positive definite matrix P > 0 and a given
scalar η ≥ 0, an ellipsoid is defined by

EP(η) := {x ∈ IRn : x′P−1x ≤ η}. (12)

For the control system with the dead-zone (equivalently
saturation) nonlinearities in previous section, we convert the
domain of L2 performance for continuous-time systems [6]
into a domain of l2 performance for discrete-time systems
defined by the following in consideration of the exponential
stability performance also:

Definition 1: Given a positive definite matrix P > 0 and
scalars α ≥ 0, β ≥ 0, γ > 0, |δ| < 1 and 0 < ν ≤ 1−|δ|. A
domain of l2 performance with level (α, β, γ, δ, ν) is defined
by an initial state space region EP(α2) such that any state
trajectory starting from a point in the region EP(α2) does not
leave a region EP(α2 + β2) for all time and l2 performance,
i.e.

‖zp‖l2k
≤ γ(‖wp‖l2k

+ α), ∀k > 0 (13)

is satisfied whenever wp ∈ W(β, γ). In the special case
where wp = 0, the exponential stability performance, i.e.

‖x(kh)‖ ≤
√

λmax(P)
λmin(P)

‖x(0)‖(|δ| + ν)k, ∀k > 0 (14)

is satisfied whenever x(0) ∈ EP(α2 + β2). For notational
simplicity, we may just say “domain of l2 performance with
level (α, β, γ, δ, ν)” by removing “with level (α, β, γ, δ, ν)”
if it can be inferred from the context.

We introduce the generalized sector approach [5], [6]
and the polytopic approach [4]. These approaches based
on quadratic Lyapunov functions enable us to estimate the
domain of l2 performance. In the special case of stability
analysis for systems with single saturation, the polytopic
approach derives a necessary and sufficient condition such
that an ellipsoid becomes a domain of attraction [4]. We have
clarified the relation between the generalized sector approach
and the polytopic approach in the special case of stability
analysis [7]. However, the general case of l2 performance
remains an open problem. Therefore, we analyze the relation
between the generalized sector approach and the polytopic
approach for the l2 performance problem, and then we solve
this open problem.

We derive sufficient conditions (conservatively) character-
ized by using the generalized sector approach [5], [6] and
the polytopic approach [4] as follows such that the region of
ellipsoid EP(α2) defined by (12) becomes the domain of l2
performance for the system (2), (7) and (8). Below, Ci

1 and
Ri denote the ith rows of C1 and R.

Fig. 4. Generalized sector bound for the saturation nonlinearity φi(zi).
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First, we introduce the generalized sector approach as
follows. For a given matrix N ∈ IRm×n, we define a local
region

L(N ) :=
{
x ∈ IRn : ‖N ix‖ ≤ σi, i ∈ [1,m]

}
.

Proposition 1: [5], [6] Let matrices C1 and R, and a real
nonsingular matrix P be given. Suppose that ‖RiP−1x‖ ≤
σi for all i ∈ [1,m], i.e. x ∈ L(RP−1). Then,

ϕi(Ci
1x)

′(ϕi(Ci
1x) − (Ci

1 − RiP−1)x) ≤ 0.

Second, we introduce the polytopic approach as follows.
Let V be the set of m×m diagonal matrices whose diagonal
elements are either 1 or 0. For example, if m = 2, then,

V =
{[

0 0
0 0

]
,

[
0 0
0 1

]
,

[
1 0
0 0

]
,

[
1 0
0 1

]}
.

There are 2m elements in V . Suppose that an each element
of V is labeled as Ej , j ∈ [1, 2m]. Then,

V = {Ej : j ∈ [1, 2m]} .

Denote E−
j := I −Ej . Clearly, E−

j is also an element of V
if Ej ∈ V . Given two matrices C, H ∈ IRm×n,{

EjC + E−
j H : j ∈ [1, 2m]

}
is the set of matrices formed by choosing some rows from
C and the rest from H .

Proposition 2: [4] Let matrices C1 and R, and a real
nonsingular matrix P be given. Suppose that ‖RiP−1x‖ ≤
σi for all i ∈ [1,m], i.e. x ∈ L(RP−1). Then,

ϕ(C1x) ∈ Co
{
E−

j (C1 − RP−1)x : j ∈ [1, 2m]
}

.

First, the following theorem is obtained by the generalized
sector approach in Proposition 1.

Theorem 1: Consider the feedback connection of H(z) :=
C(zI −A)−1B + D and dead-zone nonlinearities ϕ (σi > 0
for all i = 1, . . . ,m) defined in (3) and (8). Let a real matrix
P > 0, and scalars α ≥ 0, β ≥ 0, γ > 0, |δ| < 1 and
0 < ν ≤ 1 − |δ| be given. Then EP(α2) is a domain of l2
performance with level (α, β, γ, δ, ν) if there exist a matrix
R and a diagonal matrix S such that

He

⎡
⎢⎢⎢⎢⎣

hP/2 (A− δI)P B1S B2 0
0 ν2P/2h 0 0 0
0 R − C1P S 0 0
0 0 0 I/2 0
0 C2P D21S D22 γ2I/2

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ΠG

> 0,

(15)[
P ρRi′

ρRi σ2
i

]
≥ 0, ρ :=

√
α2 + β2

∀i = 1, · · · ,m. (16)

Proof: The proof is omitted for the convenience of
space.

Next, the following theorem is obtained by the polytopic
approach in Proposition 2.

Theorem 2: Consider the feedback connection of H(z) :=
C(zI −A)−1B + D and dead-zone nonlinearities ϕ (σi > 0
for all i = 1, . . . ,m) defined in (3) and (8). Let a real matrix
P > 0, and scalars α ≥ 0, β ≥ 0, γ > 0, |δ| < 1 and
0 < ν ≤ 1 − |δ| be given. Then EP(α2) is a domain of l2
performance with level (α, β, γ, δ, ν) if there exist a matrix
R such that

He

⎡
⎢⎢⎣

hP/2 (A− δI)P + B1W B2 0
0 ν2P/2h 0 0
0 0 I/2 0
0 C2P + D21W D22 γ2I/2

⎤
⎥⎥⎦

︸ ︷︷ ︸
ΠP

> 0,

(17)[
P ρRi′

ρRi σ2
i

]
≥ 0, W := E−

j (C1P − R),

ρ :=
√

α2 + β2 ∀i = 1, . . . ,m ∀j ∈ [1, 2m]. (18)

Proof: The proof is omitted for the convenience of
space.

C. Main result of analysis

The following is the main result of analysis that is the
inclusion relation between Theorem 1 (the generalized sector
approach) and Theorem 2 (the polytopic approach).

Theorem 3: Given a symmetric matrix P . If the statement
in Theorem 1 holds, then the statement in Theorem 2 holds.
Thus, the domain of l2 performance in Theorem 1 is included
in that in Theorem 2. Moreover, in the special case of the
system (8) with single saturation nonlinearity: m = 1, the
statement in Theorem 1 is equivalent to the statement in
Theorem 2. Thus, the domain of l2 performance in Theorem
1 is exactly the same as that in Theorem 2.

Proof: (Theorem 1 ⇒ Theorem 2) Fix P and suppose
that the statement in Theorem 1 holds. The following rela-
tion:

He TjΠGT ′
j > 0, Tj :=

⎡
⎢⎢⎣

I 0 −B1E
−
j 0 0

0 I 0 0 0
0 0 0 I 0
0 0 −D21E

−
j 0 I

⎤
⎥⎥⎦

⇔ He ΠP > 0 ∀j ∈ [1, 2m]

holds where EjSE−
j = 0 (this is trivial from the diagonal

matrix S and the definition of Ej and E−
j ). Hence, we see

that the statement in Theorem 2 holds for the variable R and
S.

(Theorem 2 ⇒ Theorem 1) Here we consider the special
case of m = 1, fix P and suppose that the statement in
Theorem 2 (m = 1) holds as follows:
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(Congruence transformation)

∃R s.t. (18) and

He

⎡
⎢⎢⎣

P−1/2h V P−1B2/h 0
0 ν2P−1/2h 0 0
0 0 I/2 0
0 C2 + D21W D22 γ2I/2

⎤
⎥⎥⎦ > 0,

V := P−1(A− δI + B1W)/h, W := α(C1 − RP−1)
∀α s.t. 0 ≤ α ≤ 1.

⇔ (Schur complement of (1,1) and (4,4) brock matrices)

∃R s.t. (18) and TΩT ′ > 0,

Ω := −

⎡
⎣ A′ − δI

B′
1

B′
2

⎤
⎦P−1/h

⎡
⎣ A′ − δI

B′
1

B′
2

⎤
⎦′

+

⎡
⎣ I

0
0

⎤
⎦ ν2P−1/h

⎡
⎣ I

0
0

⎤
⎦′

+

⎡
⎣ 0

0
I

⎤
⎦
⎡
⎣ 0

0
I

⎤
⎦′

−

⎡
⎣ C′

2

D′
21

D′
22

⎤
⎦ I/γ2

⎡
⎣ C′

2

D′
21

D′
22

⎤
⎦′

,

T :=
[

I (C′
1 − P−1R′)α 0

0 0 I

]
∀α s.t. 0 ≤ α ≤ 1.

⇔ (Finsler’s theorem)

∃µ > 0, R s.t. (18) and

Ω − H
[
−α 1

]′ (−µ)
[
−α 1

]︸ ︷︷ ︸
Θ

H ′ > 0,

H :=
[

C1 − RP−1 0 0
0 I 0

]′
∀α s.t. 0 ≤ α ≤ 1.

⇒
∃Θ, R s.t. (18) and Ω − HΘH ′ > 0,[

1 α
]
Θ

[
1 α

]′ ≥ 0 ∀α s.t. 0 ≤ α ≤ 1.

⇔ (Loss-less S-procedure)

∃T > 0, R s.t. (18) and

Ω − H

[
0 T
T −2T

]
H ′ > 0.

⇔ (Schur complement of P−1/h and I/γ2 terms)

∃S := T−1 > 0, R s.t. (18) and

He

⎡
⎢⎢⎢⎢⎣

P−1/2h P−1(A− δI)/h P−1B1/h
0 ν2P−1/2h 0
0 S−1(RP−1 − C1) S−1

0 0 0
0 C2 D21

P−1B2/h 0
0 0
0 0

I/2 0
D22 γ2I/2

⎤
⎥⎥⎥⎥⎦ > 0.

From a congruence transformation, we see that the statement
in Theorem 1 via the generalized sector approach (m = 1)
holds for the variables S and R.

Theorem 3 points out that the analysis based on the gener-
alized sector approach is a sufficient condition of that based
on the polytopic approach in the case of multi-dead-zone
(equivalently, saturation) nonlinearities, and an equivalent
condition of that based on the polytopic approach in the case
of single dead-zone (equivalently, saturation) nonlinearity:
m = 1. Note that in the special case of m = 1, h → 0,
β = 0, γ → ∞, δ = 0 and ν = 1, Theorem 1 based on
the generalized sector approach becomes a necessary and
sufficient condition of stability analysis on the domain of
attraction with a quadratic Lyapunov function [4].

Next, we shall indicate the relation between the analysis
condition in Theorem 1 and that in [6]. Below, the analysis
condition with shift-operator in Theorem 1 can be reduced
to the corresponding analysis condition for the continuous-
time system in [6] as h → 0. We assume that δ := 0 and
ν := e−εh to make the transformation easy.

HeTd2c

⎡
⎢⎢⎢⎢⎣

−hP/2 −(A− δI)P −B1S −B2 0
0 −ν2P/2h 0 0 0
0 −R + C1P −S 0 0
0 0 0 −I/2 0
0 −C2P −D21S −D22 −γ2I/2

⎤
⎥⎥⎥⎥⎦T ′

d2c < 0,

Td2c :=

⎡
⎢⎢⎢⎢⎣

−I/h I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 −I

−hI 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⇔

He

⎡
⎢⎢⎢⎢⎣

(
(A− I)/h + (1 − ν2I)/2h

)
P B1S/h B2/h 0 0

C1P − R −S 0 0 0
0 0 −I/2 0 0

C2P D21S D12 −γ2I/2 0
h(A− I)P hB1S hB2 0 −h3P/2

⎤
⎥⎥⎥⎥⎦ < 0.

(19)

Here H(z) denotes the closed loop system by the step
invariant transformation of H(s) represented by⎡

⎣ ẋ(t)
z(t)
zp(t)

⎤
⎦ =

⎡
⎣ A B1 B2

C1 0 0
C2 D21 D22

⎤
⎦
⎡
⎣ x(t)

w(t)
wp(t)

⎤
⎦ .

It is clarified that the analysis conditions (16) and (19) can
be reduced to the analysis conditions [6] for the continuous-
time system as h → 0.

The control system (2) in the section II is regard as a
linear system within a region |zi| ≤ σi (σi = 1, · · · ,m)
from the definition of (3). Hence we can get “linear” analysis
conditions for the domain of l2 performance based on the
linear analysis [2], [3], [8], within the linear region, by
choosing R = C1P and S → 0 in Theorem 1. Clearly,
Theorem 1 includes the linear analysis conditions as the
above special case. Moreover, Theorem 1 includes the circle
analysis [2], [3], [8] as a special case where R = KC1

(K: a free parameter of diagonal matrix) [5], [6]. Thus,
the achievable performance level given by Theorem 1 is no
worse than that given by the linear analysis and the circle
criterion due to the freedom in R and S.
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D. Synthesis

In this subsection, we characterize the domain of l2 perfor-
mance achievable by the class of dynamic output feedback
controllers K(z) and we use the analysis conditions given
in Theorem 1. For synthesis problems, we characterize a
restricted domain of l2 performance [?], [3], [6] which is
the domain of l2 performance to be the set of initial states
x(0) such that xc(0) = 0. Clearly, the restricted domain of
l2 performance is a subset of the domain of l2 performance;
For a given matrix P ∈ IRn×n, if EP(α2) in (12) is a domain
of l2performance for the closed loop system, then

EX
0 (α2) :=

{[
x
0

]
∈ IRn : x′Xx ≤ α2, x ∈ IRnp

}
(20)

is a restricted domain of l2 performance where X ∈ IRnp×np

is the upper left block matrix of P . Conversely, for a given
matrix X ∈ IRnp×np , the above EX

0 (α2) of (20) is a
restricted domain of l2 performance if there exists a matrix
P ∈ IRn×n such that EP is a domain of l2 performance and

P =
[

X ∗
∗ ∗

]
holds for some block matrices *.

The synthesis conditions for the w-measurement control
synthesis problem [3], [6], [8] can be reduced to LMIs
where the output w of dead-zone (saturation) nonlinearities
is measurable.

Theorem 4: Consider the closed-loop system (2), dead-
zone nonlinearities ϕ (σi > 0 for all i = 1, . . . ,m) defined
in (3) and a given controller (7). Let a real matrix X > 0,
and scalars α ≥ 0, β ≥ 0, γ > 0, |δ| < 1 and 0 < ν ≤
1−|δ| be given. Define the set EX

0 (α2) by (20). Then EX
0 (α2)

is an achievable restricted domain of l2 performance with
level (α, β, γ, ε, δ, ν) if there exist a symmetric matrix Y , a
diagonal matrix S, and matrices F , J , L, M , R1 and R2

satisfying[
D11S + D13J D12 + D13MD32

]
= 0, (21)

He

⎡
⎢⎢⎢⎢⎣

hX/2 0 H11 − δX H14 0
hI hY/2 H21 − δI H24 0
0 0 ν2X/2h 0 0
0 0 0 I/2 0
0 0 H41 H44 γ2I/2

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
X

> 0,

(22)

He

⎡
⎢⎢⎢⎢⎢⎢⎣

hY/2 H21 − δI H22 − δY H23 H24 0
0 ν2X/2h 0 0 0 0
0 ν2I/h ν2Y/2h 0 0 0
0 R1 − H31 R2 − H32 S 0 0
0 0 0 0 I/2 0
0 H41 H42 H43 H44 γ2I/2

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Y

> 0,

(23)

⎡
⎣ X I ρRi

1
′

I Y ρRi
2
′

ρRi
1 ρRi

2 σi
2

⎤
⎦ ≥ 0,

∀i = 1, ...,m,

ρ :=
√

α2 + β2,
(24)

H11 := XA + LC3, H14 := XB2 + LD32,
H21 := A + B3MC3, H22 := AY + B3F,
H23 := B1S + B3J, H24 := B2 + B3MD32,
H31 := C1 + D13MC3, H32 := C1Y + D13F,
H41 := C2 + D23MC3, H42 := C2Y + D23F,
H43 := D21S + D23J, H44 := D22 + D23MD32,

where Ri
1 and Ri

2 are the ith rows of R1 and R2, respec-
tively.

Proof: The proof is omitted for the convenience of
space.

Next, we shall indicate the relation between the synthesis
conditions (22) and (23) in Theorem 3 and those in [6]. Be-
low, the synthesis conditions with shift-operator in Theorem
3 can be reduced to the corresponding synthesis conditions
for the continuous-time system in [6] as h → 0. We assume
that δ := 0 and ν := e−εh to make the transformation easy.

He T1(−X)T ′
1 < 0, He T2(−Y)T ′

2 < 0,

T1 :=

⎡
⎢⎢⎢⎢⎣

−I/h 0 I 0 0
0 0 0 I 0
0 0 0 0 −I

−hI 0 0 0 0
0 −hI 0 0 0

⎤
⎥⎥⎥⎥⎦, T2 :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 hI 0 0 0 0
−I/h 0 I 0 0 0

0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 −I

−hI 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⇔

He

⎡
⎢⎢⎢⎢⎣

(H11 − X)/h + (1 − ν2)X/2h H14/h 0 0 0
0 −I/2 0 0 0

H41 H44 −γ2I/2 0 0
h(H11 − X) hH14 0 −h3X/2 0
h(H21 − I) hH24 0 −h3I −h3Y/2

⎤
⎥⎥⎥⎥⎦ < 0,

(25)

He

⎡
⎢⎢⎢⎢⎢⎢⎣

−hν2X/2 0 0 0 0 0
H21 − ν2I (H22 − Y )/h + (1 − ν2)Y/2h H23/h H24/h 0 0

h(H31 −R1) H32 −R2 −S 0 0 0
0 0 0 −I/2 0 0

hH41 H42 H43 H44 −γ2I/2 0
h2H21 h(H22 − Y ) hH23 hH24 0 −h3Y/2

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0. (26)

It is clarified that the synthesis conditions (24), (25) and (26)
can be reduced to the synthesis conditions for the continuous-
time system [6] as h → 0.

• Synthesis problem maximizing a rejectable l2 distur-
bance level β [3], [8]

Given a positive definite matrix X0 > 0 and scalars α ≥ 0,
β ≥ 0, γ > 0, |δ| < 1, 0 < ν ≤ 1 − |δ|. EX

0 (α2) is
a restricted domain of l2 performance. It is desired to find
β that gives the “maximum” rejectable l2 disturbance level.
First, for these given X0 > 0 and α ≥ 0, a set of initial state
vectors is defined by

EX0
0 (α2) :=

{[
x
0

]
∈ IRn : x′X0x ≤ α2, x ∈ IRnp

}
. (27)

Since ρ > 0, an appropriate congruent transformation leads
to

(24) ⇔

⎡
⎣ X I Ri

1
′

I Y Ri
2
′

Ri
1 Ri

2 σi
2/ρ2

⎤
⎦ ≥ 0, ∀i = 1, ...,m. (28)
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Then, because of EX0
0 (α2) ⊆ EX

0 (α2), we have the following
optimization problem:

min
X,Y,F,J,L,M,R1,R2,S,1/ρ2

1/ρ2

subject to X ≤ X0, (21) − (23), (28)

where S is restricted to be diagonal. We can calculate β =√
ρ2 − α2 by using the solution of the above optimization

problem, while there exists no solution if ρ2 < α2 holds.
Here we propose an algorithm for determining controller

parameters which achieve the performance levels, after solv-
ing the optimization problems, where we can use the solu-
tions X , Y , F , J , L, M , R1, R2, S and β.

Using the projection lemma, we can see that the conditions
(22) and (23) are equivalent to

He

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

hX/2 0 H11 − δX Q − δI H13 H14 0
hI hY/2 H21 − δI H22 − δY H23 H24 0
0 0 ν2X/2h 0 0 0 0
0 0 ν2I/h ν2Y/2h 0 0 0
0 0 R1 − H31 R2 − H32 S 0 0
0 0 0 0 0 I/2 0
0 0 H41 H42 H43 H44 γ2I/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0, (29)

H13 := (XB1 + LD31 + U)S

where we have two additional variables Q and U . Then,
using these solutions Q, U of (29) and

W = JS−1 − MD31, (30)

state space matrices of the controller K(z) in (7) are given
by [

Ac Bc

Cc Dc

]
=

[
X − Y −1 XB3

0 I

]−1

×
[

Q − XAY L U
F M W

]⎡
⎣ −Y 0 0

C3Y I 0
0 0 I

⎤
⎦−1

.

IV. RESULT FOR CONTROL INPUT SATURATION

A. Problem Formulation

Here we consider a control system synthesis problem for
the special case where the nonlinearities are

• φ := I − ϕ
• in the control input ports.

The nonlinearities φ in Figure 4 are saturation functions.
Hence, this problem formulation is important due to a
saturating control system synthesis problem. Below, consider
the control system synthesis problem taking into account this
φ in Figure 5. From the reference [3], we can use the anti-

K(z)

�

� �

�

�
�
� �

�

� �zpwp

y

w
z u y

+
−

G(z)
φ

Fig. 5. Anti-windup control system.

windup controller [1], [3], [6], [8] in Figure 5 without loss
of generality.

Consider the LTI generalized plant G(z) with the
m−control input represented by the following state space
realization:⎡
⎣ x((k + 1)h)

zp(kh)
y(kh)

⎤
⎦=

⎡
⎣ A B1 B2

C1 D11 D12

C2 D21 0

⎤
⎦
⎡
⎣ x(kh)

wp(kh)
u(kh)

⎤
⎦, (31)

where x(kh) ∈ IRnp , u(kh) ∈ IRp, y(kh) ∈ IRq, wp(kh) ∈
IRk and zp(kh) ∈ IRl, respectively, denote the state, the
control input, the measured output, the exogenous input and
output for evaluation of the l2 performance.

In this case, we have the closed-loop system shown in
Figure 1 as the following state space realization:⎡
⎢⎢⎢⎢⎣

x((k + 1)h)
z(kh)
zp(kh)
y(kh)
w(kh)

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

A −B2 B1 B2

0 0 0 I
C1 −D12 D11 D12

C2 0 D21 0
0 I 0 0

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

x(kh)
w(kh)
wp(kh)
z(kh)

⎤
⎥⎥⎦,

w = ϕ(z), (32)

K(z) =
(

Ac Bc1 Bc2

Cc ND⊥
21 0

)
(33)

where N is an arbitrary variable matrix of free parameter.

B. Solvability Condition

The following corollary is derived from Theorem 3.
Corollary 1: Consider the closed-loop system (8) with

a given generalized plant (32), dead-zone nonlinearities ϕ
(σi > 0 for all i = 1, . . . ,m) defined in (3) and a given
controller (33). Let a real matrix X > 0, and scalars
α ≥ 0, β ≥ 0, γ > 0, |δ| < 1 and 0 < ν ≤ 1 − |δ|
be given. Define the set EX

0 (α2) by (20). Then EX
0 (α2)

is an achievable restricted domain of l2 performance with
level (α, β, γ, ε, δ, ν) if there exist a symmetric matrix Y ,
a diagonal matrix S, and matrices E, F , N , R1 and R2

satisfying

He

⎡
⎢⎢⎢⎢⎣

hX/2 0 XA + EC2 − δX XB1 + ED21 0
hI hY/2 A + B2ND⊥

21C2 − δI B1 0
0 0 ν2X/2h 0 0
0 0 0 I/2 0
0 0 C1 + D12ND⊥

21C2 D11 γ2I/2

⎤
⎥⎥⎥⎥⎦ > 0,

(34)

He

⎡
⎢⎢⎢⎢⎢⎢⎣

hY/2 A + B2ND⊥
21C2 − δI AY + B2F − δY −B2S B1 0

0 ν2X/2h 0 0 0 0
0 ν2I/h ν2Y/2h 0 0 0
0 R1 − ND⊥

21C2 R2 − F S 0 0
0 0 0 0 I/2 0
0 C1 + D12ND⊥

21C2 C1Y + D12F −D11S D11 γ2I/2

⎤
⎥⎥⎥⎥⎥⎥⎦ > 0,

(35)⎡
⎣ X I ρRi

1
′

I Y ρRi
2
′

ρRi
1 ρRi

2 σi
2

⎤
⎦ ≥ 0,

∀i = 1, ...,m,

ρ :=
√

α2 + β2
(36)

where Ri
1 and Ri

2 are the ith rows of R1 and R2, respec-
tively.

For example, in order to find the maximal rejectable l2
disturbance level β characterized in Corollary 1, we may
want to minimize 1/ρ2 subject to constrains X ≤ X0, (34),
(35), (36) over the variables X , Y , E, F , N , R1, R2, S and
1/ρ2. Note that this feasible set is convex.
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C. Numerical Example

K(z) φ� P (z)� ��

�

�

��

��
��

+
–

+–
z u ỹ = zp

r = wp

Fig. 6. An example of anti-windup control system.

Here we consider the example of anti-windup control
system in Figure 6 with a discrete-time plant P (z) corre-
sponding to a continuous-time plant 10/s(s + 1), σ = 1,
α = 0, γ = 1.05, ν = e−0.11h in [6]. This system is
represented by (31) in Figure 5 with⎡
⎣ A B1 B2

C1 D11 D12

C2 D21 0

⎤
⎦ =

⎡
⎢⎢⎣

1 1 − e−h 0 e−h + h − 1
0 e−h 0 1 − e−h

10 0 0 0
−10 0 1 0

⎤
⎥⎥⎦.

The level of a rejectable l2 performance: β is maximized
by using Corollary 1. As a result, the maximum β approaches
the maximum β in the case of continuous-time as h → 0. In

TABLE I

MAXIMUM β FOR EACH h VS. CONTINUOUS-TIME

sampling period h disturbance level β

1.0 × 10−2 1.1199
1.0 × 10−3 1.2001
1.0 × 10−4 1.2083
1.0 × 10−5 1.2091
continuous 1.2092

the case of h = 0.01, β = 1.1199, the optimal anti-windup
controller

K(z) =
[

1.127z−1.115
z2−0.9509z+5.596×10−4

0.03917z+5.596×10−4

z2−0.9509z+5.596×10−4

]
(37)

and the following responses of the system in Figure 6 are
obtained.

0 5 10 15 20
0

2

4

6

8

time kh

||w
p||2 l 2k

  a
nd

  |
|z

p||2 l 2k
 /γ

2 +
β2

Fig. 7. A bound for ‖wp‖l2k
.
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Fig. 8. r(kh) and ỹ(kh) vs. kh.

Incidentally, we obtain the synthesis result: β = 0.3212 for
h = 0.01 which is maximized by the linear analysis similar
to the reference [2], [3], [8]. Therefore, it is confirmed that
the result derived from the proposed method in this paper is
better than that from the linear analysis. Note that we pro-
pose the framework of LMI-based l2 performance analysis
and synthesis for LTI control systems with saturation/dead-
zone nonlinearities where the anti-windup compensator is
definitely helpful.

V. CONCLUSION

This paper has defined a new domain of l2 performance
considering a pole placement for discrete-time control sys-
tems with saturation and/or dead-zone nonlinearities. For
analysis, the analysis conditions of the domain can be
recast as LMI conditions via the generalized sector and
the polytopic approach, respectively. Moreover, we have
pointed out that the conditions of the generalized sector
approach are sufficient ones of the polytopic approach. In
particular, the two analysis conditions have been proved
to be exactly the same in the case of single saturation or
single dead-zone nonlinearity. Similarly, for synthesis, the
w-measurement control synthesis condition of the domain
can be recast as an LMI condition via the generalized sector
approach. Therefore, our results indicate that the special
synthesis condition without considering the l2 performance
and the pole placement becomes a necessary and sufficient
condition in the case of a stabilizing synthesis problem with
saturating control based on a quadratic Lyapunov function.
Next, the paper has clarified the consistency of the analysis
and/or the synthesis conditions between the discrete-time and
the continuous-time systems where the conditions for the
discrete-time systems can be reduced to the corresponding
continuous-time case as the sampling period goes to zero.
Finally, it has been confirmed through a numerical example
that the domain of l2 performance is helpful designing anti-
windup control systems.
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