
On Stability of the Pontryagin Maximum Principle with respect to Time Discretization

Boris S. Mordukhovich and Ilya Shvartsman

Abstract— The paper deals with optimal control problems
for dynamic systems governed by a parametric family of
discrete approximations of control systems with continuous
time, wherein the discretization step tends to zero. Discrete
approximations play an important role in both qualitative
and numerical aspects of optimal control and occupy an in-
termediate position between discrete-time and continuous-time
control systems. The central result in optimal control of discrete
approximations is the Approximate Maximum Principle (AMP),
which is justified for smooth control problems with endpoint
constraints under certain assumptions without imposing any
convexity, in contrast to discrete systems with a fixed step. We
show that these assumptions are essential for the validity of the
AMP, and that the AMP does not hold in its expected (lower)
subdifferential form for nonsmooth problems. Moreover, a new
upper subdifferential form of the AMP is established for both
ordinary and time-delay control systems. This solves a long-
standing question about the possibility to extend the AMP to
nonsmooth control problems.

I. INTRODUCTION AND PRELIMINARIES

This paper is devoted to discrete approximations of

continuous-time control systems that, viewed as a parametric
process with a decreasing discretization step, occupy an

intermediate position between control systems with discrete

and continuous times. As the basic model for our study, we

consider discrete approximations of the following Mayer-

type optimal control problem governed by ordinary differ-

ential equations with endpoint constraints:

(P )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize J(x, u) := ϕ0(x(t1))
subject to

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [t0, t1],
x(t0) = x0 ∈ IRn,
u(t) ∈ U a.e. t ∈ [t0, t1],
ϕi(x(t1)) ≤ 0, i = 1, . . . , m,
ϕi(x(t1)) = 0, i = m + 1, . . . , m + r,

over measurable controls u(·) and absolutely continuous

trajectories x(·) on the fixed time interval T := [t0, t1]. It is

well known that many other control problems (of Lagrange

and Bolza types, with integral constraints, on variable time

intervals, etc.) can be reduced to the form of (P ). The results

of this paper can be extended to control problems with

non-fixed initial vector x(t0) as well as to problems with

continuously time-dependent control constraint U = U(t).
In our study of the continuous-time problem (P), we use an

approach of approximating the derivative ẋ(t) by the finite-
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difference ẋ(t) ≈ (x(t + h) − x(t))/h as h → 0. Allow-

ing also perturbations of the endpoint constraints (which

is very essential for variational stability), problem (P ) is

replaced in this way by the following family of discrete-time

problems (PN ) with discretization step hN = (t1 − t0)/N
depending on the natural parameter N = 1, 2, . . .:
(PN )⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize J(xN , uN ) := ϕ0(xN (t1))
subject to

xN (t + hN ) = xN (t) + hNf(t, xN (t), uN (t)),
xN (t0) = x0 ∈ IRn,
uN (t) ∈ U, t ∈ TN :=

{
t0, t0 + hN , . . . , t1 − hN

}
,

ϕi(xN (t1)) ≤ γiN , i = 1, . . . , m,
|ϕi(xN (t1))| ≤ δiN , i = m + 1, . . . , m + r,

hN :=
t1 − t0

N
, N ∈ IN :=

{
1, 2, . . .

}
,

where γiN → 0 and δiN ↓ 0 as N → ∞ for all i. For each

fixed N ∈ IN problem (PN ) is finite-dimensional and seems

to be simpler than the continuous-time problem (P ). Indeed,

applying well-developed methods of finite-dimensional vari-

ational analysis, it is possible to derive necessary optimality

conditions in problems (PN ) even with nonsmooth data and

general dynamic constraints governed by discrete inclusions

and then obtain the corresponding results for optimal control

of differential inclusions by passing to the limit from discrete

approximations; see [4], [6], [10] for detailed proofs and

discussions. However, this approach has some limitation

regarding necessary optimality conditions of the maximum
principle type.

It is well known that the central result of the optimal con-

trol theory for continuous-time problems (P ), the Pontryagin

Maximum Principle (PMP) [8], holds with no convexity
assumptions on the admissible velocity sets f(t, x, U). This

specific result is due to the fact that continuous-type control

systems enjoy a certain hidden convexity, which is related to

the classical Lyapounov theorem on convexity of an integral

of a measurable multimap with respect to nonatomic vector

measures and eventually leads the to maximum principle

form. It is not surprising therefore, that an analogue of the

maximum principle for discrete-time control systems does
not generally hold without a priori convexity assumptions.

This may create difficulties for applications of the PMP in

numerical calculations of nonconvex continuous-time control

systems, which inevitably involve finite-difference approxi-

mations via time discretization. To avoid such troubles, it is

sufficient to justify not a full analogue of the PMP, with the

exact maximum condition, but its approximate counterpart,

where an error in the maximum condition tends to zero, when
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the discretization step decreases.

The first result of this type in the absence of convexity

assumptions was given by Gabasov and Kirillova [2], [3],

under the name of “quasi-maximum principle,” for paramet-

ric discrete systems with smooth cost and dynamics and with

no endpoint constraints. The proof of this result essentially

exploited the unconstrained nature of the problem.

The following Approximate Maximum Principle (AMP)

for the nonconvex constrained problems (PN ) was estab-

lished by Mordukhovich [4], [5]. The proof in [4], [5]

is based on the discovered finite-difference counterpart of

the hidden convexity property and the separation theorem.

Denote

H(t, x, p, u) := 〈p, f(t, x, u)〉, p ∈ IRn, (1)

the Hamilton-Pontryagin function for the dynamic constraints

under consideration.

Theorem 1.1: (APPROXIMATE MAXIMUM PRINCI-

PLE). Let the pairs (x̄N , ūN ) be optimal to (PN ) for all

N ∈ IN , where U is a compact subset of a metric space

with the metric d(·, ·), f is continuous with respect to its

variables and continuously differentiable with respect to

x in a tube containing the optimal trajectories x̄N (t) for

large N , and where each ϕi is continuously differentiable

around the limiting points of {x̄N (t1)}. Impose the following

assumptions:

(a) The CONSISTENCY CONDITION on the perturbation of

the equality constraints and the discretization step meaning

that the latter is decreasing faster than the former:

lim
N→∞

hN

δiN
= 0 for all i = m + 1, . . . , m + r. (2)

(b) The PROPERNESS of the sequences of optimal controls

{ūN}, which means that for every increasing subsequence

{N} of natural numbers and every sequence of mesh points

τθ(N) ∈ TN satisfying τθ(N) = t0 + θ(N)hN , θ(N) =
0, 1, . . . , N − 1, and τθ(N) → t ∈ [t0, t1] one has

either d
(
uN (τθ(N)), uN (τθ(N)+q)

) → 0 or

d
(
uN (τθ(N)), uN (τθ(N)−q)

) → 0

as N → ∞ with any natural constant q.

Then there are numbers {λiN | i = 0, . . . , m + r} and a

function ε(t, hN ) ↓ 0 as N → ∞ uniformly in t ∈ TN such

that

H(t, x̄N (t), pN (t + hN ), ūN (t)) =
max
u∈U

H(t, x̄N (t), pN (t + hN ), u) − ε(t, hN ) (3)

for all t ∈ TN and that

λiN (ϕi(x̄N (t1)) − γiN ) = O(hN ), i = 1, . . . , m, (4)

λiN ≥ 0, i = 0, . . . , m, and

m+r∑
i=0

λ2
iN = 1 (5)

for all N ∈ IN , where pN (t), t ∈ TN ∪ {t1}, is the

corresponding trajectory of the adjoint system

pN (t) = pN (t + hN ) + hN
∂H
∂x (t, x̄N (t), pN (t), ūN (t)),

t ∈ TN ,
(6)

with the transversality condition

pN (t1) = −
m+r∑
i=0

λiN∇ϕi(x̄N (t1)). (7)

Observe that the closer hN is to zero, the more precise the

approximate maximum condition (3) and the approximate

complementary slackness condition (4) are. This means that

the AMP in (PN ) tends to the PMP in (P ) as N → ∞, which

actually justifies the stability of the Pontryagin Maximum

Principle with respect to discrete approximations under the

assumptions made.

It has been shown in [4], [5] that the consistency condition

in (a) is essential for the validity of the AMP in problems

with equality constraints. The first goal of the paper is

to examine the other two significant assumptions made

in Theorem 1.1: the properness condition in (b) and the

smoothness of the initial data. We show in Section 2 that

both of these assumptions are essential for the validity of
the AMP.

Note that the properness of the sequence of optimal con-

trols in (b) is a finite-difference counterpart of the piecewise

continuity (or, more generally, of Lebesgue regular points
having full measure) for optimal controls in continuous-time

systems. It turns out that the situation when sequences of

optimal controls are not proper in discrete approximations

is not unusual for systems with nonconvex velocities, and

it leads to the violation of the AMP already in the case of

smooth problems with inequality constraints.

The impact of nonsmoothness to the validity of the AMP

happens to be even more striking: the AMP does not hold
in the expected conventional subdifferential form already for

minimizing convex cost functions in discrete approximations

of linear systems with no endpoint constraints, as well as

for problems with nonsmooth dynamics. It seems that the

AMP is one of very few results on necessary optimality con-
ditions that do not have expected counterparts in nonsmooth
settings.

On the other hand, we derive the AMP in problems

(PN ) with nonsmooth functions describing the objective

and inequality constraints in a new upper subdifferential
(or superdifferential) form, which is also new for necessary

optimality conditions in continuous-time control systems.

The main difference between the conventional subdifferential

form, which does not hold for the AMP, but holds for the

PMP, and the new one, is that the latter involves upper (not

lower) subgradients of nonsmooth functions in transversality

conditions. This form applies to a class of uniformly upper
subdifferentiable functions described in this paper, which

particularly contains smooth and concave continuous func-

tions being closed with respect to taking minimum over com-

pact sets. The results obtained solve a long-standing question

about the possibility to establish the AMP in nonsmooth
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control problems. We also derive the upper subdifferential

form of the AMP in discrete approximations of control

systems with time delays, for which no results of this type

have been known before.

The rest of the paper is organized as follows. Section 2

contains examples on the violation of the AMP in smooth

problems (PN ) without the properness condition as well as in

problems with nonsmooth cost functions and/or nonsmooth

dynamics. In Section 3 we discuss appropriate tools of

nonsmooth analysis. In Section 4 we formulate the AMP

for the discrete approximation problems (PN ) in the upper
subdifferential form. In Section 5 we formulate the extension

of the AMP to discrete approximations of constrained time-
delay systems, which is new in both smooth and nonsmooth

frameworks.

II. COUNTEREXAMPLES

We start with an example on the violation of the AMP in

discrete approximations of linear control systems with linear

cost functions and linear endpoint inequality constraints but

with no properness condition.

Example 2.1: (AMP does not hold in smooth control prob-
lems with no properness condition).
Let us consider a linear continuous-time optimal control

problem (P ) with a two-dimensional state x = (x1, x2) ∈
IR2 in the following form:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

minimize ϕ(x(1)) := −x1(1)
subject to

ẋ1 = u, ẋ2 = x1 − 2t, x1(0) = x2(0) = 0,
u(t) ∈ U := {0, 1}, 0 ≤ t ≤ 1,

x2(1) ≤ −1
2
.

(8)

Observe that the only “unpleasant” feature of this problem

is that the control set U = {0, 1} is nonconvex, and hence

the feasible velocity sets f(t, x, U) are nonconvex as well.

It is clear that ū(t) ≡ 1 is the unique optimal solution to

problem (8), and that the corresponding optimal trajectory is

x̄1(t) = t, x̄2(t) = − 1
2 t2. Moreover, the inequality constraint

is active, since x̄2(1) = − 1
2 .

Let us now discretize this problem with the stepsize hN :=
1

2N , N ∈ IN . The discrete approximation problems (PN )
corresponding to (8) are written as:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

minimize ϕ(xN (1)) = −x1N (1)
subject to

x1N (t + h) = x1N (t) + hNu(t), x1N (0) = 0,
x2N (t + h) = x2N (t) + hN

(
x1N (t) − 2t

)
, x2N (0) = 0,

uN (t) ∈ {
0, 1

}
, t ∈ {

0, hN , . . . , 1 − hN

}
,

x2N (1) ≤ −1
2

+ h2
N ,

i.e., we put γN := h2
N in the constraint perturbation for

(PN ). It can be shown that the control

uN (t) :=
{

1 t = 1
2 ,

0 t = 1
2

is optimal and does not satisfy the AMP at the point t = 1/2.

Observe that the sequence of these controls does not satisfy

the properness property in the assumption (b) of the AMP

formulated in Section 1.

Many examples of this type can be constructed based on

the above idea, which essentially means the following. Take

a continuous-time problem with active inequality constraints

and nonconvex admissible velocity sets f(t, x, U). It often

happens that after the discretization the “former” optimal

control becomes not feasible in discrete approximations,

and the “new” optimal control in the sequence of discrete-

time problems has a singular point of switch (thus making

the sequence of optimal controls not proper), where the

approximate maximum condition does not hold.

The next example demonstrates that the AMP may be

violated in problems of minimizing nonsmooth cost functions

in linear systems with no endpoint constraint.

Example 2.2: (AMP does not hold for linear systems with
nonsmooth and convex cost functions).
Consider the following sequence of one-dimensional optimal

control problems (PN ), N ∈ IN , for discrete-time systems:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

minimize ϕ(xN (1)) := |xN (1) − 2/3|
subject to

xN (t + hN ) = xN (t) + hNuN (t),
xN (0) = 0, uN (t) ∈ U :=

{
0, 1

}
,

t ∈ TN :=
{
0, hN , . . . , 1 − hN

}
,

(9)

where hN := 10−N , which is a subsequence of hN = N−1.
The dynamics in (9) is a discretization of the simplest ODE

control system ẋ = u. It is easy to see that in this case the set

of all reachable points at t = 1 is the set of rational numbers

between 0 and 1 with exactly N digits in the fractional part

of their decimal representations. In particular, for N = 3 this

set is {0, 0.001, 0.002, ..., 0.999, 1}. Therefore, the closest

point to x = 2/3 from the reachable set has N digits in

the fractional part and is equal to 0.77...7, and such point

must be the endpoint of the optimal trajectory x̄N (1).
Let us show that in this case the approximate maximum

condition does not hold at points t ∈ TN for which

ūN (t) = 1. (Such points exist, since the optimal control

is not identically equal to 0). Indeed, it can be verified that

H(x̄N (t), pN (t), u) = pN (t + hN )u and pN (t) ≡ −1

for the Hamilton-Pontryagin function and the adjoint trajec-

tory in (6) and (7). Thus

maxu∈U H(x̄N (t), pN (t + hN ), u) = 0 for all t ∈ TN ,
while H(x̄N (s), pN (s + hN ), ūN (s)) = −1

at the points s ∈ TN , where ūN (s) = 1 regardless of hN .

Example 2.2 contradicts the AMP with the transversality

condition in the conventional subdifferential form, which is

−pN (t1) ∈ ∂ϕ(x̄N (t1))

for problems with no endpoint constraints. In our example

the function ϕ(x) = |x − 2/3| is convex, and hence the

subdifferential ∂ is understood in the sense of convex analy-

sis. Note that in this case the subdifferential agrees with the

gradient:

∂ϕ(x̄N (1)) =
{∇ϕ(x̄N (1))

}
=

{
1
}

for all N ∈ IN
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along the optimal trajectories in (9). Since any reasonable

(lower) subdifferential for nonsmooth convex functions must

reduce to the convex subdifferential, Example 2.2 proves that

there is no hope for an extension of the AMP in the conven-
tional subdifferential form to problems with nonsmooth costs.

There are examples, which we omit here, which show that

the AMP fails even for problems with differentiable but not
continuously differentiable cost functions and that the AMP

is not valid when the dynamics of the system is nonsmooth.

III. UNIFORMLY UPPER SUBDIFFERENTIABLE

FUNCTIONS

In this section we present some tools of nonsmooth analy-

sis needed for the formulation of the main positive results of

the paper: the Approximate Maximum Principle for ordinary

and time-delay systems in the new upper subdifferential
form. Results in this form are definitely non-traditional in

optimization, since they deal with minimization problems

for which lower subdifferential constructions are usually

employed. However, we saw in the preceding section that

results of the conventional lower type simply do not hold

for the AMP. In Sections 4 and 5 we are going to use upper
subdifferential constructions for nonsmooth minimization

problems of optimal control, which happen to work for a

special class of uniformly upper subdifferentiable functions

described in this section.

Given an extended-real-valued function ϕ : IRn → IR :=
[−∞,∞] finite at x̄, we first define its Fréchet upper
subdifferential (or Fréchet superdifferential) by

∂̂+ϕ(x̄) :=
{

x∗ ∈ IRn|
lim sup

x→x̄

ϕ(x) − ϕ(x̄) − 〈x∗, x − x̄〉
‖x − x̄‖ ≤ 0

}
.

(10)

The set (10) is symmetric to the (lower) Fréchet subdif-

ferential: ∂̂+ϕ(x̄) = −∂̂(−ϕ)(x̄), which is widely used in

variational analysis under the name of “regular” or “strict”

subdifferential; see, e.g., [9] and [11]. The upper subdifferen-

tial (10) is our primary generalized differential construction

in this paper. This set is closed and convex but may be

empty for many functions useful in minimization. In fact,

both ∂̂+ϕ(x̄) and ∂̂ϕ(x̄) are nonempty simultaneously if

and only if ϕ is Fréchet differentiable at x̄, in which case

∂̂+ϕ(x̄) = ∂̂ϕ(x̄) =
{∇ϕ(x̄)

}
.

Following [5], we define the basic upper subdifferential
of ϕ at x̄ by

∂+ϕ(x̄) :=
{

x∗ ∈ IRn
∣∣ ∃ xk → x̄ with ϕ(xk) → ϕ(x̄)

and ∃ x∗
k ∈ ∂̂+ϕ(xk) with x∗

k → x∗
}

and call ϕ to be upper regular at x̄ if ∂+ϕ(x̄) = ∂̂+ϕ(x̄).
This class includes, in particular, all strictly differentiable

functions as well as proper concave functions. In the concave

case ∂̂+ϕ(x̄) reduces to the upper subdifferential of convex

analysis. It is interesting to observe that, for Lipschitzian

upper regular functions, the Fréchet upper subdifferential

(10) agrees with Clarke’s generalized gradient ∂ϕ(x̄) of [1].

Let us now define a class of functions for which we obtain

an extension of the AMP to nonsmooth control problems in

the next section.

Definition 3.1: A function ϕ : IRn → IR is uniformly
upper subdifferentiable around a point x̄ where it is finite, if

there is a neighborhood V of x̄ such that for every x ∈ V
there exists x∗ ∈ IRn with the following property: given any

ε > 0, there is η > 0 for which

ϕ(v) − ϕ(x) − 〈x∗, v − x〉 ≤ ε‖v − x‖ (11)

whenever v ∈ V with ‖v − x‖ ≤ η.

It is easy to check that the class of uniformly upper subdif-

ferentiable functions includes all continuously differentiable

functions, concave continuous functions, and also it is closed

with respect to taking minimum over compact sets. Note that

if ϕ is Lipschitz continuous and differentiable at some point,

it may not be uniformly upper subdifferentiable around it.

Example: ϕ(x) = x2 sin(1/x) for x = 0 with ϕ(0) = 0.

IV. AMP IN UPPER SUBDIFFERENTIAL FORM

This section of the paper collects the main positive results

on the fulfillment of the AMP in the upper subdifferential

form for the discrete approximation problems (PN ). We

state two closely related versions of the AMP in some-

what different settings of (PN ). The first version applies to

problems with no endpoint constraints and establishes the

upper subdifferential form of the AMP with no properness
requirement on the sequence of optimal controls and with

an error estimate as ε(t, hN ) = O(hN ) in the approximate

maximum condition. The second result is the major version

of the AMP for the constrained nonsmooth problems (PN ),
which extends that formulated in Theorem 1.1.

Let us start with the upper subdifferential form of the AMP

for problems with no endpoint constraints. Throughout this

section impose the following standing assumptions on the

mapping f and the control set U :

(H1) f = f(t, x, u) is continuous with respect to all its

variables and continuously differentiable with respect to the

state variable x in some tube containing optimal trajectories

for all u from the compact set U in a metric space and for

all t ∈ TN uniformly in N ∈ IN .

Theorem 4.1: (AMP for problems with no endpoint con-
straints). Let the pairs (x̄N , ūN ) be optimal to problems

(PN ) with ϕi = 0 for all i = 1, . . . , m + r. Assume in

addition to (H1) that ϕ0 is uniformly upper subdifferentiable

around the limiting points of the sequence {x̄N (t1)}, N ∈
IN . Then for every sequence of upper subgradients x∗

N ∈
∂̂+ϕ0(x̄N (t1)) there is ε(t, hN ) → 0 as N → ∞ uniformly

in t ∈ TN such that the approximate maximum condition (3)

holds for all t ∈ TN , where each pN (t) satisfies the adjoint

system (6) with the transversality condition

pN (t1) = −x∗
N for all N ∈ IN. (12)

Moreover, ε(t, hN ) = O(hN ) in (3) if ϕ0 is locally concave

around x̄N (t1) uniformly in N and ∂f(·, u, t)/∂x is locally

Lipschitz around x̄N (t) with a constant uniform in u ∈ U ,

t ∈ TN , N ∈ IN .
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Remark. (Upper versus lower subdifferential forms of
transversality conditions). The main difference between the

conventional (lower) subdifferential form, which is not actu-

ally fulfilled in the case of AMP, and the upper subdifferen-

tial form of Theorem 4.1 is that the transversality condition

(12) holds for every upper subgradient x∗
N ∈ ∂̂+ϕ0(x̄N (t1))

instead of just some lower subgradient in the conventional

transversality conditions for continuous-time and discrete-

time (with a fixed step) systems. In particular, for discrete-

time systems with convex velocity sets both lower and

upper subdifferential forms of the (exact) discrete maximum

principle hold; see [7], where the upper subdifferential/

superdifferential form of the discrete maximum principle

has been established under milder assumptions on ϕ0 in

comparison with Theorem 4.1. If ϕ0 is Lipschitz continuous

and upper regular and hence ∂̂+ϕ0(x̄) = ∂ϕ0(x̄), there is

indeed a dramatic difference between the upper subdifferen-

tial form of transversality conditions and a well-recognized

form in terms of the Clarke subdifferential: instead of the

fulfillment transversality just for some element of ∂ϕ0(x̄(t1))
we establish its fulfillment for the whole set! Similar situation

takes place for continuous-time systems, where the upper

subdifferential form of transversality in the maximum princi-

ple can be proved for problems with no endpoint constraints

in the line of arguments of Theorem 4.1. Observe, however,

that there is a more subtle lower subdifferential form of

transversality conditions for continuous-time and discrete-

time (of a fixed step) systems that involves basic/limiting

subgradients rather than those of Clarke; see [5], [11]. Note

that the major drawback of the upper subdifferential form is

that it applies to a restrictive class of functions. But, as we

saw in Section 2, there is no alternative to this form for the

Approximate Maximum Principle.

Next let us consider a sequence of the discrete approxima-

tion problems (PN ) with endpoint constraints of the inequal-

ity and equality types. We are going to derive an extension

of the AMP formulated in Section 1 to these problems

involving nonsmooth functions that describe the cost and

inequality constraints. The following upper subdifferential

version of the AMP for constrained problems require the

uniform upper subdifferentiability property on the cost and

the inequality constraint functions, the properness of the

sequence of optimal controls, and the consistency condition

on the perturbations of the equality constraints. As we saw

in Section 2, all the three requirements are essential.

Theorem 4.2: (AMP for problems with endpoint con-
straints). Let the pairs (x̄N , ūN ) be optimal to problems

(PN ). In addition to (H1) assume

(H2) the sequence of optimal controls {ūN} is proper,

(H3) ϕi are uniformly upper subdifferentiable around the

limiting points of {x̄N (t1)} for i = 0, . . . , m and continu-

ously differentiable around them for i = m + 1, . . . , m + r,

(H4) the consistency condition (2) holds for the perturba-

tions δiN of the equality constraints.

Then for any sequences of upper subgradients x∗
iN ∈

∂̂+ϕi(x̄N (t1)), i = 0, . . . , l, there are numbers {λiN | i =

0, . . . , m + r} and a function ε(t, hN ) ↓ 0 as N → ∞
uniformly in t ∈ TN such that the approximate maximum

condition (3) is fulfilled with the adjoint trajectory pN (t) to

(6) satisfying the transversality condition

pN (t1) = −
m∑

i=0

λiNx∗
iN −

m+r∑
i=m+1

λiN∇ϕi(x̄N (t1)) (13)

along with

λiN (ϕi(x̄N (t1)) − γiN ) = O(hN ) for i = 1, . . . , m, (14)

λiN ≥ 0 for i = 0, . . . , m,

and

m+r∑
i=0

λ2
iN = 1.

(15)

V. AMP FOR DISCRETE APPROXIMATIONS OF DELAY

SYSTEMS

This section is devoted to the extension of the AMP in

the upper subdifferential form to finite-difference approxi-

mations of time-delay control systems. Actually we are not

familiar with any previous results on the AMP for optimal

control problems with delays, so the results obtained below

seem to be new even for smooth delay problems.

We pay the main attention to discrete approximations of

the following time-delay problem with no endpoint con-

straints:

(D)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

minimize J(x, u) := ϕ(x(t1))
subject to

ẋ(t) = f(t, x(t), x(t − θ), u(t)) a.e. t ∈ [t0, t1],
x(t) = c(t), t ∈ [t0 − θ, t0],
u(t) ∈ U a.e. t ∈ [t0, t1]

over measurable controls and absolute continuous trajecto-

ries, where θ > 0 is the constant time-delay, and where

c : [t0 − θ, t0] → IRn is a given function defining the initial

“tail” condition that is necessary to start the delay system.

Based on the above constructions for non-delayed systems,

one can derive similar results for delay systems with endpoint

constraints. We may also extend the results obtained to

more complicated delay systems involving variable delays,

set-valued tail conditions, etc. On the other hand, there

are examples, which we omit here, that show, that the

AMP does not hold for discrete approximations of even

smooth functional-differential systems of neutral type that

contain time-delays not only in state variables but in velocity

variables as well.

Let us build discrete approximations of the time-delay

problem (D) based on the Euler finite-difference replacement

of the derivative. In the case of time-delay systems we

need to ensure that the point t − θ belongs to the discrete

grid whenever t does. It can be achieved by defining the

discretization step as hN := θ/N in contrast to hN =
(t1 − t0)/N for the non-delayed problems (PN ). In such

a scheme the length of the time interval t1 − t0 is generally

no longer commensurable with the discretization step hN .
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To this end we consider the following sequences of

discrete approximations of the delay problem (D) with the

grid on the main interval [t0, t1] given by

TN :=
{
t0, t0 + hN , . . . , t1 − h̃N − hN

}
, hN :=

θ

N
,

h̃N := t1 − t0 − hN

[ t1 − t0
hN

]
,

(here [a] denotes the greatest integer less than or equal to

the real number a) and also involving the grid T0N on the

initial interval

[t0 − θ, t0]:

(DN )⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize J(xN , uN ) := ϕ(xN (t1))
subject to

xN (t + hN ) = xN (t)+
hNf(t, xN (t), xN (t − NhN ), uN (t)), t ∈ TN ,

xN (t1) = xN (t1 − h̃N )+
h̃Nf(t1 − h̃N , xN (t1 − h̃N ), uN (t1 − h̃N )),

xN (t) = c(t), t ∈ T0N :=
{
t0 − θ, t0 − θ + hN , . . . , t0

}
,

uN (t) ∈ U, t ∈ TN ,

where [a] stands, as usual, for the greatest integer less than

or equal to the real number a.

Our assumptions on the initial data of (P ) are similar to

those in Section 4 for non-delay systems. A counterpart of

(H1) is formulated as:

(H) f = f(t, x, y, u) is continuous with respect to all

its variables and continuously differentiable with respect to

(x, y) in some tube containing optimal trajectories for all

u from the compact set U in a metric space and for all

t ∈ T̃N := TN ∪ {t1 − h̃N} uniformly in N ∈ IN .

For convenience we introduce the following notation:

ξN (t) := (xN (t), xN (t − θ)),
ξ̄N (t) := (x̄N (t), x̄N (t − θ)),
f(t, ξN , uN ) := f(t, xN (t), xN (t − θ), uN (t)),
f(t, ξ̄N , uN ) := f(t, x̄N (t), x̄N (t − θ), uN (t)),

and write the adjoint system to (DN ) as

pN (t) = pN (t + hN ) + hN
∂f

∂x

∗
(t, ξ̄N , ūN )pN (t + hN )

+hN
∂f

∂y

∗
(t + θ, ξ̄N , ūN )pN (t + θ + hN ) for t ∈ TN ,

pN (t1 − h̃N ) = pN (t1) + h̃N
∂f

∂x

∗
(t1 − h̃N , ξ̄N , ūN )pN (t1)

along the optimal processes (x̄N , ūN ) to the delay problems

for each N ∈ IN . Introducing the corresponding Hamilton-
Pontryagin function

H(t, xN , yN , pN , u) :={ 〈
pN (t + hN ), f(t, xN , yN , u)

〉
if t ∈ TN ,〈

pN (t), f(t − h̃N , xN , yN , u)
〉

if t = t1 − h̃N ,
(16)

with ȳN (t) = x̄N (t − θ), we rewrite the adjoint system as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pN (t) = pN (t + hN ) + hN

[∂H

∂x
(t, ξ̄N , pN , ūN )+

∂H

∂y
(t + θ, ξ̄N , pN , ūN )

]
, t ∈ TN ,

pN (t1 − h̃N ) = pN (t1) + h̃N
∂H

∂x
(t1 − h̃N , ξ̄N , pN , ūN ).

(17)

Theorem 5.1: (AMP for delay systems). Let the pairs

(x̄N , ūN ) be optimal to problems (DN ). Assume in addition

to (H) that ϕ is uniformly upper subdifferentiable around the

limiting points of the sequence {x̄N (t1)}, N ∈ IN . Then for

every sequence of upper subgradients x∗
N ∈ ∂̂+ϕ(x̄N (t1))

the approximate maximum condition

H(t, ξ̄N , pN , ūN ) = max
u∈U

H(t, ξ̄N , pN , u) − ε(t, hN ), t ∈ T̃N ,

holds with the Hamilton-Pontryagin function (16) and with

some ε(t, hN ) ↓ 0 as hN → 0 uniformly in t ∈ T̃N , where

the adjoint trajectory pN satisfies (17) and the transversality

relations

pN (t1) = −x∗
N , pN (t) = 0 if t > t1. (18)

Note that in the case of continuously differentiable cost

functions ϕ around x̄N (t1) uniformly in N , the transversality

relations (18) reduce to

pN (t1) = −∇ϕ(x̄N (t1)), pN (t) = 0 if t > t1.

Similarly to the proof of Theorem 5.1 we can deduce from

Theorem 4.2 its delay counterpart for discrete approximation

problems with endpoint constraints. In this result we add

assumptions (H2)-(H4) to those in (H) and replace the

transversality relations (18) in Theorem 5.1 by the conditions

(13)–(15) with pN (t) = 0 if t > t1.
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