
Fractal Graph Optimization Algorithms∗

James R. Riehl and João P. Hespanha†

Abstract— We introduce methods of hierarchically decom-
posing three types of graph optimization problems: all-pairs
shortest path, all-pairs maximum flow, and search. Each method
uses a partition on the graph to create a high level problem
and several lower level problems. The computations on each
level are identical, so the low level problems can be further
decomposed. In this way, the problems become fractal in nature.
We use these decomposition methods to establish upper and
lower bounds on the optimal criteria of each problem, which can
be achieved with much less computation than what is required
to solve the original problem. Also, for each problem, we find
an optimal number of partitions that minimizes computation
time. As the number of hierarchical levels increases, the
computational complexity decreases at the expense of looser
bounds.

I. INTRODUCTION

Graph optimization problems such as shortest path, max-

imum flow, and search problems are essential to a large

number of control applications including navigation [5],

path planning [4], and network routing [9], but for graphs

with many nodes, the computation required to solve these

problems can be impractical.

Consider a weighted directed graph G(V,E) with n ver-

tices and m edges.

• In the all pairs shortest path problem, each edge in
G has an associated cost, and the goal is to find the

shortest path between every pair of vertices in G. The

best known computation for this problem is O(nm +
n2 log n) [1], which is equivalent to O(n3) for dense
graphs, i.e. graphs for which O(m) = O(n2).

• In the all pairs maximum flow problem, each edge
has a capacity constraint, and the goal is to find the

maximum flow between every pair of vertices in G.

This problem can be computed in O(n3m log n2

m
) [2].

This is equivalent to O(n5) for dense graphs.

• In the search problem, each edge has an associated cost,
and each vertex has a reward. The optimal search path

is the path in G that maximizes the reward subject to

a cost constraint. This problem is NP-hard even when

significant structure is imposed on the graph [10].

When the computation of the exact solution would require

an unreasonable amount of time, it is useful to approximate

the solution. This paper introduces a framework of bounding

the optimal solutions to these three problems by partitioning

*This material is based upon work supported by the National Science
Foundation under Grants No. CCR-0311084, ANI-0322476.

†{jriehl,hespanha}@ece.ucsb.edu, Center for Control, Dynamical Sys-
tems, and Computation, Electrical and Computer Engineering Department,
University of California, Santa Barbara, CA 93106-9560.

the graph, and generating best-case and worst-case solutions

on a new smaller graph, whose vertices are subsets of

the vertices in the original graph. For each problem, we

show how to use the worst-case solution to generate an

approximate solution on the original graph, and the best-

case solution provides a bound on how far this approxima-

tion is from optimal. Additionally, the construction of the

worst-case problem requires the solution of several identical

problems of smaller dimension. These smaller problems can

then be further decomposed, creating a hierarchical structure

and making the overall problem fractal in nature. Increasing

the number of hierarchical levels reduces computation, but

generally results in looser bounds.

A. Shortest path

There is a rich literature on the hierarchical decomposition

of the shortest path problem, especially as it relates to path

planning for mobile robots [4], and navigation systems [5].

Holte et al. found that searching state spaces with hierar-
chical abstractions performed better than classical methods

[6].

Shen and Caines presented results on hierarchically ac-

celerated dynamic programming that is based on a similar

idea to our shortest path decomposition [7]. Using state

aggregation methods, they were able to speed up dynamic

programming algorithms for finite state machines by orders

of magnitude at the expense of some sub-optimality, for

which they give bounds. Romeijn and Smith proposed an al-

gorithm to solve an aggregated all pairs shortest path problem

motivated by minimizing vehicle travel time [8]. Under the

assumption that graphs in each level of aggregation have the

same structure, they showed the computational complexity of

their approximation to be O(n log n) for aggregation on two
levels of sparse graphs, and O(n

2

L log n) for aggregation on
L levels. Our treatment of the shortest path approximation

will closely resemble that of [8] with a few modifications and

expanded results. We give both upper and lower bounds on

the optimal solution, and the choice of the specific partition

to use is a degree of freedom for the user.

Numerical test results of the meta-shortest path problem

show that hierarchical approximations are best-suited to

graphs with a clustered structure, where there is a obvious

way to partition the graph. These types of graphs are com-

mon to many applications such as transportation, computer

networks, and integrated circuits. The worst-case diameter

approximation for a test-graph having a clustered structure

was within 7% of the actual diameter. We also show the
approximation applied to a lattice graph, which has one of

the worst possible structures for this method because there

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

TuA03.3

0-7803-9568-9/05/$20.00 ©2005 IEEE 2188

is no clear way to partition it. For the lattice test graph, the

worst-case diameter approximation was within 60%.

B. Maximum flow

There has been considerably less work on hierarchical

approaches to maximum flow problems. Bohacek et al. de-
veloped a technique to compute routing tables for max-flow

network routing that involves hierarchically decomposing the

network, and they showed the computational complexity to

be about O(n3.1) with a performance that is in some cases as
good as the general flat max-flow routing problem [9]. Our

results improve the computational complexity to O(n2.8) for
one hierarchical level.

C. Search

Search theory as we know it dates back to World War II,

and the U.S. Coast Guard has applied it to search and rescue

missions. The search problem formulated in this paper is

based on a discretization of a continuous search problem

solved by DasGupta, Hespanha, and Sontag [10]. We adapt

this formulation to allow for hierarchical decomposition.

Our hierarchical search approximation is still NP-hard, but

the computation is over much smaller sets of vertices. The

result is a computational reduction that is exponential in n.

D. Organization

Section II presents the idea of partitions and meta-graphs,

introducing concepts and notation that will be used through-

out the paper. Sections III, IV, and V define each type of

problem, develop upper and lower bounds for the solutions,

and analyze computational complexity. These sections also

include explicit procedures for constructing the approximate

shortest path matrix, max-flow matrix, and optimal search

path. Section VI presents some test results for the shortest

path matrix problem, and the final section is a discussion of

the results with suggestions for future research.

II. GRAPHS, META-GRAPHS, AND SUBGRAPHS

Consider a graph G := (V,E) with vertex set V and edge
set E ⊂ V × V .

A partition V̄ := {v̄1, v̄2, . . . , v̄k} of G is a set of disjoint
subsets of V such that v̄1∩ v̄2∩ . . .∩ v̄k = V . We call these

subsets v̄i meta-vertices.
For a given meta-vertex v̄i ∈ V̄ , we define the subgraph of

G induced by v̄i to be the subgraph G|v̄i := (v̄i, E∩ v̄i× v̄i).

v̄3

v̄4

G

v̄2

v̄1

Ḡ

G|v̄1
G|v̄2

G|v̄3
G|v̄4

Fig. 1. Example of a graph partitioned into 4 meta-vertices.

Figure 1 shows an example of the graph partitioning

process, where the dashed lines through G separate the

partitioned subgraphs G|vi, which are represented by meta-

vertices in Ḡ.

For the purposes of this paper, we will require that the

subgraphs G|v̄ be connected, that is, for every vi, vj ∈ v̄,

there must exist a path in G|v̄ from vi to vj .

Given a partition V̄ of the vertex set V , we define the

meta-graph of G induced by the partition V̄ to be the graph

Ḡ := (V̄ , Ē) with an edge ē ∈ Ē between meta-vertices
v̄i, v̄j ∈ V̄ if and only if G has at least one edge e ∈ E

between vertices v and v′ for some v ∈ v̄i and v′ ∈ v̄j . In

general, there may exist several such edges e ∈ E and we

call these the edges associated with the meta-edge ē. With

some abuse of notation, we write e ∈ ē to express that the

fact that e is associated with the meta-edge ē

III. SHORTEST PATH MATRIX PROBLEM

The shortest path matrix problem involves constructing

a n × n matrix of the minimum-cost path between all

pairs of vertices in a graph. Our formulation is a slight

variation on the conventional all-pairs shortest path (APSP)

problem because in addition to assigning a cost to each

edge, we also assign a cost to each vertex. This is crucial in

facilitating the hierarchical decomposition of the problem, as

will be explained in section III-A. Adding vertex costs does

not increase the computational complexity of the problem,

however.

Data Directed connected graph G := (V,E); edge cost
function η : E → [0,∞); vertex cost function ν : V →
[0,∞).

Path A path in G from vinit ∈ V to vfinal ∈ V is a sequence

of vertices (where v1 := vinit, vf := vfinal)

p := (v1, v2, . . . , vf−1, vf), (vi, vi+1) ∈ E.

The path-cost is given by

C(p) :=

f−1∑
i=1

η(vi, vi+1) +

f∑
i=1

ν(vi).

Objective For every pair of vertices (vinit, vfinal), compute
the path p that minimizes the path-cost C(p). We denote this
path by p∗ and the minimum cost C(p∗) by J∗

G(vinit, vfinal).
The largest minimum cost over all possible pairs of vertices

(vinit, vfinal) is called the diameter of the graph and is
denoted by ‖G‖.

A. Worst-case meta-shortest path

Let Ḡworst := (V̄ , Ē) be a meta-graph of G, with edge

cost and vertex cost defined by η̄worst(ē) := mine∈ē η(e) and
ν̄worst(v̄) :=

∥∥G|v̄
∥∥.

Note that to assign the vertex costs of Ḡworst one needs to

compute the diameter of all subgraphs and therefore solve k

smaller shortest-path matrix problems. This is the key step

in the hierarchical decomposition of the problem.

2189

B. Best-case meta-shortest path

Let Ḡbest := (V̄ , Ē) be a meta-graph of G, with edge

cost and vertex cost defined by η̄best(ē) := mine∈ē η(e) and
ν̄best(v̄) := minv∈v̄ ν(v).

Theorem 1 For every partition V̄ of G

J∗
Ḡbest

(v̄init, v̄final) ≤ J∗
G(vinit, vfinal) ≤ J∗

Ḡworst
(v̄init, v̄final)

where vinit ∈ v̄init, vfinal ∈ v̄final.

The construction of the upper bound provides a procedure

for generating an approximate shortest path between each

pair of vertices in G, and the cost of this path lies between

J∗
G(vinit, vfinal) and J∗

Ḡworst

(v̄init, v̄final).

Proof: To verify the upper bound, we demonstrate

that one can use the shortest path from v̄init to v̄final in

Ḡworst to construct an approximate shortest path from vinit

to vfinal in G. We do this by sequentially connecting vinit,

the endpoints of the minimum cost edge between each meta-

vertex in the optimal worst-case path, and vfinal with the

shortest paths between them in their respective subgraphs

G|v̄. The cost of this approximate shortest path is bounded
below by J∗

G(vinit, vfinal) and above by J∗
Ḡworst

(v̄init, v̄final).

Similarly, we can check the lower bound by constructing

a feasible path from v̄init to v̄final in Ḡbest from the optimal

path p∗ connecting vinit to vfinal in G. The cost of this

path is bounded below by J∗
Ḡbest

(v̄init, v̄final) and above by
J∗

G(vinit, vfinal). The details of both upper and lower bound
constructions can be found in [11].

C. Computation

For a weighted directed graph with n vertices and m

edges, Karger et al. showed that the all pairs shortest
path problem can be solved with computational complexity

O(nm + n2 log n) [1]. In this analysis, we consider a graph
to be dense if O(m) = O(n2) and sparse if O(m) = O(n).
For dense graphs, the above result is equivalent to O(n3),
and for sparse graphs, it is O(n2 log n). We will analyze
the computation of the worst-case meta-shortest path matrix

for dense graphs, but give results for both dense and sparse

graphs. Here we analyze sequential computation, but see [11]

for results on parallel computation.

Our formulation of the shortest path problem is slightly

different than the conventional one because it includes vertex

costs, but we can make small modifications in the algorithm

to account for these vertex costs without increasing the

computational complexity of the problem.

Partitioning a graph into k meta-vertices, and assuming

that each meta-vertex contains roughly the same number

of vertices, the computational complexity of the worst-

case meta-shortest path problem will be O(k(n
k
)3 + k3) for

dense graphs, because there are k diameters to compute on

subgraphs having approximately n
k
vertices each, and there

is the top-level all-pairs shortest path problem over k meta-

vertices. One can minimize this expression over k to obtain

the following value of k that minimizes computation time:

k∗ =
(

2
3

) 1

5 n
3

5 .

This results in a computational complexity of O(n
9

5)
for the worst-case meta-shortest path problem using one

hierarchical level. One can further decompose the problem

by approximating each of the k diameter problems using

the worst-case meta-shortest path method. In this way, the

problem can be decomposed on many levels. As the number

of hierarchical levels increases, the computation decreases at

the obvious expense of less accurate bounds on the solution.

Table I shows the approximate computational complexity for

up to 3 hierarchical levels for dense and sparse graphs.

TABLE I

COMPUTATIONAL COMPLEXITY OF THE WORST-CASE META-SHORTEST

PATH MATRIX FOR UP TO 3 HIERARCHICAL LEVELS

Levels Dense Sparse

0 O(n3) O(n2 log n)
1 O(n1.8) O(n1.43)
2 O(n1.42) O(n1.24)
3 O(n1.25) O(n1.19)

Note that there is no need to analyze the computation of

the best-case meta-shortest path problem because it can be

computed much faster, since it does not involve diameter

computations for the vertex costs.

IV. MAX-FLOW MATRIX PROBLEM

In the max-flow matrix problem, the goal is to construct

an n × n matrix containing the maximum flow intensities

between all pairs of vertices in a graph. The flow through

each edge is limited by the bandwidth or capacity of that

edge. In this formulation, the vertices are also assigned

bandwidths. The vertex bandwidth is what allows for the

hierarchical decomposition of this problem.

Data Directed connected graph G := (V,E) with vertex
set V and edge set E ⊂ V × V ; edge bandwidth function
η : E → [0,∞); vertex bandwidth function ν : V → [0,∞).

Flow A flow in G from vinit ∈ V to vfinal ∈ V is a function

f : E → [0,∞) for which there exist some µ ≥ 0 such that

fout(v) − fin(v) =

⎧⎪⎨
⎪⎩

µ v = vinit

−µ v = vfinal

0 otherwise,

∀v ∈ V, (1)

0 ≤ f(e) ≤ η(e), ∀e ∈ E (2)

0 ≤ fin(v) ≤ ν(v), ∀v ∈ V (3)

0 ≤ fout(v) ≤ ν(v), ∀v ∈ V (4)

In the above,

fin(v) :=
∑

e∈In[v]

f(e), fout(v) :=
∑

e∈Out[v]

f(e), (5)

where In[v] denotes the set of edges that enter the vertex v

and Out[v] the set of edges that exit v. The constant µ is

called the intensity of the flow.

Objective For every pair of vertexes (vinit, vfinal), compute
the flow f∗ with maximum intensity µ from vinit to vfinal.

2190

The maximum intensity is denoted by J∗
G(vinit, vfinal) and

is called the maximum flow from vinit to vfinal. The smallest
maximum flow over all possible pairs of vertices is called

the bandwidth of the graph and is denoted by ‖G‖.

A. Worst-case meta-max flow

Let Ḡworst := (V̄ , Ē) be a meta-graph of G, with edge

bandwidth and vertex bandwidth defined by η̄worst(ē) :=∑
e∈ē η(e) and ν̄worst(v̄) :=

∥∥G|v̄
∥∥.

Note that to construct the graph Ḡworst one needs to

compute the bandwidth of all subgraphs and therefore solve

several smaller max-flow matrix problems.

B. Best-case meta-max flow

Let Ḡbest := (V̄ , Ē) be a meta-graph of G, with edge

bandwidth and vertex bandwidth defined by η̄best(ē) :=∑
e∈ē η(e) and ν̄best(v̄) := +∞.

Theorem 2 For every partition V̄ of G

J∗
Ḡworst

(v̄init, v̄final) ≤ J∗
G(vinit, vfinal) ≤ J∗

Ḡbest
(v̄init, v̄final)

where vinit ∈ v̄init, vfinal ∈ v̄final.

The construction of the lower bound contains a procedure

for generating an approximate maximum flow between each

pair of vertices in G, and the intensity of this flow lies

between J∗
Ḡworst

(v̄init, v̄final) and J∗
G(vinit, vfinal).

Proof: Given a worst-case maximum flow f̄∗
worst(ē) in

Ḡworst, the idea is to construct a flow f(e) in G that satisfies

(1)–(4). This is possible because the subgraphs associated

with each meta-vertex are connected and the total flow into

and out of a meta-vertex is always no greater than the band-

width of that meta-vertex. The intensity of this approximate

maximum flow is bounded below by J∗
Ḡworst

(v̄init, v̄final), and
above by J∗

G(vinit, vfinal).

The proof for the best-case upper bound is straightforward

because one can easily construct a flow in Ḡbest from

an optimal flow f∗(e) in G. The intensity of this flow

will be bounded below by J∗
G(vinit, vfinal), and above by

J∗
Ḡbest

(v̄init, vfinal). To see details of upper and lower bound
flow constructions, see [11].

C. Computation

Given a directed graph G(V,E) with n vertices and m

capacitated edges, Goldberg and Tarjan [2] showed that one

can compute the maximum flow between two vertices in

O(nm log n2

m
) time. To compute the max-flow between all

pairs of vertices in an undirected graph, Gomory and Hu
showed that one only needs to solve n − 1 maximum flow
problems [3], but since we are considering directed graphs,

we must compute the flow between all
n(n−1)

2 vertices. This

results in a complexity of O(n3m log n2

m
) to generate the

complete max-flow matrix.

The addition of vertex bandwidths to the conventional

max-flow problem does not increase computational com-

plexity because in the worst case, we can simply model a

vertex with bandwidth ν as two vertices without bandwidths

connected by an edge with bandwidth ν.

In the case of a dense graph, the complexity of computing

the max-flow matrix is O(n5). To solve the worst case meta-
max-flow problem, we partition G into k subgraphs, where

each subgraph contains roughly the same number of vertices.

Then we will need to compute k subgraph bandwidths having

complexity O((n
k
)5), and solve a maximum flow problem

over the k meta-vertices which is O(k5). The resulting
complexity of this problem is O(k(n

k
)5 + k5).

Minimizing this expression over k yields the optimal

number of partitions for one hierarchical level, k∗ = .98n
5

9 .

The complexity of the worst-case meta-max-flow problem

that results from this choice of k is O(n
25

9). Table II
shows the approximate computational complexity for up to

3 hierarchical levels on both dense and sparse graphs.

TABLE II

COMPUTATIONAL COMPLEXITY OF THE WORST-CASE META-MAX

FLOW PROBLEM FOR UP TO 3 HIERARCHICAL LEVELS

Levels Dense Sparse

0 O(n5) O(n4 log n)
1 O(n2.78) O(n2.39)
2 O(n2.05) O(n1.86)
3 O(n1.69) O(n1.58)

Note that there is no need to analyze the computation of

the best-case max-flow problem because it can be computed

much faster, since it does not involve bandwidth computa-

tions for the vertex costs.

V. SEARCH PROBLEM

For the search problem, each vertex in a graph is assigned

some reward, generally based on the probability of finding

a desired object, and each edge is assigned a cost, generally

relating to travel time or energy spent. For the purposes of

hierarchical decomposition, we also assign vertex costs. In

solving the problem, one would like to find the path that

maximizes the reward subject to the cost constraint.

Data Directed connected graph G := (V,E); edge cost
function η : E → [0,∞); vertex reward function r : V →
[0,∞); vertex cost function ν : V → [0,∞); cost bound
L > 0.

Search Path A path in G starting at vinit ∈ V is a sequence

of vertices

p := (v1 := vinit, v2, . . . , vf−1, vf), (vi, vi+1) ∈ E.

The path-cost is given by

C(p) :=

f−1∑
i=1

η(vi, vi+1) +

f∑
i=1

ν(vi)

and the path-reward is given by

R(p) :=
∑
v∈p

r(v), (6)

2191

where the sum in (6) is taken with no repetitions, that is, if

a vertex appears in p more than once, it is only included in

the summation once. This represents the fact that the reward

of a vertex can only be collected once.

Objective Let the cost bound L > 0 be given. For each
vertex vinit, compute the path p∗ that maximizes the path-

reward R(p) subject to the path-cost constraint C(p) ≤ L.

The maximum is denoted by J∗
G(vinit;L) and is called the

maximum reward from vinit. Let J
∗
G(L) denote the maximum

reward from all possible vinit ∈ V .

A. Worst-case meta-graph search

Let Ḡworst := (V̄ , Ē) be a meta-graph of G with edge
cost function defined by

η̄worst(v̄, v̄′) = max
v∈v̄,v′∈v̄′

C∗[v, v′], ∀v̄, v̄′ ∈ V̄ . (7)

where C∗[v, v′] is the minimum cost of going from v to v′.

Let l : V̄ → [0,∞) be any assignment of cost bounds to
the set of meta-vertices (the specific assignment is up to the

user). The vertex reward function is generated by solving

search problems on each of the subgraphs G|v̄ with cost
bounded by l(v̄):

r̄worst(v̄) = J∗
G|v̄(l(v̄)), ∀v̄ ∈ V̄ .

The setup of the search problem differs slightly from the

previous two in that it requires the user to allocate a cost

bound over the partitions of the graph. This is necessary so

that the search problem on the subgraphs G|v̄ is identical
to the search problem on Ḡ. The sub-problems can then

be solved using the same worst-case meta-graph search

method, creating a multi-level hierarchical decomposition of

the problem. The choice of how to allocate the cost bound is

left for future research. If information is known about which

regions are likely to contain the most reward, this should be

incorporated into the cost bound allocation.

Let p∗i denote the search path that generates the maximum

reward for each v̄i. Now assign the path-cost incurred in

each of these sub-problems to the meta-vertex cost function

as ν̄worst(v̄i) = C(p∗i).

B. Best-case meta-graph search

Let Ḡbest := (V̄ , Ē) be a meta-graph of G with edge cost
function and vertex reward function defined by

η̄best(v̄, v̄′) = min
v∈v̄,v′∈v̄′

C∗[v, v′], ∀v̄, v̄′ ∈ V̄ ,

and r̄best(v̄) =
∑

v∈v̄ r(v). In the best case, we assume that
all reward contained in a meta-vertex is collected imme-

diately upon entry. The vertex cost function is defined by

ν̄best(v̄) = 0.

Theorem 3 For every partition V̄ of G

J∗
Ḡworst

(L) ≤ J∗
G(L) ≤ J∗

Ḡbest
(L) (8)

The construction of the lower bound contains a procedure

for generating an approximate optimal search path on G

whose total reward lies between J∗
Ḡworst

(L) and J∗
G(L).

Proof: To verify the lower bound, we construct a feasi-
ble search path p onG from the optimal worst-case path p̄∗ =
(v̄1, v̄2, ...v̄f) on Ḡworst that generates the reward J∗

Ḡworst

(L).
Since the worst-case solution involves solving the search

problem on each partition subgraph, simply connect these

sub-paths sequentially as they appear in the solution. Let

p∗j = (vj
1, v

j
2, . . . , v

j
fj

) denote the optimal search path on
the subgraph v̄j . Now, let p̂ be the connection of all pv̄j

by the shortest path between each v
j
fj
and v

j+1
1 . Clearly,

C(p̂) ≤ C(p̄∗) since their costs within meta-vertices are
equal, and the cost between path segments p∗

j on p̂ is no

greater than the cost between meta-vertices in p̄∗ because

of (7). The reward R(p̂) is bounded below by J∗
Ḡworst

(L)
because all reward collected by p̄∗ is also collected by p.

By the optimality of p∗, R(p̂) must be bounded above by
J∗

G(L).
To verify the upper bound, we construct a path in Ḡbest

out of the optimal search path p∗ = (v1, v2, . . . , vf) that
generates reward J∗

G(L). Let p̃ consist of the sequence of

meta-vertices v̄x such that p
∗(i) ∈ v̄x for i = 1, . . . , f , with

no consecutive repetitions. The maximum cost of this path

is C(p∗) and the minimum reward is J∗
G(L). The reward is

also bounded above by J∗
Ḡbest

(L) since p̃ is a path in Ḡbest.

C. Computation

The search problem is computationally the worst of the

three problems considered in this paper, because it is NP-

hard even when significant structure is imposed on the graph

[10]. For an exhaustive enumeration of all possible search

paths on a graph with n vertices, the computation can be

as high as O(n!). Assuming this worst-case complexity, the
search on a meta-graph partitioned into k subgraphs will have

complexity O(k! + k
(

n
k

)
!). One can numerically solve for

the optimal value of k from this expression.

While the meta-graph search problem is still NP-hard,

its computation is a significant reduction on that of the

full graph search problem. Let Cmeta1
(n) be the estimated

computation of worst-case meta-graph search problem with

one hierarchical level, and let Cfull(n) be the estimated
computation of the full graph search problem. Figure 2 is a

semi-log plot of log
(

Cmeta1
(n)

Cfull(n)

)
vs. the number of vertices

n. The linear relationship shows that the computational

reduction is exponential in n.

0 200 400 600 800 1000
−3000

−2500

−2000

−1500

−1000

−500

0

number of vertices (n)

lo
g(

M
et

a/
F

ul
l)

Fig. 2. Computational reduction of the worst-case meta-graph search
problem over the full graph search problem.

2192

VI. TEST RESULTS

This section presents some results of the meta-shortest

path approximations on two test graphs: one which has

a structure that naturally lends itself to partitioning, and

a lattice graph that has no natural partition. One would

expect the approximations to be good for the first graph and

somewhat worse for the second graph.

(a) Delaunay graph of 16
vertex groups

(b) 16 × 16 lattice graph.

Fig. 3. These two test graphs were used to evaluate the diameter
approximation

A. Grouped Delaunay Graph–256 vertices

Figure 3(a) was created by randomly distributing vertices

over 16 1 unit × 1 unit regions centered in a block pattern
and generating a Delaunay graph over this vertex set. The

dashed lines indicate the partition used for these tests.

B. 16 × 16 Lattice Graph

Lattice structure graphs are probably the worst case for

this approximation since there is no advantageous way to

partition them. Figure 3(b) shows the 16× 16 lattice used in
these tests. The dashed lines indicate the partition that was

used.

C. Diameter Approximation Results

The diameter is an appropriate metric for the tightness of

the meta-shortest path bounds, because for each hierarchical

level below the top, subgraph diameters are computed to

assign the meta-vertex costs. Table III shows the results for

best-case, worst-case, approximate, and actual diameters for

each test graph partitioned into 16 vertex groups. The approx-

imate diameter is computed using the procedure outlined in

the proof of Theorem 1, and will always lie between the

actual and worst-case diameters.

TABLE III

RESULTS OF DIAMETER APPROXIMATION FOR 16 PARTITIONS

Best-case Actual Approximate Worst-case

Grouped 9.0 14.1 14.5 15.1

Lattice 6 30 30 48

D. Discussion

As expected, the worst-case bounds are fairly tight for the

grouped graph, but worse for the lattice graph. Although the

approximation gets the correct diameter for the lattice graph,

there is a large uncertainty. This shows that the meta-shortest

path approximation is best suited to graphs with a clustered

structure. For any graph, it is important to carefully choose

a partition that will produce good results.

VII. CONCLUSIONS

We have introduced methods of decomposing three graph

optimization problems to achieve upper and lower bounds

with much less computation than would be required to

solve the complete problems. Additionally, each problem is

formulated in such a way that allows for multiple levels

of hierarchical decomposition. As the number of levels

increases, the computation decreases further at the expense

of looser bounds on the optimal solution. Tests on the meta-

shortest path method show good diameter approximation for

a clustered graph. However, the bounds are looser if the

graph is a lattice having no natural partition. The choice of

which partition to use depends on the the graph structure and

the individual problem. There may be an obvious partition as

in the grouped graph of Figure 3(a), but this may not often be

the case. Algorithms to generate graph partitions for which

the upper and lower bounds are close is a good topic for

future work. Another topic open for future research is the

choice of how to allocate the cost bounds for the worst-case

meta-graph search problem.

REFERENCES

[1] D. R. Karger, D. Koller, and S. J. Phillips, “Finding the hidden path:
Time bounds for all-pairs shortest paths,” SIAM J. Comput., vol. 22,
pp 1199-1217, 1993.

[2] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum
flow problem,” Journal of the ACM, vol. 35, pp 921-940, 1988.

[3] R. E. Gomory and Z. C. Hu, “Multi-terminal network flows,” SIAM
J. Appl. Math., vol. 9, pp 551-570, 1961.

[4] J. A. Fernandez and J. Gonzalez, “Hierarchical Path Search for
Mobile Robot Path Planning,” Proc. IEEE Int’l Conf. Robotics and
Automation, 1998.

[5] N. Jing, Y. Huang, and E. Rundensteiner, “Hierarchical Optimization
of Optimal Path Finding for Transportation Applications,” Proc. Fifth
Int’l Conf. Info. and Know. Mgmt., pp 261-268, 1996.

[6] R. C. Holte, C. Drummond, M. B. Perez, R. M. Zimmer, and A.
J. MacDonald, “Searching with Abstractions: A Unifying Framework
and New High-Performance Algorithm,” Proc. 10th Canadian Conf.
Artificial Intelligence, pp 263-270, 1994.

[7] G. Shen and P. E. Caines, “Hierarchically Accelerated Dynamic
Programming for Finite-State Machines,” IEEE Transactions on Au-
tomatic Control, vol. 47, no. 2, pp 271-283, 2002.

[8] H. E. Romeijn and R. L. Smith, “Parallel Algorithms for Solving
Aggregated Shortest Path Problems,” Computers and Operations Re-
search, vol. 26, Issue 10-11, pp 941-953, 1999.

[9] S. Bohacek, J. Hespanha, C. Lim, and K. Obraczka. “Hierarchical
Max-Flow Routing,” Submitted to publication, Feb. 2005.

[10] B. DasGupta, J. Hespanha, and E. Sontag, “Computational Complexity
of Honey-pot Searching with Local Sensory Information,” Proc. of the
2004 Amer. Contr. Conf., June 2004.

[11] J. Riehl and J. Hespanha, “Fractal Graph Optimization Algorithms,”
Technical Report, August 2005.

2193

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

