
An nD-systems approach to global polynomial optimization with an
application to H2 model order reduction

Ivo Bleylevens, Ralf Peeters and Bernard Hanzon

Abstract— The problem of finding the global minimum of
a multivariate polynomial can be approached by the matrix
method of Stetter-Möller, which reformulates it as a large
eigenvalue problem. The linear operators involved in this
approach are studied using the theory of nD-systems. This
supports the efficient application of iterative methods for
solving eigenvalue problems such as Arnoldi methods and
Jacobi-Davidson methods. This approach is demonstrated by
an example which addresses optimal H2-model reduction of a
linear dynamical model of order 10 to order 9.

Index Terms— global polynomial optimization, Stetter-Möller
matrix method, linear operator, nD-system, large eigenvalue
problem, H2 model reduction.

I. INTRODUCTION

Finding the global minimum of a real-valued multivariate
polynomial is a problem which has several useful appli-
cations in systems and control theory. Non-convexity and
the aspect of local optima, make this into a hard prob-
lem. In this paper we present a technique which uses nD-
systems for finding the global minimum of a special class of
dominated polynomials. These are polynomials of the form
pλ(x1, . . . , xn) = q(x1, . . . , xn)+λ(x2d

1 + . . .+x2d
n ), where

q(x1, . . . , xn) is a real polynomial of total degree less than
2d and where λ is a positive real number. This class is of
interest because information on the global minimum of q can
be obtained from pλ by letting λ tend to zero, see [6], [8].
The method can be extended to study rational functions too,
see [8].

The global minimum of a polynomial can be found by
solving the system of first order conditions and comput-
ing the values at these stationary points. For a dominated
polynomial pλ (with λ > 0 fixed) this leads to a system of
polynomial equations in Gröbner basis form with respect to
any total degree monomial ordering. Such a system has a
finite number of solutions, so that the Stetter-Möller matrix
method [10] can be applied. This leads to a set of commuting
matrices (Ax1 , . . . , Axn

) whose eigenvalues, corresponding
to a common eigenvector, yield the stationary points of pλ.
Each matrix Axi

represents the linear operator of multipli-
cation by xi in the quotient space R[x1, . . . , xn]/I , where
I is the ideal generated by the first order derivatives of pλ.
For any given polynomial r(x1, . . . , xn) the eigenvalues of
the matrix Ar = r(Ax1 , . . . , Axn

) give the values of r at the
stationary points of pλ.
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A drawback of this approach is that the size N = (2d−1)n

of Ar quickly grows large. However, all that is needed for
modern iterative eigenproblem solvers (e.g. based on Jacobi-
Davidson or Arnoldi methods [11], [4]) is a routine which
computes the action of Ar on a given vector v. The huge
number of required iterations is the main reason why this
action has to be computed efficiently. This paper focuses on
this aspect of the optimization technique.

To avoid building Ar one can associate the system of
first order derivatives of pλ with an nD-system of difference
equations, by interpreting the variables in the polynomial
equations as shift operators σ1, . . . , σn working on a multi-
dimensional time series y(t1, . . . , tn). In this way, calculation
of the left action of Ar on a given vector v requires solving
for y(t1, . . . , tn) using the difference equations. The vector
v corresponds to an initial state of the associated nD-system.
See [1], [5] for similar ideas in the 2D case.

One way to compute efficiently the left action of Ar on v is
by first setting up a corresponding shortest path problem and
to apply an algorithm like Dijkstra’s or Floyd’s algorithm, to
solve it. A drawback is that the computation of an optimal
shortest path along these lines can be quite expensive. On
the other hand, the numerical complexity of the computation
of the left action of Ar based on a shortest path solution
can be shown to depend only linearly on the total degree
of the polynomial r. Interestingly, a suboptimal path which
also achieves a numerical complexity which depends linearly
on the total degree of r is easily designed. In the case of
2D-systems when there is no additional structure in the first
order derivatives of pλ, the shortest path problem can be
solved analytically.

As an application of these techniques, the topic of H2-
model reduction from order n to n−1 is addressed. A worked
example which involves the reduction of a system of order
10 to a system of order 9 is given in the last section.

II. ALGEBRAIC BACKGROUND

Let q(x1, . . . , xn) ∈ R[x1, . . . , xn] be a real polynomial
of which we are interested in computing the global infimum
over R

n. Let d be a positive integer such that 2d (strictly)
exceeds the total degree of q(x1, . . . , xn) and consider the
one-parameter family of what will be called (Minkowski-
norm) dominated polynomials:

pλ(x1, . . . , xn) := λ(x2d
1 + . . . + x2d

n )+
q(x1, . . . , xn), λ ∈ R

+
(1)

Note that the value of pλ is dominated by the term λ(x2d
1 +

. . . + x2d
n ) when the Minkowski 2d-norm ‖(x1, . . . , xn)‖2d
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becomes large. Consequently, since its total degree 2d is
constructed to be even, the polynomial pλ has a global
minimum over R

n for each λ ∈ R
+. Information about

the global infimum of the polynomial q(x1, . . . , xn) can be
obtained by studying what happens to the global minima of
pλ(x1, . . . , xn) for λ ↓ 0, see [8]. The global minimizers
of pλ(x1, . . . , xn) are real solutions to the corresponding
system of first order conditions. This leads to a system of n
polynomial equations in n variables of the form

d(i)(x1, . . . , xn) = 0, (i = 1, . . . , n), (2)

where

d(i)(x1, . . . , xn) = x2d−1
i +

1
2dλ

∂

∂xi
q(x1, . . . , xn). (3)

It will occasionally be convenient to write d(i)(x1, . . . , xn)
in the form d(i)(x1, . . . , xn) = xm

i − f (i)(x1, . . . , xn) with
m = 2d−1 and f (i) ∈ R[x1, . . . , xn] of total degree strictly
less than m. Because of this structure, the set of polynomials
{d(i) | i = 1, . . . , n} is in Gröbner basis form with respect to
any total degree monomial ordering. The associated variety
V , the solution set to the system of equations (2), therefore
has dimension zero and the number of solutions in C

n

is finite. The associated ideal I = 〈d(i) | i = 1, . . . , n〉
generated by these polynomials, yields a quotient space
R[x1, . . . , xn]/I which is a finite dimensional vector space
of dimension N := mn. A monomial basis for this quotient
space is given by the set

B = {xα1
1 · · ·xαn

n |α1, . . . , αn ∈ {0, 1, . . . ,m − 1} }. (4)

Finite dimensionality of the quotient space R[x1, . . . , xn]/I
makes that the matrix method of Stetter-Möller can be
applied to compute the solutions to the system of equations
(2), by recasting it into the form of a large eigenvalue
problem.

A crucial observation in this approach is that polynomial
multiplication within R[x1, . . . , xn]/I is a linear operation.
Given any basis for R[x1, . . . , xn]/I , for instance the basis
B introduced above, it therefore is possible to compute the
matrix Ar associated with the linear operation of multiplica-
tion by a polynomial r(x1, . . . , xn) within R[x1, . . . , xn]/I .
It then holds that the eigenvalues of this matrix Ar are
equal to the values of r at all the (complex) solutions of the
system of equations (2). Moreover, for any two polynomials
r(x1, . . . , xn) and s(x1, . . . , xn) the corresponding matrices
Ar and As commute.

III. AN nD-SYSTEMS APPROACH

In this paper we pursue a state-space approach with respect
to the computation of the action of the linear operation of
multiplication by a polynomial r within R[x1, . . . , xn]/I ,
i.e., the action of the matrix Ar. More precisely, we will be
concerned with the left action of Ar rather than with its right
action. To this end we associate an autonomous multidimen-
sional system (an nD-system) with the set of polynomials

d(i). With each monomial xα1
1 · · ·xαn

n we associate an nD-
shift operator σα1

1 · · ·σαn
n which acts on a multidimensional

time series yt1,...,tn
according to the rule

σα1
1 · · ·σαn

n : yt1,...,tn
�→ yt1+α1,...,tn+αn

. (5)

Imposing the usual linearity properties, this allows
one to associate a polynomial r(x1, . . . , xn) with the
homogeneous multidimensional difference equation
r(σ1, . . . , σn)yt1,...,tn

= 0. In this way, the system of
polynomial equations (2) yields a system of n homogeneous
multidimensional difference equations of the form:

yt1,...,ti−1,ti+m,ti+1,...,tn
= f (i)(σ1, . . . , σn)yt1,...,tn

(6)

for i = 1, . . . , n. This expresses the fact that the value
of yt1,...,tn

at any multidimensional ‘time instant’ t =
(t1, . . . , tn) such that max{t1, . . . , tn} ≥ m, can be obtained
from the set of values for which the multidimensional time
instants have a total time (strictly) less than the total time
|t| := t1 + . . .+ tn. As a consequence, any multidimensional
time series yt1,...,tn

satisfying this system of recursions is
uniquely determined by the (ordered) set of values

w0,...,0 := {yt1,...,tn
| t1, . . . , tn ∈ {0, 1, . . . , m − 1} }. (7)

Conversely, each choice for w0,...,0 yields a corresponding
solution for yt1,...,tn

. In state-space terms, the (ordered) set of
values w0,...,0 acts as an initial state for the autonomous ho-
mogeneous system of multidimensional difference equations
(6). This point of view can be formalized by introducing the
state vector wt1,...,tn

at the multidimensional time instant
(t1, . . . , tn) as the (ordered) set of values

wt1,..,tn
:= {yt1+s1,..,tn+sn

|s1, .., sn ∈ {0, ..,m − 1}} (8)

According to this definition, two state vectors wt1,...,tn
and

wt1+α1,...,tn+αn
, with αi ≥ 0 (i = 1, . . . , n), are related by

wt1+α1,...,tn+αn
= σα1

1 · · ·σαn
n wt1,...,tn

, (9)

where the nD-shift operates on such state vectors in an
element-wise fashion. Since this operator is linear, the latter
relation can also be cast in the usual matrix-vector form.
This requires a choice of basis. If this choice is made to
correspond to (4) it holds that

wt1,...,ti−1,ti+1,ti+1,...,tn
= σiwt1,...,tn

= AT
xi

wt1,..,tn
, (10)

where the matrix Axi
again denotes the matrix previously as-

sociated with multiplication by the polynomial xi. Note that
there is a transpose involved in this relationship. As a con-
sequence wt1+α1,...,tn+αn

= (AT
x1

)α1 · · · (AT
xn

)αnwt1,...,tn
,

which shows that the general solution to the autonomous
multidimensional system with initial state w0,...,0 is given
by

wt1,...,tn
= (AT

x1
)t1 · · · (AT

xn
)tnw0,...,0. (11)

For an arbitrary polynomial r(x1, . . . , xn) it holds that

r(σ1, . . . , σn)wt1,...,tn
= AT

r(x1,...,xn)wt1,...,tn
. (12)

Our interest is in computing the eigenvalues of the matrix
Ar(x1,...,xn), which are the same as those of its transpose
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AT
r(x1,...,xn) and which may conveniently be studied from

the perspective of the autonomous nD-system introduced
above. Note that if v is a left eigenvector of Axi

(hence
a right eigenvector of AT

xi
) with a corresponding eigenvalue

µi, then it holds that AT
xi

v = µiv. In terms of the nD-system
this implies that the choice w0,...,0 := v for the initial state
produces a scaled version for the state: w0,...,0,1,0,...,0 = µiv,
which relates to a shift in the multidimensional time space
by 1 in the direction of the i-th time axis only. However,
the vectors w0,...,0 and w0,...,0,1,0,...,0 have mn − m(n−1)

elements in common (in shifted positions), showing that the
left eigenvectors of Axi

exhibit a special structure and will be
called Stetter vectors. Because all matrices Ar commute, the
eigenspaces of all these matrices can be spanned by the same
set of Stetter vectors. The entries of these Stetter vectors are
products of powers of the eigenvalues µi, (i = 1, . . . , n) of
the shift operators σi, (i = 1, . . . , n).

At a solution (ξ1, . . . , ξn) to the system of equations
(2) it holds that there exists a common Stetter vector v
such that each of the coordinates ξi is an eigenvalue of
the matrix Axi

for which v is a left eigenvector. Then
for each arbitrary polynomial r the value r(ξ1, . . . , ξn) is
an eigenvalue of the matrix Ar for which v is also a left
eigenvector. Conversely, for each eigenvalue µr of Ar there
exists a solution (ξ1, . . . , ξn) to the system (2) such that
µr = r(ξ1, . . . , ξn). Then there also exists a corresponding
Stetter vector v which is a left eigenvector of Ar for the
eigenvalue µr as well as a left eigenvector of each of the
matrices Axi

for the eigenvalue ξi, (i = 1, . . . , n). As a
consequence, if µr is an eigenvalue of Ar with multiplicity
one, then the associated solution (ξ1, . . . , ξn) to the system
(2) for which µr = r(ξ1, . . . , ξn) can be retrieved from a
corresponding left eigenvector of Ar.

A straightforward deployment of the Stetter-Möller ma-
trix method for computing the global minimum for pλ

now proceeds as follows. First a suitable choice for the
polynomial r is made and the matrix Ar is constructed.
Then its eigenvalues and eigenvectors are computed, from
which the corresponding solutions to the system (2) are
determined. The real solutions are plugged into the crite-
rion pλ(x1, . . . , xn). The smallest value yields the global
minimum and any corresponding minimizer can be read off.

However, a serious bottleneck in this approach from a
computational point of view is constituted by the eigen-
value/vector calculations that have to be performed for the
matrix Ar. As a matter of fact, the N×N matrix Ar quickly
grows large, since N = mn. As we have argued above,
the (left) eigenvectors of Ar can always be chosen to be
structured vectors. Therefore we are dealing with a large
structured eigenvalue problem.

IV. ITERATIVE SOLUTION METHODS FOR
LARGE EIGENVALUE PROBLEMS

State-of-the-art methods for the solution of large eigen-
value problems are the iterative methods of Arnoldi ([9]) or
Jacobi-Davidson ([4], [11]). Such methods have the attractive
feature that they do not operate on the matrix Ar directly.

Instead they iteratively perform the action of the linear oper-
ator at hand, for which it suffices to implement a computer
routine that is able to compute this action for any given vector
v. The nD-system approach offers a framework to compute
this action by initializing the initial state as w0,...,0 := v
and using the n recursions (6) in combination with the
relationship (12) to obtain the vector r(σ1, . . . , σn)w0,...,0 =
AT

r w0,...,0, which entirely avoids an explicit construction of
the matrix Ar. Note that r(σ1, . . . , σn)w0,...,0 consists of a
linear combination of state vectors wt1,...,tn

; each monomial
term rα1,...,αn

xα1
1 · · ·xαn

n that occurs in r(x1, . . . , xn) cor-
responds to a weighted state vector rα1,...,αn

wα1,...,αn
.

If attention is focused on the computation of all the
stationary points of pλ, then the actions of the matrices AT

xi
,

for all i = 1, . . . , n, play a central role since their eigenvalues
constitute the coordinates of these stationary points.

If instead attention is focused on the computation of the
values of pλ at the stationary points, then on the one hand the
computation of the action of AT

pλ
becomes more expensive.

But on the other hand, for AT
pλ

only the smallest real
eigenvalue is required that corresponds to a real stationary
point, an option supported by Arnoldi or Jacobi-Davidson
methods; to avoid the computation of all the eigenvalues may
lead to huge savings.

V. EFFICIENT COMPUTATION OF STATE VECTOR

In this section we address an efficient way for com-
puting yt1,...,tn

for a given multidimensional time instant
(t1, . . . , tn). The computational complexity that can be
achieved by an optimal algorithm to compute the value
of yt1,...,tn

from a given initial state w0,...,0 using the n
difference equations (6) is addressed by the following result.
For each multidimensional time instant t = (t1, . . . , tn)
recall that the ‘total time’ is denoted by |t| := t1 + . . . + tn.
Then it is not difficult to show that an optimal algorithm has
a computational complexity that increases linearly with the
total time |t|.

Theorem 5.1: Consider a set of n multidimensional recur-
sions of the form (6) and a let an initial state w0,...,0 be given.
Then every algorithm that computes the value of yt1,...,tn

,
using the recursions (6), has a computational complexity
which increases at least linearly with the total time |t|.
Proof. Each recursion from the set (6) allows one to compute
the value of yt1,...,tn

from a set of values for which the total
times are all within the range |t|−m, |t|−m+1, . . . , |t|−1.
The largest total time among the entries of the initial state
w0,...,0 corresponds to ym−1,...,m−1 and is equal to n(m−1).
Therefore, to express yt1,...,tn

in terms of the quantities
contained in the initial state requires at least 	(|t| − n(m −
1))/m
 applications of a recursion from the set (6). Hence,
the computational complexity of any algorithm along such
lines increases at least linearly with |t|. �
On the other hand, it is not difficult to design an algorithm
which achieves a computational complexity that is indeed
linear in |t|. This may proceed as follows. Since yt1,...,tn

is
contained in wt1,...,tn

= (AT
x1

)t1 · · · (AT
xn

)tnw0,...,0, it can
be computed by the joint action of t1 + . . . + tn = |t|
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matrices of the form AT
xi

. It is not difficult to compute a
fixed uniform upper bound on the computational complexity
involved in the action of each of the matrices Axi

, because
only the time instants that have a total time which does not
exceed n(m − 1) can assist in this computation and their
number is finite. In view of the previous theorem this shows
that an optimal algorithm for the computation of yt1,...,tn

has a computational complexity that increases linearly with
the total time |t|. Clearly, similar arguments and results also
hold for the computation of a state vector wt1,...,tn

. The
problem of finding an optimal algorithm for the computation
of yt1,...,tn

from w0,...,0 using the recursions (6), can be
cast into the form of a shortest path problem. In general,
a standard formulation of a shortest path problem requires
the specification of a directed graph G = (V,E,W, vI , vT ),
consisting of a set V of vertices, a set E ⊆ V × V of
edges, a weight function W : E → R, and an indication
of an initial vertex vI ∈ V and a terminal vertex vT ∈ V .
To compute a shortest path from vI to vT , which is a
path connecting vI and vT entirely consisting of edges in
E achieving a smallest total weight, one may apply any
standard algorithm (e.g. Dijkstra’s or Floyd’s algorithm). In
this formulation, the set V should correspond to the various
‘states’ in which the computational procedure can be and
it is natural to relate a state v ∈ V in some way to a set
of multidimensional time instants (t1, . . . , tn) for which the
value of yt1,...,tn

either is already available or, depending
on the set-up, still requires computation. The edges E relate
to ‘state transitions’. Therefore they are naturally associated
with the recursions in the set (6). The weight function W
specifies the computational ‘costs’, (e.g., the number of
flops) associated with these recursions. To avoid applying an
infinite sequence of recursions without ever arriving at the
specified multidimensional time instant (t1, . . . , tn), one may
start from the time instant (t1, . . . , tn) and work backwards,
by figuring out sets of time instants which may assist in
the computation of yt1,...,tn

. Note that the total time |t| then
provides an upper bound on the total time of all such time
instants, which makes V into a finite set. Another feature
of the problem is that for many subsets of computations the
exact order in which they are carried out does not matter,
so that a lot of permutations of actions achieve equivalent
performance. Already for small values of n, m and |t| this
makes that the graph G can become very large. One helpful
observation in constructing a useful shortest path formulation
has already been mentioned above: the total time |t| provides
a strict upper bound on the set of time instants which may
assist in the computation of yt1,...,tn

when a recursion from
the set (6) is applied. Therefore: (i) any sequence of time
instants which facilitates the computation of yt1,...,tn

from
w0,...,0 can always be reorganized such that the total time
increases monotonically; (ii) the computation of values at
time instants having the same total time can be carried out in
any arbitrary order. This makes it natural to relate the vertices
v ∈ V to sets of time instants having the same total time,
rather than to individual time instants. This is formalized by
the following definitions.

Definition 5.2: For k = 1, 2, . . ., let Tk be the set of
all multidimensional time instants t = (t1, . . . , tn) ∈ N

n
0

for which |t| = k and max{t1, . . . , tn} ≥ m. Let Vk be
the power set of Tk. Let V� be the set of time instants
corresponding to the initial state w0,...,0 (i.e., for which
max{t1, . . . , tn} < m).
Given a specified multidimensional time instant t =
(t1, . . . , tn), define V as the set of all tuples v =
(v1, . . . , v|t|) ∈ V1 × · · · × V|t|. Define the initial state as
vI = (φ, . . . , φ) (where φ denotes the empty set) and define
the set of terminal states vT to consist of those tuples for
which v|t| consists of the time instant t only.
Define E as the set of all the ordered pairs (v, ṽ) ∈ V × V
such that: (i) ṽk = vk for precisely |t| − 1 values of k from
the set {1, . . . , |t|}; (ii) for the unique value of k such that
ṽk �= vk it holds that vk = vk+1 = . . . = v|t| = φ and the set
ṽk consists entirely of time instants at which each value of
yt1,...,tn

can be computed from the values at the time instants
contained in the union of sets V� ∪ v1 ∪ . . . ∪ vk−1 through
the application of a single recursion from the set (6).
Define W : E → R to reflect the computational costs
involved in the transitions from v to ṽ contained in the
set E. The computation of an element from ṽk through
the application of a recursion from the set (6) requires a
certain number of flops which is determined by the number
of terms involved in that recursion. If the element from ṽk

can be computed in several ways, the minimal number of
flops involved should be counted. The computational costs
of a transition from v to ṽ are defined as the sum of all the
(minimal) costs to compute the elements of the set ṽk.
Define the weighted directed graph G as the tuple G =
(V,E,W, vI , vT ). This specifies an associated shortest path
problem which models the optimal computation of yt1,...,tn

from w0,...,0 using the recursions (6).
Note that the graph G has a tree structure rather than a
network structure, which makes it possible to apply branch
and bound techniques for tree searching. Note also that the
set of terminal states vT is easily replaced by a single
terminal state, by connecting the states in vT to a joint
end node v† with a zero associated cost. An interesting
relaxation of this shortest path formulation is obtained when
the condition (ii) in the definition of the set of edges E is
replaced by the condition that the set ṽk consists entirely
of time instants at which each value of yt1,...,tn

can be
computed from the values at the time instants contained in
the union of sets V� ∪ T1 ∪ . . . ∪ Tk−2 ∪ vk−1 through the
application of a single recursion from the set (6). In this
case, each state v ∈ V may be restricted to the element vk

for which k is as large as possible with vk non-empty (and
the definition of the edges E should be adapted accordingly).
This further reduces the size of the shortest path problem.
The value of the shortest path thus obtained provides a lower
bound for the value of a true optimal path, but in case the
recursions in (6) are not sparse, this lower bound is likely to
be close to the optimal value.

For the two-dimensional case in the situation where the
recursions in (6) describe ‘full patterns’ (i.e., all the terms
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possibly participating in the recursions are present), it is
possible to solve the relaxation of the shortest path problem
analytically. This solution also applies to the shortest path
problem itself and it allows for the design of an optimal
algorithm for the computation of yt1,t2 from w0,0 and the
two available recursions. When displayed on a 2D grid,
the computation of a point located at (t1, t2) requires the
values of m consecutive points on the diagonal just below
the diagonal for (t1, t2). To compute these m points, 2m−1
consecutive points are required on the diagonal one further
below. However, to compute these 2m−1 points, again only
2m − 1 points on the next diagonal below are required and
this pattern continues.

Because the shortest path problem in the setting described
above has a high computational complexity, some heuristic
methods to compute yt1,...,tn

were developed and tested: (i)
The linear method first calculates all the values yt1,...,tn

with |t| ≤ n(m − 1), which precisely covers the hypercube
of initial values w0,...,0. Then the pattern of values with
|t| = n(m − 1) is shifted step by step, with each step
involving a single shift in one of the axis directions, until the
requested location is reached. Note that the shifted patterns
of values can always be computed from the values already
available. (ii) The diagonal method proceeds by computing
the values yt1,...,tn

for all the time instances for which |t|
is constant, increasing |t| one by one, until the requested
location is reached. (iii) The equalizing method computes a
requested point by applying the recursion which reduces the
largest coordinate of the time instant. (iv) The axis method
computes a requested point by applying the recursion which
reduces the smallest possible coordinate of the time instant.

In higher dimensions (e.g., n > 10) the linear method
encounters serious problems because the simplex entirely
covering the initial hypercube becomes very large. The
‘equalizing method’ performs best for points having (almost)
equal coordinates. The ‘axis method’ performs better for
points near the coordinate axes.The ‘diagonal method’ never
exhibits a linear numerical complexity with respect to |t| and
is therefore very inefficient.

To support some of these statements, simulation experi-
ments have been performed with n = 2 and m = 3, where
the state vectors wt1,t2 for the time instances t0,500, t125,375,
t250,250, t375,125 and t500,0 are to be computed. In Figure
1 the points are displayed which are computed to facilitate
the computation of the desired state vectors from the 3 × 3
initial state w0,0. In the upper left corner the results for
the linear method are plotted. This way of computing the
time instances is the most efficient. In the upper right plot
the points calculated by the inefficient diagonal method are
shown. The lower left plot displays the points required by
the equalizing method and the lower right plot concerns the
axis method. The number of points evaluated by these four
methods are 7460, 127756, 113988 and 54597, respectively.
Because the linear method is efficient for small values of n
but becomes inefficient when the dimension of the problem
increases, a fifth method has been implemented with almost
the same performance as the linear method. This method

Fig. 1. Points calculated by the various methods
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Fig. 2. Points calculated by the fifth method

proceeds by keeping track of values already required for
computation and applying at each point a recurrence relation
that needs a minimal number of new values to be calculated
(see figure 2). This method turns out to be more efficient
than the linear method for larger values of n.

VI. H2 MODEL REDUCTION FROM ORDER n TO
ORDER n − 1

A. Theory

Suppose we are dealing with a (causal) stable linear time-
invariant SISO system in continuous time, with transfer
function H(s). If the system involves a finite dimensional
state space, then the dimension n of the state space is called
the system order and H(s) is a proper rational function
of McMillan degree n. In [7] a method is described for
computing a globally optimal H2-approximation G(s) of
order n − 1 for such a given function H(s). Only the case
where H(s) has n distinct poles is examined. Note that the
H2-norm provides a system theoretically meaningful way
to measure the distance between H(s) and G(s). In [7],
this problem is transformed into the problem of finding the
solution set of a system of n quadratic polynomial equations
in n variables x1, . . . , xn:

x2
1 = m1,1x1 + m1,2x2 + . . . + m1,nxn

...
x2

n = mn,1x1 + mn,2x2 + . . . + mn,nxn

This system is in Gröbner basis form; the coefficients
mi,j are complex. Therefore the system has a finite set
of (complex) solutions. For each solution a corresponding
approximation G(s) can be computed. But G(s) is only
a feasible solution if it is real and stable. Several local
minima will exist and there will always be a global minimum.
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As it happens, a complex homogeneous polynomial p of
degree 3 can be computed that coincides with the H2-model
reduction criterion at the stationary points (x1, . . . , xn):
p(x1, . . . , xn) = p1x

3
1 + . . . + pnx3

n. Using the system of
quadratic equations as the set of polynomials d(i) in (2)
and the polynomial p of order 3 as the function r in (12),
the theory of the previous sections for computing the global
optimum of a polynomial can be applied. Note that in [7]
the matrices Axi

were constructed explicitly; the techniques
of the present paper make it possible to avoid this. This has
the benefit that the matrices Axi

which are of size 2n × 2n

do not have to be stored into memory, which may lead to
significant savings on required memory and CPU time. In
[7] the highest possible order to perform model reduction
was 9, for larger values severe memory problems occurred.
Here we demonstrate the potential of the present paper by an
example which involves the reduction of a system of order
10 to a system of order 9.

B. An example

The stable system of order 10 considered in this example
has the following transfer function:

(8.00769 · 10−6 + 1.71974s + 260.671s2 + 1254.63s3 + 899.401s4

+1246.85s5 + 181.506s6 + 276.659s7 − 1.22269s8 + 15.77s9)/
(1.60154 · 10−7 + 0.0541886s + 17.9691s2 + 147.766s3 + 138.541s4

+252.726s5 +99.6262s6 +71.4313s7 +19.6362s8 +5.15548s9 +s10)

To compute the reduced order model, a system of 10
quadratic equations needs to be solved, yielding a finite
number of complex solutions (x1, . . . , x10). The associated
complex homogeneous polynomial of degree 3 which co-
incides with the H2-criterion function at these solutions is
computed as: 3.83344 · 10−20x3

1 + (1.36467 · 10−14 − 1.00376 ·
10−15i)x3

2 + (1.36467 · 10−14 + 1.00376 · 10−15i)x3
3 + (3.58175 ·

10−7 + 2.48189 · 10−7i)x3
4 + (3.58175 · 10−7 − 2.48189 · 10−7i)x3

5 +

0.415865x3
6−(9.03372·10−10−1.13998·10−9i)x3

7−(9.03372·10−10+

1.13998 · 10−9i)x3
8 + 1.93482 · 107x3

9 + 1.97345 · 1013x3
10.

All the calculations were done on a Dual Xeon Pentium
IV 3.2 GHz with 4096 MB internal memory. To be able
to compare the results of the approach of the present paper
with the methodology described in [7], we first constructed
the 1024 × 1024 matrix Ap explicitly with Mathematica
5.0.1. Then the built-in function Eigensystem was used
to calculate the eigensystem of Ap. Together this required
30332 seconds and 350 MB of memory. The matrix Ap has
45 real eigenvalues, with the smallest eigenvalue computed
as 4.895931822960051 · 10−4. This global minimum has as
coordinates x1 = 78.6020 − 4.25234 · 10−7i, x2 = −0.180875 −
0.343180i, x3 = −0.180875 + 0.343180i, x4 = −0.00155184 −
0.00377204i, x5 = −0.00155184 + 0.00377204i, x6 = 0.000289407,

x7 = −0.00193041+0.00371561i, x8 = −0.00193041−0.00371561i,

x9 = 5.99264 · 10−6, x10 = 2.91654 · 10−6. The corresponding
optimal stable approximation G(s) of order 9 is given by:

(−1.14790 + 261.273s + 1254.42s2 + 899.312s3 + 1246.83s4

+181.477s5 + 276.658s6 − 1.22433s7 + 15.7700s8)/
(0.0538714 + 17.9585s + 147.756s2 + 138.523s3 + 252.714s4

+99.6209s5 + 71.4287s6 + 19.6358s7 + 5.15532s8 + s9)

To compute only the smallest non-zero real eigen-
value/eigenvector, we used iterative sparse eigenvalue
solvers which allow for the computation of the eigenval-
ues/eigenvectors of the matrices without specifying them
explicitly. For this purpose the methods Jdqr, Jdqz and
Eigs can be used. Eigs is a standard Matlab routine which
uses the (restarted) Arnoldi-methods through ARPACK ([9]).
Jdqr (eigensolver) and Jdqz (generalized eigensolver) use
Jacobi-Davidson methods ([4], [11]).

Because the condition numbers of the operators involved
are very large, a balancing technique was used (see [3])
which reduces the norm of the matrix by using methods of
Perron-Frobenius and the direct iterative method.

The smallest real non-zero eigenvalue was computed us-
ing the software Jdqz. For the operator associated with
Ap the zero solution was discarded which decreases the
dimension of the operator by one to 1023. The computation
by Jdqz took 23800 seconds and used 150 MB of mem-
ory. The smallest real eigenvalue computed in this way is
4.895931819886820 · 10−4. The corresponding solution is
computed from the Stetter vector as: x1 = 78.6020 − 4.25235 ·
10−7i, x2 = −0.180875 − 0.343180i, x3 = −0.180875 + 0.343180i,

x4 = −0.00155199−0.00377204i, x5 = −0.00155184+0.00377205i,

x6 = 0.000289407 − 5.73819 · 10−11i, x7 = −0.00193041 +

0.00371561i, x8 = −0.00193042−0.00371561i, x9 = 5.99264·10−6+

3.38181·10−14i, x10 = 2.91654·10−6−1.574765·10−14i. The stable
approximation G(s) of order 9 computed from this solution
happens to agree entirely with the approximation previously
given above, showing the potential of this approach.
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