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Abstract— The Network Utility Maximization problem has
recently been used extensively to analyze and design distributed
rate allocation in networks such as the Internet. A major
limitation in the state-of-the-art is that user utility functions
are assumed to be strictly concave functions, modeling elastic
flows. Many applications require inelastic flow models where
nonconcave utility functions need to be maximized. It has been
an open problem to find the globally optimal rate allocation
that solves nonconcave network utility maximization, which is
a difficult nonconvex optimization problem.

We provide a centralized algorithm for off-line analysis and
establishment of a performance benchmark for nonconcave
utility maximization. Based on the semialgebraic approach
to polynomial optimization, we employ convex sum-of-squares
relaxations solved by a sequence of semidefinite programs, to
obtain increasingly tighter upper bounds on total achievable
utility for polynomial utilities. Surprisingly, in all our experi-
ments, a very low order and often a minimal order relaxation
yields not just a bound on attainable network utility, but the
globally maximized network utility. When the bound is exact,
which can be proved using a sufficient test, we can also recover
a globally optimal rate allocation. In addition to polynomial
utilities, sigmoidal utilities can be transformed into polyno-
mials and are handled. Furthermore, using two alternative
representation theorems for positive polynomials, we present
price interpretations in economics terms for these relaxations,
extending the classical interpretation of independent congestion
pricing on each link to pricing for the simultaneous usage of
multiple links.

Keywords: Nonconvex optimization, network utility, rate
allocation, algebraic geometry, sum of squares method.

I. INTRODUCTION

A. Background: Basic network utility maximization

Since the publication of the seminal paper [6] by Kelly,
Maulloo, and Tan in 1998, the framework of Network
Utility Maximization (NUM) has found many applications
in network rate allocation algorithms and Internet congestion
control protocols (e.g., [10]), as well as user behavior models
and network efficiency-fairness characterization. By allowing
nonlinear concave utility objective functions, NUM substan-
tially expands the scope of the classical LP-based Network
Flow Problems.

Consider a communication network with L links, each
with a fixed capacity of cl bps, and S sources (i.e., end users),
each transmitting at a source rate of xs bps. Each source s
emits one flow, using a fixed set L(s) of links in its path,
and has a utility function Us(xs). Each link l is shared by a
set S(l) of sources. Network Utility Maximization (NUM),

in its basic version, is the following problem of maximizing
the total utility of the network

∑
s Us(xs), over the source

rates x, subject to linear flow constraints
∑

s:l∈L(s) xs ≤ cl

for all links l:

maximize
∑

s Us(xs)
subject to

∑
s∈S(l) xs ≤ cl, ∀l,

x � 0
(1)

where the variables are x ∈ RS .
There are many nice properties of the basic NUM model

due to several simplifying assumptions of the utility func-
tions and flow constraints, which provide the mathematical
tractability of problem (1) but also limit its applicability. In
particular, the utility functions {Us} are often assumed to be
increasing and strictly concave functions. In this paper, we
investigate the extension of the basic NUM to maximization
of nonconcave utilities.

Assuming that Us(xs) becomes concave for large enough
xs is reasonable, because the law of diminishing marginal
utility eventually will be effective. However, Us may not
be concave throughout its domain. In his seminal paper
published a decade ago, Shenker [18] differentiated inelastic
network traffic from elastic traffic. Utility functions for elas-
tic traffic were modeled as strictly concave functions. While
inelastic flows with nonconcave utility functions represent
important applications in practice, they have received little
attention and rate allocation among them have scarcely any
mathematical foundation, except the very recent publications
[9], [3], due to their intrinsic intractability in the utility
maximization framework.

B. Review: Canonical distributed algorithm

A reason that the the assumption of utility function’s
concavity is upheld in almost all papers on NUM is that
it leads to three highly desirable mathematical properties of
the basic NUM:

• It is a convex optimization problem, therefore the global
minimum can be computed (at least in centralized
algorithms) in worst-case polynomial-time complexity
[2].

• Strong duality holds for (1) and its Lagrange dual
problem, i.e., the difference between the optimized
value of (1) and that of its dual problem (the optimal
duality gap) is zero [1], [2]. Zero duality gap enables a
dual approach to solve (1).
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• Minimization of a separable objective function over
linear constraints can be conducted by distributed al-
gorithms based on the dual approach.

Indeed, the basic NUM (1) is such a ‘nice’ optimization
problem that its theoretical and computational properties
have been well studied since the 1960s in the field of
monotropic programming, e.g., as summarized in [15]. For
network rate allocation problems, a dual-based distributed
algorithm has been widely studied (e.g., in [6], [10]), and is
summarized below.

Zero duality gap for (1) states that the solving the La-
grange dual problem is equivalent to solving the primal
problem (1). The Lagrange dual problem is readily derived.
We first form the Lagrangian of (1):

L(x,λ) =
∑

s

Us(xs) +
∑

l

λl

⎛
⎝cl −

∑
s∈S(l)

xs

⎞
⎠

where λl ≥ 0 is the Lagrange multiplier (link congestion
price) associated with the linear flow constraint on link l.
Additivity of total utility and linearity of flow constraints lead
to a Lagrangian dual decomposition into individual source
terms:

L(x,λ) =
∑

s

⎡
⎣Us(xs) −

⎛
⎝ ∑

l∈L(s)

λl

⎞
⎠ xs

⎤
⎦ +

∑
l

clλl

=
∑

s

Ls(xs, λ
s) +

∑
l

clλl

where λs =
∑

l∈L(s) λl. For each source s, Ls(xs, λ
s) =

Us(xs)− λsxs only depends on local xs and the link prices
λl on those links used by source s.

The Lagrange dual function g(λ) is defined as the maxi-
mized L(x,λ) over x. This ‘net utility’ maximization obvi-
ously can be conducted distributively by the each source, as
long as the aggregate link price λs =

∑
l∈L(s) λl is available

to source s, where source s maximizes a strictly concave
function Ls(xs, λ

s) over xs for a given λs:

x∗

s(λ
s) = argmax [Us(xs) − λsxs] , ∀s. (2)

The Lagrange dual problem is

minimize g(λ) = L(x∗(λ),λ)
subject to λ � 0

(3)

where the optimization variable is λ. Any algorithms that
find a pair of primal-dual variables (x,λ) that satisfy the
KKT optimality condition would solve (1) and its dual prob-
lem (3). One possibility is a distributed, iterative subgradient
method, which updates the dual variables λ to solve the dual
problem (3):

λl(t + 1) =

⎡
⎣λl(t) − α(t)

⎛
⎝cl −

∑
s∈S(l)

xs(λ
s(t))

⎞
⎠

⎤
⎦

+

, ∀l

(4)
where t is the iteration number and α(t) > 0 are step sizes.
Certain choices of step sizes, such as α(t) = β/t, β > 0,

guarantee that the sequence of dual variables λ(t) will con-
verge to the dual optimal λ

∗ as t → ∞. The primal variable
x(λ(t)) will also converge to the primal optimal variable
x
∗. For a primal problem that is a convex optimization, the

convergence is towards the global optimum.
The sequence of the pair of algorithmic steps (2,4) forms

a canonical distributed algorithm that globally solves net-
work utility optimization problem (1) and the dual (3) and
computes the optimal rates x

∗ and link prices λ
∗.

C. Summary of results

It is known that for many multimedia applications, user
satisfaction may assume non-concave shape as a function
of the allocated rate. For example, the utility for streaming
applications is better described by a sigmoidal function: with
a convex part at low rate and a concave part at high rate, and
a single inflexion point x0 (with U ′′

s (x0) = 0) separating the
two parts. The concavity assumption on Us is also related
to the elasticity assumption on rate demands by users. When
demands for xs are not perfectly elastic, Us(xs) may not be
concave.
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Fig. 1. Some examples of utility functions Us(xs): it can be concave
or sigmoidal as shown in the graph, or any general nonconcave function.
If the bottleneck link capacity used by the source is small enough, i.e., if
the dotted vertical line is pushed to the left, a sigmoidal utility function
effectively becomes a convex utility function.

Suppose we remove the critical assumption that {Us}
are concave functions, and allow them to be any nonlinear
functions. The resulting NUM becomes nonconvex optimiza-
tion and significantly harder to be analyzed and solved,
even by centralized computational methods. In particular,
a local optimum may not be a global optimum and the
duality gap can be strictly positive. The standard distributive
algorithms that solve the dual problem may produce infea-
sible or suboptimal rate allocation. Global maximization of
nonconcave functions is an intrinsically difficult problem of
nonconvex optimization. Indeed, over the last two decades, it
has been widely recognized that “in fact the great watershed
in optimization isn’t between linearity and nonlinearity, but
convexity and nonconvexity” (Quote from Rockafellar [16]).

Despite such difficulties, there have been two very re-
cent publications on distributed algorithm for nonconcave
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utility maximization. In [9], it is shown that, in general,
the canonical distributive algorithm that solves the dual
problem may produce suboptimal, or even infeasible, rate
allocation, and a ‘self-regulation’ heuristic is proposed to
avoid the resulting oscillation in rate allocation. However,
the heuristic converges only to a suboptimal rate allocation.
In [3], a set of sufficient conditions and necessary conditions
is presented under which the canonical distributed algorithm
still converges to the globally optimal solution. However,
these conditions may not hold in many cases. In summary,
currently there is no theoretically polynomial-time and prac-
tically efficient algorithm (distributed or centralized) known
for nonconcave utility maximization.

In this paper, we remove the concavity assumption on util-
ity functions, thus turning NUM into a nonconvex optimiza-
tion problem with a strictly positive duality gap. Such prob-
lems in general are NP hard, thus extremely unlikely to be
polynomial-time solvable even by centralized computations.
Using a family of convex semidefinite programming (SDP)
relaxations based on the sum-of-squares (SOS) relaxation
and the Positivstellensatz Theorem in real algebraic geome-
try, we apply a centralized computational method to bound
the total network utility in polynomial-time. A surprising
result is that for all the examples we have tried, wherever we
could verify the result, the tightest possible bound (i.e., the
globally optimal solution) of NUM with nonconcave utilities
is computed with a very low order relaxation. This efficient
numerical method for off-line analysis also provides the
benchmark for distributed heuristics. We also examine two
forms of sigmoidal utilities, and use a change of variables
to transform the original problem into one that involves only
polynomials. The sum-of-squares approach mentioned above
can then be applied.

Our focus has been not only on calculating numerical
bounds for the problem, but also on understanding the
inner workings of the relaxations, and the mechanism be-
hind the tightening of the upper bound, in the context of
NUM problems. In this regard, we have examined two
polynomial representations that are particularly suited for an
economics/price interpretation of NUM. One result is that
the classical pricing of congestion on a link is (partially)
extended to pricing of the usage of multiple links.

These three different approaches: proposing distributed but
suboptimal heuristics (for sigmoidal utilities) in [9], deter-
mining optimality conditions for the canonical distributed
algorithm to converge globally (for all nonlinear utilities)
in [3], and proposing efficient but centralized method to
compute the global optimum (for a wide class of utilities that
can be transformed into polynomial utilities) in this paper, are
complementary in the study of distributed rate allocation by
nonconcave NUM, a difficult class of nonlinear optimization.

II. GLOBAL MAXIMIZATION OF NONCONCAVE NETWORK

UTILITY

A. Sum-of-squares method

First consider a NUM with polynomial utilities, such as
Us(xs) = x2

s. Sigmoidal utilities will be considered in

subsection III.B. For notational simplicity, we assume the
domain of definition of the Us(xs) implies xs ≥ 0.

maximize
∑

s Us(xs)
subject to

∑
s∈S(l) xs ≤ cl, ∀l.

(5)

We would like to bound the maximum network utility by
γ in polynomial time and search for a tight bound. Had there
been no link capacity constraints, maximizing a polynomial
is already an NP hard problem, but can be relaxed into a
SDP [19]. This is because testing if the following bounding
inequality holds γ ≥ p(x), where p(x) is a polynomial of
degree d in n variables, is equivalent to testing the positivity
of γ−p(x), which can be relaxed into testing if γ−p(x) can
be written as a sum of squares (SOS): p(x) =

∑r
i=1 qi(x)2

for some polynomials qi, where the degree of qi is less than
or equal to d/2. This is referred to as the SOS relaxation (for
unconstrained minimization/maximization). If a polynomial
can be written as a sum of squares, it must be non-negative,
but not vice versa. Conditions under which this relaxation
is tight were studied since Hilbert, and it is known that, for
example, the relaxation is tight for quadratic polynomials.
Determining if a sum of squares decomposition exists can be
formulated as an SDP feasibility problem, thus polynomial-
time solvable.

Constrained nonconcave NUM can be relaxed by a gen-
eralization of the Lagrange duality theory, which involves
nonlinear combinations of the constraints instead of linear
combinations in the standard duality theory, as discussed in
the next section. The key result is the Positivstellensatz, due
to Stengle [20], in real algebraic geometry, which states that
for a system of polynomial inequalities, either there exists
a solution in Rn or there exists a polynomial which is a
certificate that no solution exists. This infeasibility certificate
is recently shown to be also computable by an SDP of
sufficient size [12], [11], a process that is referred to as
the sum-of-squares method 1 and automated by the software
SOSTOOLS [13].

Furthermore, as will be leveraged in the next section,
the bound γ itself can become an optimization variable in
the SDP and can be directly minimized. A nested family
of SDP relaxations, each indexed by the degree of the
certificate polynomial, is guaranteed to produce the exact
global maximum. Of course, given the problem is NP hard,
it is not surprising that the worst-case degree of certificate
(thus the number of SDP relaxations needed) is exponential
in the number of variables. What is interesting is the ob-
servation that in applying SOSTOOLS to nonconcave utility
maximization, a very low order, often the minimum order
relaxation already produces the globally optimal solution.

B. Application of SOS method to nonconcave NUM

Using sum-of-squares and the Positivstellensatz, we set
up the following problem whose objective value converges

1For a complete theory and many applications of SOS methods, see [12]
and references therein.
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to the optimal value of problem (5), as the degree of the
polynomials involved is increased.

minimize γ
subject to
γ −

∑
s Us(xs) −

∑
l λl(x)(cl −

∑
s∈S(l) xs)

−
∑

j,k λjk(x)(cj −
∑

s∈S(j) xs)(ck −
∑

s∈S(k) xs)−

. . . − λ12...n(x)(c1 −
∑

s∈S(1) xs) . . . (cn −
∑

s∈S(n) xs)

is SOS,
λl(x), λjk(x), . . . , λ12...n(x) are SOS.

(6)
The optimization variables are γ and all of the coefficients
in polynomials λl(x), λjk(x), . . . , λ12...n(x). Note that x

is not an optimization variable; the constraints hold for
all x, therefore imposing constraints on the coefficients.
This formulation uses Schmüdgen’s representation of pos-
itive polynomials over compact sets [17].2 Two alternative
representations are discussed in section IV.

Let D be the degree of the expression in the first constraint
in (6). We refer to problem (6) as the SOS relaxation of order
D for the constrained NUM. For a fixed D, the problem can
be solved via SDP. As D is increased, the expression includes
more terms, the corresponding SDP becomes larger, and the
relaxation gives tighter bounds. An important property of this
nested family of relaxations is guaranteed convergence of the
bound to the global maximum.

To see the relation of SOS relaxation with the Lagrange
dual, consider the simplest case of (6) where λl are nonneg-
ative constants and all other multipliers are zero,

minimize γ
subject to
γ −

∑
s Us(xs) −

∑
l λl(cl −

∑
s∈S(l) xs) is SOS,

λl ≥ 0, ∀l.

(7)

Comparing this with the Lagrange dual of (5),

minimize max
x

{
∑

s Us(xs) +
∑

l λl(cl −
∑

s∈S(l) xs)}

subject to λl ≥ 0, ∀l,
(8)

or

minimize γ
subject to
γ −

∑
s Us(xs) −

∑
l λl(cl −

∑
s∈S(l) xs) ≥ 0, ∀x

λl ≥ 0, ∀l,

shows that (7) is an SOS relaxation of (8). There are
several special cases (namely, Hilbert’s conditions) where
problems (7) and (8) are equivalent, e.g., when the utilities
are quadratic. 3

2Schmüdgen’s representation applies when γ −

∑
Us(xs) is strictly

positive on the feasible set. Therefore the convergence is asymptotic in
theory, however in practice fi nite convergence is observed most of the
time. If we were to use Stengle’s Positivstellensatz, we would have fi nite
convergence but could not have γ as an optimization variable and at each
relaxation level would have to use a bisection on γ. For computational
convenience, we choose Schmüdgen’s form.

3In fact, in the quadratic case, this relaxation coincides with the well-
known S-procedure.

There is a standard price interpretation for the Lagrange
dual. For the case of concave utilities, the dual variables λ

can be interpreted as link prices, and the bound γ from (8)
is exact.

In the non-concave utility case the gap between the
dual (8) and the original problem (5) (known as the duality
gap), and also the gap between (7) and (5) are in general
nonzero. So the γ obtained from (7) is only an upper bound;
however λ can still be interpreted as link prices, in the
following sense. If the lth capacity constraint is violated,
users incur an extra charge proportional to the amount of
violation, with price λl (since cl−

∑
s∈S(l) xs is negative and

subtracts from the total utility). Similarly, users are rewarded
proportional to the amount of under-used capacity. In sharp
contrast to the concave utility case, for nonconcave utilities,
these are not equilibrium prices and do not result in optimal
or even feasible rate allocation, unless the relaxation is exact.
In section IV, we discuss this interpretation for higher order
relaxations.

Higher order relaxations can improve the upper bound. For
example, consider allowing products of constraints such that
D = 2 (note that in this case the multiplier for the product
of two constraints has to be a constant). We have

minimize γ
subject to
γ −

∑
s Us(xs) −

∑
l λl(cl −

∑
s∈S(l) xs)−∑

j,k λjk(cj −
∑

s∈S(j) xs)(ck −
∑

s∈S(k) xs) is SOS,

λl ≥ 0, λjk ≥ 0, ∀l, j, k.
(9)

This problem is in fact the SOS relaxation of the Lagrange
dual for problem (5) with some added redundant constraints;
namely, the pairwise product of every two non-negative terms
(cj −

∑
s∈S(j) xs)(ck −

∑
s∈S(k) xs). As mentioned before,

this problem can be solved via SDP, and yields a bound that
is at least as strong as the first-order relaxation (7).

Regarding the choice of degree D for each level of
relaxation, clearly a polynomial of odd degree cannot be
SOS, so we need to consider only the cases where the
expression has even degree. Therefore, the degree of the first
non-trivial relaxation is the largest even number greater than
or equal to degree of

∑
s Us(xs), and the degree is increased

by 2 for the next level.
A key question now becomes: How do we find out, after

solving an SOS relaxation, if the bound happens to be exact?
Fortunately, there is a sufficient test that can reveal this, using
the properties of the SDP and its dual solution. In [5], [7],
a parallel set of relaxations, equivalent to the SOS ones, is
developed in the dual framework. The dual of checking the
nonnegativity of a polynomial over a semi-algebraic set turns
out to be finding a sequence of moments that represent a
probability measure with support in that set. To be a valid set
of moments, the sequence should form a positive semidefinite
moment matrix. Then, each level of relaxation fixes the size
of this matrix, i.e., considers moments up a certain order,
and therefore solves an SDP. This is equivalent to fixing the
order of the polynomials appearing in SOS relaxations. The
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sufficient rank test checks a rank condition on this moment
matrix and recovers (one or several) optimal x

∗, as discussed
in [5].

In summary, we have the following Algorithm for cen-
tralized computation of a globally optimal rate allocation to
nonconcave utility maximization, where the utility functions
can be written as or converted into polynomials (details about
such conversions are in the next section):

1) Formulate the relaxed problem (6) for a given degree
D.

2) Use SDP to solve the Dth order relaxation, which can
be conducted using SOSTOOLS [13].

3) If the resulting dual SDP solution satisfies the sufficient
rank condition, the Dth order optimizer γ∗(D) is the
globally optimal network utility, and a corresponding
x
∗ can be obtained. Otherwise, γ∗(D) may still be the

globally optimal network utility but is only provably
an upper bound.

4) Increase D to D + 2, i.e., the next higher order
relaxation, and repeat.

In the following section, we give examples of the appli-
cation of SOS relaxation to the nonconcave NUM. We also
apply the above sufficient test to check if the bound is exact,
and if so, we recover the optimum rate allocation x

∗ that
achieve this tightest bound.

III. NUMERICAL EXAMPLES AND SIGMOIDAL UTILITIES

A. Polynomial utility examples

First, consider quadratic utilities, i.e., Us(xs) = x2
s as a

simple case to start with (this can be useful, for example,
when the bottleneck link capacity limits sources to their
convex region of a sigmoidal utility). We can also handle
weights on the utilities, cubic or higher order polynomials
as utilities, or Us of different orders for different users, in a
similar fashion. We present examples that are typical, in our
experience, of the performance of the relaxations.

Example 1. Small illustrative example. Consider the sim-
ple 2 link, 3 user network shown in Figure 2, with c = [1, 2].
The optimization problem is

x1

x2 x3

c1 c2

Fig. 2. Network topology for example 1.

maximize
∑

s x2
s

subject to x1 + x2 ≤ 1
x1 + x3 ≤ 2
x1, x2, x3 ≥ 0.

(10)

The first level relaxation with D = 2 is
minimize γ
subject to
γ − (x2

1 + x2
2 + x2

3) − λ1(−x1 − x2 + 1) − λ2(−x1

−x3 + 2) − λ3x1 − λ4x2 − λ5x3 − λ6(−x1 − x2 + 1)
(−x1 − x3 + 2) − λ7x1(−x1 − x2 + 1) − λ8x2(−x1

−x2 + 1) − λ9x3(−x1 − x2 + 1) − λ10x1(−x1 − x3 + 2)
−λ11x2(−x1 − x3 + 2) − λ12x3(−x1 − x3 + 2)−
λ13x1x2 − λ14x1x3 − λ15x2x3 is SOS,
λi ≥ 0, i = 1, . . . , 15.

(11)
The first constraint above can be written as xT Qx for x =
[1, x1, x2, x3]

T and an appropriate Q. For example, the
(1,1) entry which is the constant term reads γ − λ1 − 2λ2 −
2λ6, the (2,1) entry, coefficient of x1, reads λ1 + λ2 − λ3 +
3λ6 − λ7 − 2λ10, and so on. The expression is SOS if and
only if Q ≥ 0. The optimal γ is 5, which is achieved by,
e.g., λ1 = 1, λ2 = 2, λ3 = 1, λ8 = 1, λ10 = 1, λ12 =
1, λ13 = 1, λ14 = 2 and the rest of the λi equal to zero.
Using the sufficient test (or in this example, by inspection)
we find the optimal rates x0 = [0, 1, 2].

In this example, many of the λi could be chosen to be zero.
This means not all product terms appearing in 11 are needed
in constructing the SOS polynomial. Such information is
valuable from the decentralization point of view, and can
help determine to what extent our bound can be calculated
in a distributed manner. This is a topic for future work.

Example 2. Consider the 4 link, 4 user network shown in
Figure 3, with quadratic utilities Us = x2

s.

x1

x2

x3

x4
c1 c2

c3

c4

Fig. 3. Network topology for example 2.

If we set all link capacities {cl} to 1, using an SOS
relaxation with D = 2, we obtain the upper bound γ = 2.
Either by using the sufficient test or by inspection, we
find that the rate vector x0 = [1, 0, 0, 1] achieves this
bound and the bound is exact. As another example, with
c = [2, 3, 4, 1], we obtain γ = 10. Again, we find that
x0 = [0, 0, 3, 1] achieves this upper bound, which is
therefore exact.

Example 3. Mixed utilities. Consider the example above,
with utilities x2

s for users 1 and 2, and x3
s for users 3 and 4.

With capacity c = [1, 5, 4, 3], we obtain the exact bound
γ = 65, and using the sufficient test we recover two optimal
rate allocations [1, 0, 4, 0] and [0, 1, 4, 0] that achieve
this bound.

Example 4. As a larger example, consider the network
shown in Figure III-A with 7 links. We allow 9 users, with
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the following routing table that lists the links on each user’s
path.

x1 x2 x3 x4 x5 x6 x7 x8 x9

1,2 1,2,4 2,3 4,5 2,4 6,5,7 5,6 7 5

For c = [5, 10, 4, 3, 7, 3, 5], we obtain the bound
γ = 116 with D = 2, which turns out to be globally optimal,
and the globally optimal rate vector can be recovered: x0 =
[5, 0, 4, 0, 1, 0, 0, 5, 7]. In this example, exhaustive
search is too computationally intensive, and the sufficient
condition test plays an important role in proving the bound
was exact and in recovering x0.

c1 c2

c3

c4

c5

c6

c7

Fig. 4. Network topology for example 4.

Example 5. Large m-hop ring topology. Consider a ring
network with n nodes, n users and n links where each
user’s flow starts from a node and goes clockwise through
the next m links, as shown in figure III-A for n = 6,
m = 2. As a large example, with m = 2, n = 25 and
capacities chosen randomly for a uniform distribution on
[0, 10], using relaxation of order D = 2 we obtain the exact
bound γ = 321.11 and recover an optimal rate allocation.
For m = 2, n = 30, and capacities randomly chosen from
[0, 15], it turns out that D = 2 relaxation yields the exact
bound 816.95 and a globally optimal rate allocation.

c1

c2

c3

c4

c5

c6

Fig. 5. Network topology for example 5.

B. Sigmoidal utility examples

Now consider sigmoidal utilities in a standard form:

Us(xs) =
1

1 + e−(asxs+bs)
,

where {as, bs} are constant integers. Even though these sig-
moidal functions are not polynomials, we show the problem
can be cast as one with polynomial cost and constraints, with
a change of variables.

Example 6. Consider the simple 2 link, 3 user example
shown in Figure 2 for as = 1 and bs = −5.

The NUM problem is to

maximize
∑

s
1

1+e−(xs−5)

subject to x1 + x2 ≤ c1

x1 + x3 ≤ c2

x ≥ 0.

(12)

Let ys = 1
1+e−(xs−5) , then xs = − log( 1

ys

− 1) + 5.
Substituting for x1, x2 in the first constraint, arranging terms
and taking exponentials, then multiplying the sides by y1y2

(note that y1, y2 > 0), we get

(1 − y1)(1 − y2) ≥ e(10−c1)y1y2,

which is polynomial in the new variables y. This applies to
all capacity constraints, and the non-negativity constraints for
xs translate to ys ≥ 1

1+e5 . Therefore the whole problem can
be written in polynomial form, and SOS methods apply. This
transformation renders the problem polynomial for general
sigmoidal utility functions, with any as and bs.

We present some numerical results, using a small illus-
trative example. Here SOS relaxations of order 4 (D = 4)
were used. For c1 = 4, c2 = 8, we find γ = 1.228, which
turns out to be a global optimum, with x0 = [0, 4, 8] as the
optimal rate vector. For c1 = 9, c2 = 10, we find γ = 1.982
and x0 = [0, 9, 10]. Now place a weight of 2 on y1, while
the other ys have weight one, we obtain γ = 1.982 and
x0 = [9, 0, 1].

In general, if as �= 1 for some s, however, the degree
of the polynomials in the transformed problem may be very
high. If we write the general problem as

maximize
∑

s
1

1+e−(asxs+bs)

subject to
∑

s∈S(l) xs ≤ cl, ∀l,

x ≥ 0,

(13)

each capacity constraint after transformation will be
∏

s(1 − ys)
rlsΠk �=sak ≥

exp(−
∏

s as(cl +
∑

s rls/asbs))
∏

s y
rls

∏
k �=s

ak

s ,

where rls = 1 if l ∈ L(s) and equals 0 otherwise. Since the
product of the as appears in the exponents, as > 1 signifi-
cantly increases the degree of the polynomials appearing in
the problem and hence the dimension of the SDP in the SOS
method.

It is therefore also useful to consider alternative represen-
tations of sigmoidal functions such as the following rational
function:

Us(xs) =
xn

s

a + xn
s

,

where the inflection point is x0 = (a(n−1)
n+1 )1/n and the slope

at the inflection point is Us(x
0) = n−1

4n ( n+1
a(n−1) )

1/n. Let ys =

Us(xs), the NUM problem in this case is equivalent to

maximize
∑

s ys

subject to xn
s − ysx

n
s − ays = 0∑

s∈S(l) xs ≤ cl, ∀l

x ≥ 0

(14)

1872



which again can be accommodated in the SOS method and
be solved by the proposed Algorithm.

The benefit of this choice of utility function is that
the largest degree of the polynomials in the problem is
n + 1, therefore growing linearly with n. The disadvantage
compared to the exponential form for sigmoidal functions is
that the location of the inflection point and the slope at this
point cannot be set independently.

IV. ALTERNATIVE REPRESENTATIONS FOR CONVEX

RELAXATIONS TO NONCONCAVE NUM

The SOS relaxation we used in the last two sections is
based on Schmüdgen’s representation for positive polyno-
mials over compact sets described by other polynomials. In
this section, we briefly discuss two other representations of
relevance to the NUM, that are interesting from both theoret-
ical (e.g., interpretation) and computational (e.g., efficiency)
points of view.

A. LP relaxation

Exploiting linearity of the constraints in NUM and with the
additional assumption of nonempty interior for the feasible
set (which holds for NUM), we can use Handelman’s rep-
resentation [4] and refine the Positivstellensatz condition to
obtain the following convex relaxation of nonconcave NUM
problem:

maximize γ
subject to

γ −
∑

s Us(xs) =
∑

α∈NL

λα

L∏
l=1

(cl −
∑

s∈S(l) xs)
αl , ∀x

λα ≥ 0, ∀α,
(15)

where the optimization variables are γ and λα, and α denotes
an ordered set of integers {αl}.

Fixing D where
∑

l αl ≤ D, and equating the coefficients
on the two sides of the equality in (15), yields a linear
program (LP). (Note that there are no SOS terms, therefore
no semidefiniteness conditions.) As before, increasing the
degree D gives higher order relaxations and a tighter bound.

We provide a (partial) price interpretation for prob-
lem (15). First, normalize each capacity constraint as 1 −
ul(x) ≥ 0, where ul(x) =

∑
s∈S(l) xs/cl. We can interpret

ul(x) as link usage, or the probability that link l is used
at any given point in time. Then, in (15), we have terms
linear in u such as λl(1 − ul(x)), in which λl has a similar
interpretation as in concave NUM, as the price of using link
l (at full capacity, due to the normalization). We also have
product terms such as λjk(1 − uj(x))(1 − uk(x)), where
λjkuj(x)uk(x) indicates the probability of simultaneous
usage of links j and k, for links whose usage probabilities
are independent (e.g., they do not share any flows). Products
of more terms can be interpreted similarly.

While the above price interpretation is not complete and
does not justify all the terms appearing in (15) (e.g., powers
of the constraints; product terms for links with shared flows),
it does provide some useful intuition: this relaxation results in

a pricing scheme that provides better incentives for the users
to observe the constraints, by putting additional reward (since
the corresponding term adds positively to the utility) for
simultaneously keeping two links free. Such incentive helps
tighten the upper bound and eventually achieve a feasible
(and optimal) allocation.

This relaxation is computationally attractive since we need
to solve an LPs instead of the previous SDPs at each level.
However, significantly more levels may be required [8].

B. Relaxation with no product terms

Putinar [14] showed that a polynomial positive over a
compact set (with an extra assumption that always holds for
linear constraints as in NUM problems) can be represented
as an SOS-combination of the constraints. This yields the
following convex relaxation for nonconcave NUM problem:

maximize γ
subject to
γ −

∑
s Us(xs) =

∑L
l=1 λl(x)(cl −

∑
s∈S(l) xs), ∀x

λ(x) is SOS,
(16)

where the optimization variables are the coefficients in λl(x).
Similar to the SOS relaxation (6), fixing the order D of the
expression in (16) results in an SDP. This relaxation has the
nice property that no product terms appear: the relaxation
becomes exact with a high enough D without the need of
product terms. However, this degree might be much higher
than what the previous SOS method requires.

We note yet another price interpretation: this time the
link price is given by an SOS polynomial multiplier that
depends on the rates. The physical meaning of such prices,
and the computational aspects of this relaxation remain to
be explored.

V. CONCLUSIONS AND FURTHER EXTENSIONS

We consider the NUM problem in the presence of in-
elastic flows, i.e., flows with nonconcave utilities. Despite
its practical importance, this problem has not been studied
widely, mainly due to the fact it is a nonconvex, NP-hard
problem. There has been no effective mechanism, centralized
or distributed, to compute the globally optimal rate allocation
for nonconcave utility maximization problems in networks.
This limitation has made performance assessment and design
of networks that include inelastic flows very difficult.

To address this problem, we employed convex SOS relax-
ations, solved by a sequence of SDPs, to obtain high quality,
increasingly tighter upper bounds on total achievable utility.
In practice, the performance of our SOSTOOLS-based algo-
rithm was surprisingly good, and bounds obtained using a
polynomial-time (and indeed a low-order and often minimal
order) relaxation were found to be exact, achieving the global
optimum of nonconcave NUM problems. Furthermore, a
dual-based sufficient test, if successful, detects the exactness
of the bound, in which case the optimal rate allocation can
also be recovered. This surprisingly good performance of
the proposed algorithm brings up a fundamental question
on whether there is any particular property or structure in
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nonconcave NUM that makes it especially suitable for SOS
relaxations.

We further examined the use of two more specialized
polynomial representations, one that uses products of con-
straints with constant multipliers, resulting in LP relaxations;
and at the other end of spectrum, one that uses a ‘linear’
combination of constraints with SOS multipliers. We expect
these relaxations to give higher order certificates, thus their
potential computational benefits need to be examined further.
We also show they admit economics interpretations (e.g.,
prices, incentives) that provide some insight on how the SOS
relaxations work in the framework of link congestion pricing
for the simultaneous usage of multiple links.

An important research issue to be further investigated is
decentralization methods for rate allocation among sources
with nonconcave utilities. The proposed algorithm here is not
easy to decentralize, given the products of the constraints or
polynomial multipliers that destroy the separable structure of
the problem. However, when relaxations become exact, the
sparsity pattern of the coefficients can provide information
about partially decentralized computation of optimal rates.
For example, if after solving the NUM off-line, we obtain
an exact bound, then if the coefficient of the cross-term xixj

turns out to be zero, it means users i and j do not need to
communicate to each other to find their optimal rates. An
interesting next step in this area of research is to investigate
distributed version of the proposed algorithm through limited
message passing among clusters of network nodes and links.

It is also worth continuing to explore other types of
nonconcave functions that can be transformed into polyno-
mials and handled by SOS methods, in addition to the two
sigmoidal forms we already examined in this paper.
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