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Abstract— We propose a new algorithm for feedback non-
linear synthesis. The algorithm computes suboptimal solutions,
with bounds on suboptimality, to the Hamilton-Jacobi-Bellman
equation. For systems that are modeled with polynomials the
computations can be done efficiently via semidefinite program-
ming. To illustrate the strength of the proposed method, we
compute smooth stabilizing feedback controllers for several
problems.

I. INTRODUCTION

Control synthesis for nonlinear systems is well known
to be difficult. Many methods have been proposed, some
of them have also been proved to work well for specific
problems. Still, no general method exists. To guide the
search for controllers which result in good performance the
synthesis problem can be posed in the framework of optimal
control. In this way we can obtain a characterization of
the problem in terms of the Hamilton-Jacobi-Bellman(HJB)-
equation. Consider for example the case with linear dynamics
and quadratic cost function. In this case the HJB-equation
reduces to a Riccati equation. Since Riccati equations can
be solved efficiently, optimal control of linear systems with
quadratic cost, LQ-control, is a practical design tool.
On the other hand, if the assumption on linear dynamics or
quadratic cost does not hold, the resulting HJB-equation is
very difficult to solve. Indeed there does not exist any closed
form solution, except for very special problems. Even more
severe, there does not exist a general computational scheme
for obtaining approximate solutions. Due to its importance
much time have been devoted to find such schemes.
In [5], [10] the authors used various power series expansion
strategies, with various assumptions, to obtain approximate
solutions to the HJB-equation. These methods can sometimes
be used to compute good local estimates, using only a few
terms. Although higher order approximations are possible to
compute it is often too difficult. Also, the region where the
approximations are valid are not well defined.
Motivated by LQ-control, another approach is to write the
nonlinear system in a linear like representation and to derive
a state dependent Riccati equation, see [7]. A particular
such approach is taken in [16], where the authors use
representations of positive polynomials to derive sufficient
conditions for upper bounds on the value function.
In [9] the authors uses discretization-interpolation tech-
niques. The state space is discretized and the open loop
minimum control is computed for each point. These are then

combined to form a feedback controller. The drawback is
that gridding techniques are expensive in that such methods
require computations that scale exponentially in state dimen-
sion.
In this paper we take a different approach, namely policy
iteration or successive approximation in policy space. Re-
lated methods, also successive approximation methods, was
already discussed by Bellman in [3]. We will follow the work
presented in [8]. In that paper the first theoretical analysis
of policy iteration is given. They show how the solution of
the HJB-equation can be reduced to a sequence of first order
linear partial differential equations. They derive useful in-
equalities and prove convergence of the algorithm. However,
the work is mostly of theoretical nature and they do not
propose a computational procedure. Such a procedure was
proposed in [1]. In that work the Galerkin spectral method
is used to obtain approximate solutions to the aforementioned
sequence of linear partial differential equations. However, no
bounds on the approximations are given, initial iterates must
be provided and assumptions which are difficult to check
must be fulfilled. Moreover, the main computational task in
the algorithm proposed in [1] is multidimensional integration.
Such computations become prohibitive for systems with
more then a few states. On the other hand, an advantage of
that method is that it can handle problems where the system
dynamics are not necessarily modeled with polynomials.
This is in contrast to the method presented in this paper.
This paper introduces a new version of policy iteration.
The main idea is to replace an equality constraint with two
inequalities. With this modification we can apply convex
optimization to solve the intermediate steps in the algorithm.
We also get bounds on how far from optimality each iterate
is.

II. DEFINITIONS AND KNOWN FACTS

A. Problem statement

We start with a problem description. Consider a nonlinear
dynamical system

ẋ(t) = f (x(t))+g(x(t))u(t) (1)

with (x(t),u(t))∈ X ×U ⊂ (Rn×R
m) and (0,0)∈ X ×U . To

start with, we assume that f ,g ∈C(X ,Rn). We shall consider
regulation at the origin, thus we require that f (0) = 0. Let
l : R

n → R be continuous and positive for x �= 0 and l(0) =
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0, also let R > 0 be positive definite matrix. We define the
instantaneous cost to be

q(x,u) = l(x)+ |u|2R on X ×U

Define the admissible control set as U(X) = C(X ,U). As
a measure of system performance under input u we will
consider the cost function

V (x0,u) =

∫ ∞

0
q(φ(t,x0,u),u(φ(t,x0,u))dt (2)

where φ : R× X ×U → X is the trajectory for (1), when
starting from x0 and using input u. To simplify notation, we
will implicitly require all cost functions, or approximations
of such, to vanish at the origin and to be positive for x ∈
X \{0}. The problem we will address is the computation of

V ∗(x0) = inf
u∈U(X)

V (x0,u) ∀x0 ∈ X (3)

The function V ∗ is called the optimal value function. The
following result is well known,

Proposition 1: (Hamilton-Jacobi-Bellman-equation) Let
V ∗ ∈C1(X ,R) and u∗ ∈U(X) be such that

min
u
{∂V ∗(x)

∂x

T

( f (x)+g(x)u)+ l(x)+ |u|2R} = 0, ∀x ∈ X

(4)
and that the minimum is attained at u∗ ∈ U(X). Then
∀x0 ∈ X the trajectory φ(t,x0,u∗) exists ∀t ≥ 0. Moreover,
V ∗(x0,u∗) =V (x0,u∗) and the minimizing controller is given
by

u∗(x) =argmin
u
{∂V ∗(x)

∂x

T

( f (x)+g(x)u)+ l(x)+ |u|2R}

=− 1
2

R−1 ∂V ∗(x)
∂x

T

g(x), ∀x ∈ X

(5)

In most cases V ∗ is not a differentiable function. Therefore
the solution to (4) must be interpreted in generalized sense.
The machinery of viscosity solutions resolves issues of
existence and uniqueness. We will not discuss this further in
this paper, see [4]. It is important to note that the methods
developed in this paper do not require V ∗ to be differentiable.
Substituting u∗ back in (4) gives

l(x)+
∂V ∗(x)

∂x

T

f (x)− 1
4

∂V ∗(x)
∂x

T

g(x)R−1g(x)T ∂V ∗(x)
∂x

= 0
(6)

Now the original problem (3) has been reduced to the
solution of this nonlinear partial differential equation for V ∗.
Although this is a simplification, the solution of (6) is still
very difficult and no general closed form solution exists. In
the next section we describe how the solution can be obtained
from the solution of a sequence of simpler problems.

B. Exact policy iteration

Suppose that the cost function (2) is finite on X when
using input u. If we differentiate along the corresponding
trajectory we obtain

∂V (x)
∂x

T

( f (x)+g(x)u(x))+ l(x)+ |u(x)|2R = 0 (7)

which is an equation for the instantaneous cost-decrease. The
equation does not involve the solution trajectory so it should
be easier to obtain an expression for V via this equation,
compared to solving for the system trajectory and compute
(2). To simplify notation we define H by

H(V ) = u = −1
2

R−1 ∂V (x)
∂x

T

g(x), V ∈C1(X ,R)

Also, for given u ∈U(X) we denote

V = T (u) (8)

as the solution of equation (7). These observations, together
with the next proposition, suggests a computational proce-
dure.

Proposition 2: Let u ∈U(X)
⋂{u : V (x0,u) < ∞}, if there

exists a solution V ∈C1(X ,R)
⋂{V : V (0) = 0} to V = T (u)

then V is unique and V (x) = V (x,u(x)). If u+ = H(V ) then,
V (x,u(x)) ≥ V+(x,u+(x)), where V+ = T (u+). If equality
holds we must have V ∗ = V .

The proof is essentially contained in [8]. Thus, under the
assumption that we can find the exact solution to (8) for
a given u, the conclusion of the proposition is that we
can obtain a monotonically converging sequence {Vk} of
estimates of V ∗ by iterating

Algorithm 1 (Exact policy iteration):

1: Choose any u0 ∈U(X)
⋂{u : V (x0,u) < ∞}

2: repeat
3: Vk = T (uk)
4: uk+1 = H(Vk)
5: until convergence

There are at least two problems with this iteration. First,
to start the iteration we must provide a controller which
stabilizes the system on X , this can be very hard for nonlinear
systems. Also, it is in general impossible to find an exact
solution in step 3, therefore any computational method
should keep track of the successive errors. In the next section
we propose such an approximate iteration.

III. APPROXIMATE POLICY ITERATION

In this section we introduce an alternative to exact policy
iteration. The basic idea is to replace equation (7) with
two inequalities. It turns out that this simplifies later com-
putations. Moreover, given a function that satisfies these
inequalities we obtain a measure of how close this function
is to the optimal value function.

A. Basic inequalities

Theorem 1: Given u ∈U(X). Let W ⊂ X be an invariant
set of points x such that limt→∞ φ(t,x,u) = 0. Suppose that
α,α ∈ R and V ∈C1(X ,R) satisfies

∂V (x)
∂x

T

( f (x)+g(x)u(x))+α(l(x)+ |u(x)|2R) ≤ 0 (9)

0 ≤ ∂V (x)
∂x

T

( f (x)+g(x)û)+α(l(x)+ |û|2R), ∀û ∈U (10)
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for all x ∈W , then

αV ∗ ≤V (x) ≤ αV ∗(x), ∀x ∈W

Proof: Integrating the inequality in (10) along φ(t,x,u)
and using that limt→∞ V (φ(t,x,u)) = 0, we have

V (x) ≤ α
∫ ∞

0
l(φ(t,x,u))+ |u(φ(t,x,u))|2Rdt

Since this holds for all u we must have

V (x) ≤ α inf
u

∫ ∞

0
l(φ(t,x,u))+ |u(φ(t,x,u))|2Rdt = αV ∗(x)

The other inequality follows in the same way.

Theorem 2: Let V be as in Theorem 1. If V is bounded
on W then

u+(x) = argmin
u
{∂V (x)

∂x

T

( f (x)+g(x)u)+α(l(x)+ |u|2R)}

defines a stabilizing cost improving controller. Moreover,

αV ∗(x) ≤ αV (x,u+) ≤V (x) ≤ αV ∗(x) ∀x ∈W

Proof: By (9)

∂V (x)
∂x

T

( f (x)+g(x)u+(x))+α(l(x)+ |u+(x)|2R) ≤ 0

Integrating along φ(t,x,u+) we have

lim
t→∞

V (φ(t,x,u+))

+α
∫ ∞

0
l(φ(t,x,u+))+ |u(φ(t,x,u+))|2Rdt ≤V (x)

Since V is bounded limt→∞ φ(t,x,u+) = 0, thus

αV ∗(x) ≤ αV (x,u+) ≤V (x)

The next observation states that if we have two functions
V1 and V2 satisfying Theorem 1 on W1, with one better than
the other. Then the best approximation is valid on a strictly
larger set W2, moreover the performance achieved on W2 \W1

is at least as good as that obtained with the policy with the
lowest performance.

Theorem 3: Assume that W1 has C1 boundary, u1,u2 ∈
U(X) and that V1,V2 satisfy (9) and (10) with α1,α2, and
α1,α2. If

α1 < α2 and α1 > α2 (11)

then there exists a W2 ⊂ X such that W1 ⊂ W2 with strict
inclusion, and

α1V ∗(x) ≤V2(x) ≤ α1V ∗(x)

∂V2(x)
∂x

T

( f (x)+g(x)u2(x))+α1(l(x)+ |u2(x)|2R) ≤ 0

∂V2(x)
∂x

T

( f (x)+g(x)u2(x))+α1(l(x)+ |u2(x)|2R) ≥ 0

for x ∈W2.

Proof: Let y ∈ ∂W1 be a point in the boundary of W1

and η(y) be the outward unit normal at y. We have

V2(y) ≥ α2V ∗(y) > α1V ∗(y)

By assumption V2 is continuous on any neighborhood to the
boundary, hence there exist a hL > 0 such that for

pL = y+η(y)hL

it holds
V2(pL) > α1V ∗(pL), ∀y ∈ ∂W1

Similarly, we can find hU , tL, tU > 0 and

pU = y+η(y)hU

tL = y+η(y)rL

tU = y+η(y)rU

such that ∀y ∈ ∂W1

V2(pU ) < α1V ∗(pU )

∂V (rL)

∂x

T

( f (rL)+g(rL)u(rL))+α1(l(rL)+ |u(rL)|2R) < 0

∂V (rU )

∂x

T

( f (rU )+g(rU )u(rU ))+α1(l(rU )+ |u(rU )|2R) > 0

We denote by B(x,r) the ball around x with radius r. Let
h = min{hL,hU , tL} and take

W2 = W1
⋃

∪y∈∂W1
B(y,η(y)h)

With this choice the result follows.

B. An algorithm

The exact value function belongs to an infinite dimensional
space. As a first approximation we constrain the search for
an approximation to V ∗ to a subspace Hr ⊂ C1(X ,R) of
dimension r. Denote by P(u,r,W ) the following optimization
program:

P(u,r,W ) 
→ minε

such that ∀x ∈W

∂V (x)
∂x

T

( f (x)+g(x)u(x))+α(l(x)+ |u(x)|2R) ≤ 0

∂V (x)
∂x

T

( f (x)+g(x)u)+α(l(x)+ |u|2R) ≥ 0 ∀u ∈U

α = 1+ ε
α = 1− ε
V ≥ 0 and V (0) = 0

V ∈ Hr

the solution is given by a function V and the minimal
ε for which such a function exists. The computationally
most expensive part of the algorithm below is to obtain a
solution to P(u,r,W ). In general this problem is not easy
to solve. However if the system dynamics is modeled with
polynomials and Hr is spanned by a polynomial basis the
solution can be obtained in a computationally tractable way.
Now consider the following pseudo code,
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Algorithm 2 (Approximate policy iteration):

1: Let u0 be any locally stabilizing feedback for system
(1). Let W0 be an invariant subset of the resulting closed
loop, with 0 ∈W0.

2: repeat
3: repeat
4: Solve P(uk,rk,Wj).
5: if εk does not decrease then
6: increase rk

7: end if
8: uk+1 = H(Vk)
9: until εk is small

10: Find some invariant set Wj+1 ⊃Wj

11: until εk is small enough and X ⊂Wj

The first step consists of initialization. For example if
the system is linearizable and controllable at the origin,
we can easily find the corresponding LQ-controller. In step
(3)− (9) we hope to obtain a sufficiently small value of εk,
without having to increase rk too much. As it increases the
computational burden soon becomes excessive, as we explain
below. In the last step we try to expand the valid region
of approximation, such a set is likely to exist according to
Theorem 3.

IV. SOLVING PROBLEM P(u,r,W )

In this section we focus on problem P(u,r,W ). The
computational method relies on representation of positive
multivariate polynomials. We start with a brief explanation
of the methods, for further information see [11].

A. Sum of squares of polynomials

Consider a multivariate polynomial f (x) ∈ R[x] of degree
at most 2d, with x ∈ R

n. The first, trivial, observation is that
if f is a sum of squares f (x) = ∑m

k=1 f 2
k (x) for some fk’s of

degree at most d, then f ≥ 0 for all x ∈ R
n. The following

proposition characterizes all such polynomials
Proposition 3: Let Z(x) be a vector of all monomials of

degree at most d then f is a sum of squares if and only if

f (x) = Z(x)T QZ(x) (12)

for some positive semidefinite (psd) matrix Q.
Proof: See, [13]

The main point now is that it is easy, from a computational
point of view, to check if a given polynomial is a sum
of squares, which was noted in [12]. Given a polynomial
f , checking if f is sum of squares can be done using
semidefinite programming as follows: Identify coefficients
in (12), this gives an affine constraint on Q, taking the
intersection with the convex cone of psd matrices results in
a convex constraint. Note also that if the coefficients in f are
not predetermined but can be chosen from some affine set,
the problem is of exactly the same structure, and this will be
important below. For more information see, [15], [11]. The
other implication is false; if f ≥ 0 then f is not necessarily
a sum of squares. Thus the above procedure gives sufficient
conditions for positivity on R

n.

In this paper we focus on positivity on compact sets. There
are several such conditions. Consider a set

X = {hk(x) ≥ 0,k = 1..m} (13)

with all hk’s polynomials. Let us denote by Σ[x] the set of
sum of squares in R

n and

GX = {p : p = s0(x)+
m

∑
k=1

sk(x)hk(x), sk ∈ Σ[x]} (14)

The following result will be useful
Theorem 4 (Putinar[14]): Let X be as in eqn.(13).

Suppose that there is a real number r > 0 such that
r2 −∑n

k=1 x2
k ∈ GX , then for every f > 0 on X , f ∈ GX .

Statement (4) gives necessary and sufficient conditions for f
being positive on X , as opposed to above.

B. Solution of P(u,r,W )

To be able to apply propositions (4) and (3) to solve
P(u,r,W ) we assume that the system is modeled by polyno-
mials, f ,g ∈ R[x] with x ∈ R

n. Let Hd
r ⊂ R[x] be a subspace

spanned by a subset of r basis functions of degree at most
d. For notational simplicity, let us assume that W can be
described with only one polynomial, for example a closed
ball centered at the origin with radius a, i.e. W = {x :
a2 −|x|2 ≥ 0}. We now restate P(u,r,W ) as

P(u,r,W ) 
→ minε

such that

− (
∂V (x)

∂x

T

( f (x)+g(x)u(x))+α(l(x)+ |u(x)|2R))

− sL(a−|x|2) ∈ Σ[x]

∂V (x)
∂x

T

( f (x)+g(x)u)+α(l(x)+ |u|2R)

− sU (a−|x|2) ∈ Σ[x,u]

V ∈ Hd
r

α = 1− ε
α = 1+ ε
sL ∈ Σ[x]

sU ∈ Σ[x,u]

By the discussion above this is a semidefinite program, it can
be solved efficiently as long as the dimension of Hd

r is not
too high. The dimension needed in a particular application
depends on the required accuracy.

V. EXAMPLES

In this section we give two examples of the proposed
method. The first example is simple in the sense that we
can obtain an analytic solution to the HJB-equation for
comparison. The second example is adopted from [2], it
originates from [6]. In [2] the authors compare some of the
existing methods for computation of suboptimal controllers
for nonlinear systems.
The computations in both examples were performed on a
standard PC running Matlab.
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A. Example 1

Consider the one dimensional linear system

ẋ = −x+u

with non-quadratic instantaneous cost

q(x,u) = x2 + x4 +u2

The exact solution is readily seen to be

V ∗(x) = −x2 +2
(2+ x2)3/2 −2

√
2

3
and

u∗(x) = x− x
√

2+ x2

To initialize, take u0 = −x. We would like to find an
approximation on X = [−1,1]. Since u0 stabilizes the system
on X we don’t need to successively expand the region of
attraction. To compare, consider the Taylor expansion of the
exact solution at the origin

V ∗(x) = 0.41421x2 +0.176776x4 −0.0147314x6 +O(x7)

and

u∗(x) = −0.41421x−0.353552x3 +0.0441941x5 +O(x6)

We successively compute approximations to the value func-
tion with degree 2,4 and 6.

V2 = 0.5324x2

V4 = 0.4172x2 +0.16006x4

V6 = 0.41437x2 +0.175x4 −0.010862x6

with associated controls
u2 = −0.5337x

u4 = −0.4178x−0.32102x3

u6 = −0.41437x−0.35x3 +0.032574x5

The reason for the differences between the computed ap-
proximations and the Taylor expansion is that our method
computes a uniform approximation whereas the Taylor ex-
pansion is a local approximation. As expected this difference
is most notable for the second degree approximation. For the
sixth degree approximation we have the following estimate

max
x∈X

|V ∗(x)−V6(x)| ≈ 10−2 max
x∈X

|V ∗(x)−VT (x)|
where VT is the sixth degree Taylor polynomial. Although
this is a simple example, it gives some indication of the
usefulness of our method as compared to power series
expansion methods. The computations are summarized in
Table I . The leftmost column, “Deg”, shows the degree
of the approximation, “#SDP” shows the total number of
semidefinite programs solved to obtain the approximation,
“CPU(s)” is the total execution time in seconds and finally
“ε(%)” shows the uniform relativ distance, in percentage,
to the exact value function. Notice that, for example, the
policy obtained from the second degree approximation is
used to initialize the algorithm to obtain the forth degree
approximation, so that only two new semidefinit programs
were solved in the second step, the same holds for the
computation time.

TABLE I

RESULTS FOR EXAMPLE 1

Deg #SDP CPU(s) ε(%)
2 2 3.2 28.8

4 4 6.2 0.720

6 6 10.6 0.0364

TABLE II

RESULTS FOR EXAMPLE 2

Deg #SDP CPU(s) V (x0) ε(%)
2 3 170 0.0436 91.6

3 5 270 0.0412 67.6

4 7 370 0.0655 21.4

B. Example 2

In this example we consider a flight control problem. The
system is modeled with three states x1 =“angle of attack”,
x2 =”flight path angle” and x3 =”rate of change of flight path
angle”. The control variable u is the tail deflection angle. The
states and control variable should be interpreted as deviations
from some setpoint. The model is as follows

f1(x) =−0.877x1 + x3 +0.47x2
1 −0.088x1x3 −0.019x2

2

+3.846x3
1 − x2

1x3

f2(x) =x3

f3(x) =−4.208x1 −0.396x3 −0.47x2
1 −3.564x3

1

and
gT = [−0.215 0 −20.967]

In this example the instantaneous cost is q(x,u) = 0.25xT x+
u2. The region were the approximation should be valid
is X = B[0,25(π/180)]. To evaluate suboptimal policies
we will compare their ability to bring the system to rest
after an initial perturbation in the angle of attack, xT

0 =
[25(π/180) 0 0].
The algorithm was initialized with W0 = B[0,0.2] and u0 was
the LQ-controller for the linearized system. The second iter-
ation produced a linear controller that stabilizes the system
on W = B[0,25(π/180)+ 0.1], which was then used as the
valid region of approximation for the rest of the iterations.
The results are summarized in Table II, figure (1) and (2).
The remark on the number of iterations and execution time in
example 1 also applies in this example. These results can be
compared to the results obtained in [2] for the same problem.
The best controller for this problem were obtained with a
discretization-interpolation method. The performance of that
controller is about the same as that we obtained with the
third degree approximation. The reported computation time
required for the discretization-interpolation method is about
6000 seconds, on a similar Matlab implementation, compared
to the method in this paper which requires 370 seconds. The
difference depends, of course, not only on the methodology
but also on the software. Moreover, our controller is a third
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Fig. 1. Control signal for different degrees of approximation in example 2
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Fig. 2. State x1 for different degrees of approximation in example 2.

degree polynomial, to be compared with the complicated
representation for the discretization-interpolation method.

VI. CONCLUSIONS

We proposed a new algorithm for feedback nonlinear
synthesis. The method gives bounds on suboptimality, as
measured form the optimal value function. We have showed
that there is a tradeoff between the size of the region where
the approximation is valid and how close the approximation
is to the exact value function.
For systems that are modeled with polynomials the required
computations can be done in a tractable way via convex
optimization.
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