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Abstract— Techniques for feedback control of oscillations in
the flow past a cavity are presented. Low-order models are
obtained using two methods (empirical Galerkin models, and
a simple nonlinear oscillator model), and validated against 2D
direct numerical simulations of the flow, which is actuated by
a body force at the leading edge of the cavity. The models
are used to construct dynamic observers, which reconstruct
the flow state from a single pressure sensor, and perform
much better than static estimators commonly used for flow
estimation. Several control approaches are compared, including
simple proportional control with a phase lag, LQG control
using Galerkin models, and a dynamic phasor approach based
on the work of Noack et al (2003). All three controllers are
implemented in the full simulation, and able to reduce the
amplitude of oscillations. The LQG regulator requires careful
tuning, and the closed-loop behavior often does not match that
predicted by the model, but the dynamic phasor approach
eliminates the oscillations completely in the full simulation, with
a transient response that matches that predicted by the low-
order model.

I. INTRODUCTION

Cavity flows arise in several aerospace applications, such
as landing gear wheel wells and weapons bays in military
aircraft. The basic geometry is shown in Fig. 1, and often
oscillations occur due to a natural feedback mechanism: a
free shear layer spanning the cavity amplifies disturbances,
which scatter into acoustic waves at the downstream corner,
which in turn excite further disturbances in the shear layer.
This process results in discrete resonant tones, at frequencies
for which this acoustic feedback is in phase with the shear
layer disturbances.

Using open-loop and closed-loop control to suppress the
resulting oscillations has been of engineering interest for
decades, but most control strategies have been either heuris-
tic [1], adaptive [2], [3], or based on empirical models iden-
tified from frequency-response experiments [4], [5]. For an
extensive review of open- and closed-loop control strategies
for cavity flows, see [6], [7].

Our focus is on developing low-order models useful for
control design. Since the equations governing the general, ar-
bitrary motion of a fluid are nonlinear and high-dimensional
(turbulent solutions exist), low-order models are necessarily
valid only over a limited dynamic envelope, typically for
a small region of phase space, and for a narrow range of
frequencies. In this paper, we explore two different types of
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Fig. 1. Cavity flow geometry, showing location of sensor and actuator.

models, and control design techniques: empirical Galerkin
models, with controllers designed using linear techniques
such as LQR/LQG; and dynamic phasor models, after [8],
[9], which are simple enough that custom-tailored control
laws may be constructed that respect the range of validity of
the models.

The models and feedback laws we obtain are tested on a
Direct Numerical Simulation (DNS) of the two-dimensional
flow geometry shown in Fig. 1. The flow conditions used
here are for a Mach number of 0.6, L/D = 2, Reθ =
56.8 based on momentum thickness θ at the cavity leading
edge, and L/θ = 52.8. This simulation has been carefully
validated using grid resolution and boundary placement
studies, and comparison with experimental data [10]. The
grid used 1008×384 gridpoints above the cavity and 240×96
gridpoints inside the cavity, which is sufficient to resolve all
of the scales at this Reynolds number.

The organization of the paper is as follows: in §II we
describe the empirical Galerkin model, and the dynamic
observer and Linear Quadratic Regulator we obtain from
it, and compare this controller to a simple proportional
feedback, with a phase shift. In §III, we describe a model
based on dynamic phasors, based on the approach in [8], [9],
and the controller and observer based on this model.

II. EMPIRICAL GALERKIN MODELS

Galerkin models are obtained by projecting known dy-
namics (e.g., the Navier-Stokes equations) onto a smaller-
dimensional subspace. Here, we start with the isentropic
Navier-Stokes equations [11], written in two spatial dimen-
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sions as
∂a

∂t
= −v · ∇a− γ − 1

2
a∇ · v

∂v

∂t
= −v · ∇v − 2

γ − 1
a∇a + ν∇2v,

(1)

where v = (v1, v2) is the velocity, a is the local sound
speed (which may be related to other flow variables, such
as pressure, via isentropic relations), γ is the ratio of spe-
cific heats (1.4 for air), and ν is the kinematic viscosity,
assumed constant (small density variations). These equations
are quadratic in the flow variables, of the form

q̇ = L(q) + Q(q, q), (2)

where q = (v1, v2, a), L is a linear operator, and Q is bilinear
(linear in each argument).

In order to include actuation in the model, we represent
the actuator as a body force in the momentum equation. With
actuation included, then, the model has the form

q̇ = L(q) + Q(q, q) +
p∑

j=1

Bjuj (3)

where L and Q are the same as in (2), and where Bj(x, y)
denotes the (spatially-dependent) body force introduced by
the j-th actuator uj(t). Here, we will use a single actuator,
with B1 oriented vertically (i.e., a body force in the y-
direction), nonzero in a localized region in the shear layer
(see Fig. 1), and zero elsewhere.

We expand the flow variables q(x, y, t) in terms of basis
functions ϕj(x, y), as

q(x, y, t) = q̄(x, y) +
n∑

j=1

zj(t)ϕj(x, y), (4)

where q̄(x) is some constant flow (typically a steady solution
of Navier-Stokes, if known, or in our case a mean flow), and
the zj are time-varying coefficients. Thus, the state is the
vector of coefficients z = (z1, . . . , zn), and determining the
state vector z ∈ Rn specifies the entire flow field q, according
to (4). A model is then an evolution equation for z(t).

Using the expansion (4), the model (3) has the form

żi(t) = ci + Aijzj(t) + Qijkzj(t)zk(t) + Bijuj(t) (5)

(summation implied), where

ci = 〈L(q̄) + Q(q̄, q̄), ϕi〉
Aij = 〈L(ϕj) + Q(q̄, ϕj) + Q(ϕj , q̄), ϕi〉

Qijk = 〈Q(ϕj , ϕk), ϕi〉
Bij = 〈Bj , ϕi〉 ,

where we have assumed the basis functions ϕj are orthonor-
mal.

Generically, (5) may have many equilibrium points (e.g.,
even in one dimension, it may have zero, one, or two
equilibria, or a continuum in degenerate cases), but for the
cases we investigate, q̄ in (4) will already be “close” to
an equilibrium point (albeit an unstable one), which will

imply that ci is small, and there is a unique equilibrium
point z∗ close to the origin. In developing controllers, we
will want to linearize about this equilibrium point, so writing
z(t) = z∗ + z̃(t), one obtains

˙̃zi = Ãij z̃j + Qijkz̃j z̃k + Bijuj , (6)

where Ãij = Aij +(Qijk+Qikj)z∗k , so the linearized system
is simply

˙̃zi = Ãij z̃j + Bijuj . (7)

A. Observer design

For implementation, it is not feasible to measure the state
directly, so one must reconstruct the state from available
sensor measurements, such as wall pressure. The sensor used
in the observer is a pressure sensor in the downstream wall
of the cavity, at y = −0.5D (see Fig. 1). This sensor location
was not optimized in any way, although one could consider
optimal sensor placements by choosing sensor locations
where the magnitudes of POD modes are large [12]. Each
POD mode ϕj has a corresponding pressure pj at this sensor
location, and we represent the sensor signal η(t) as

η(t) =
n∑

j=1

z̃j(t)pj = Cz̃(t) (8)

where C is the row vector [p1 · · · pn].
For the model given by (6), one needs to specify basis

functions ϕj , j = 1, . . . , n. For the observer design, we
take n = 4 and determine the basis functions by Proper
Orthogonal Decomposition (POD) of a dataset of snapshots
from the natural (unforced) flow, and these four modes
were sufficient to capture over 95% of the energy in the
fluctuations [11].

We then design a Kalman filter [13] for the linearized
system ż = Ãz, where Ã is the matrix from (6). Letting ẑ
denote the estimate of the actual state z̃, the observer has the
form

˙̂z = Ãẑ + L(η − Cẑ) (9)

where L is a matrix with n rows and one column (in general,
if m sensors are available, L has m columns). For the
Kalman filter design, the process noise variance is estimated
from the size of the nonlinear terms in (6). There is very
little noise in the pressure measurements in the simulation,
but we expect much greater noise in experiments, so we
artificially add random noise to the sensor signal, and use
this noise variance for designing the Kalman filter gains.
Once the observer weights are designed, we consider both
the linear observer (9) and the nonlinear observer obtained by
adding the correction L(η−Cẑ) to the nonlinear system (6).

In Fig. 2, we compare the performance of the Kalman
filter with a commonly used method for state estimation in
fluids, known as Linear Stochastic Estimation (LSE) [14],
[15], which has recently been applied to cavity flows [16],
[17], as well as cylinder wakes [12] and other flows [18].
In this method, one correlates sensor signals with full flow
field information from a known database, and then uses the
correlation to predict flow field information from the sensor
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Fig. 2. Time traces of pressure sensor and POD modes 1 and 3, for exact
projection of DNS (black ◦), linear observer using 1 sensor (red dashed);
nonlinear observer using 1 sensor (blue solid); and LSE using three sensors
(green dashed).

information, when the flow field is not directly available.
Higher-order correlations are also possible, and Ukeiley has
shown that quadratic stochastic estimation (QSE) outper-
forms LSE in predicting cavity flow fields [17].

The time traces shown in Fig. 2 show that both linear and
nonlinear observers perform well, and accurately reconstruct
the state from a single noisy pressure sensor. The nonlinear
observer estimates the coefficients of mode 3 better, indicat-
ing that nonlinear coupling between modes 1–2 and modes
3–4 may be significant.

Figure 3 shows reconstructions of the full flow state at a
particular time instant, comparing the full DNS solution with
the estimate from the Kalman filter using a single (noisy)
sensor, and LSE using three (noisy) sensors. The observer
closely reproduces the flow structures in the full simulations.
If clean sensors are used, the estimate from LSE is very close
as well, but as seen in Fig. 3, when sensor noise is introduced,
LSE can deviate substantially.

B. Controller design

Control design from Galerkin models is more challenging
than observer design, because once actuation is introduced,
typically the relevant flow structures change, so the basis
functions ϕj need to include greater variety of spatial
structures. To determine a model for control design, new
POD modes were obtained from a richer variety of snap-
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Fig. 4. Time traces from full DNS simulation: heuristic, proportional
control (top), LQR (middle), and LQR for longer time scale (bottom). Red
dashed lines indicate the extent of oscillations in the unforced flow.

shots, taken from simulations incorporating actuation using
a heuristic, proportional feedback from the pressure sensor in
the downstream wall at y = −0.5D (this heuristic feedback
law is described below). The first 10 POD modes were used,
which together capture over 99.99% of the energy in the
controlled flow.

The equations were then linearized about an equilibrium
point of the model (5), and a state feedback u = Kz was
found using LQR. Several different weights in the LQR
cost function were tried and implemented in the full DNS
simulation, and most stabilized the model quite rapidly,
but were less effective on the full simulation: usually the
controller reduced the oscillation amplitude for a few cycles,
but then the amplitude would grow larger than without forc-
ing. Careful tuning could yield controllers which performed
well on the full simulation, and the results of one of these
are shown in Fig. 4, along with a heuristic, proportional
controller, for comparison.

The heuristic control law was obtained by prescribing
the body force to oppose the local velocity of the shear
layer: if the shear layer has a positive vertical velocity, the
body force is downward. The local velocity of the shear
layer at the actuation point was correlated with the wall-
pressure measurement, which was used as the sensor for the
controller, and the corresponding phase delay was included
in the feedback law.

As shown in Fig. 4, the LQR controller performs slightly
better than the proportional controller. However, the results
of the full simulation do not match those predicted by

514



Exact (DNS) Dynamic observer
(one sensor)

LSE
(3 sensors)

Fig. 3. Instantaneous contours of dilatation, from exact simulation (left), and estimates from dynamic observer (center) and Linear Stochastic Estimation
(right), using noisy pressure signals.

the model (not shown), in which the feedback brings the
amplitude close to zero with a settling time of about 2 cycles.
The disagreement between model and full simulation is not
surprising, however, because of the limited range of validity
of the Galerkin models. Less aggressive LQR designs have
little effect on the simulation, and more aggressive designs
drive the system out of this range of validity. It is significant,
however, that the feedback law shown in Fig. 4 stabilizes
the full simulation for long time: these results indicate
that stabilization is indeed possible for this flow, which is
not necessarily the case for other flows, such as cylinder
wakes [8].

III. DYNAMIC PHASOR MODELS

An alternative approach to modeling, inspired by the work
of Tadmor, Noack, and others [8], [9], [19], [20], is to ignore
the Navier-Stokes equations altogether, and postulate a low-
order model that captures the relevant dynamical features
of the flow. For instance, a simple dynamical system that
describes oscillations at a frequency ω > 0, is given by

ṙ = σr − αr3

θ̇ = ω

where α > 0 and σ are constants. In Cartesian coordinates,
with (a1, a2) = (r cos θ, r sin θ), and introducing a forcing
term u(t), the model takes the form

ȧ = A(r)a + Bu, (10)

where a = (a1, a2), r = |a|, and

A(r) =
(

σ − αr2 −ω
ω σ − αr2

)
B =

(
b1

b2

)
.

A model similar to this has been used for controlling cylinder
wakes in [8], [9], [19], [20]. With no forcing (u = 0), with
σ ≤ 0, the origin is globally asymptotically stable, and
with σ > 0, the origin is unstable, and there is a stable
periodic orbit given by r =

√
σ/α. This model is, of course,

crude, and misses many of the details of the dynamics of
cavity oscillations, but the goal is to obtain a model which
is sufficient for control design, not to describe the cavity
dynamics in a detailed way.

The parameters σ, α, ω are tuned to match simulations
with no forcing, by observing the transient growth of oscilla-
tions from an initial condition near the unstable equilibrium
point (of Navier-Stokes). The forcing parameters b1, b2 are
then tuned to match simulations with small-amplitude sinu-
soidal forcing at a frequency close to the natural frequency ω.

A. Controller design

We wish to design a controller that stays within the range
of validity of our model. Here, after [20], we consider a
control input that is a sinusoid at the same frequency as the
natural flow, with suitably chosen phase, and slowly-varying
amplitude. In polar coordinates, (10) becomes

ṙ = (σ − αr2)r + (b1 cos θ + b2 sin θ)u

θ̇ = ω +
1
r
(b2 cos θ − b1 sin θ)u

. (11)
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Now, let
u = rc cos(θ − θc),

where θc and rc are controller parameters to be chosen.
Assuming r is slowly varying, and inputs u are small, one
may average over θ ∈ [0, 2π] (see [21]), and obtain the
averaged equations

ṙ = (σ − αr2)r + gr

θ̇ = ω +
gθ

r
,

(12)

where
gr =

rc

2
(b1 cos θc + b2 sin θc)

gθ =
rc

2
(b2 cos θc − b1 sin θc).

If ṙ and θ̇−ω in (11) are O(ε), then the averaging theorem
states that solutions of (12) are ε-close to solutions of (11)
for times t ∈ [0, 1/ε]. Choosing θc so that

cos θc =
b1

|b|
, sin θc =

b2

|b|
,

one obtains

gr = rc
|b|
2

, gθ = 0.

One possible choice for rc is then rc = −2κr/|b|, under
which the closed-loop averaged equations (12) become

ṙ = (σ − κ− αr2)r

θ̇ = ω.
(13)

By choosing 0 < κ < σ, the amplitude of the periodic orbit
decreases to

√
(σ − κ)/α, and if κ > σ, then the origin

becomes globally attracting, at least for the model. In the
control design, however, we must not be too aggressive with
the choice of κ, or we may leave the range of validity of the
model.

B. Observer design

In order to implement the controller above, one needs
estimates of r and θ. We use a very simple linear estimator,
assuming ṙ = 0 in (12), to obtain an observer of the form( ˙̂a1

˙̂a2

)
=

(
0 −ω
ω 0

) (
â1

â2

)
+

(
b1

b2

)
u+

(
L1

L2

)
(η−â1), (14)

where η is the sensor measurement, which we have assumed
measures a1 directly (we may always change coordinates so
that this is the case). Without inputs or sensor corrections,
the model (14) has a one-parameter family of periodic orbits,
all with period 2π/ω, so with sensor corrections, this model
should track oscillations of any amplitude and phase, as
long as the frequency is close to ω. For stability, we choose
L1 > 0, and choosing L2 = ω−L2

1/2ω gives good transient
behavior (critically damped poles of the error dynamics).

Full simulations reveal that, when control is introduced,
the mean value of the sensed pressure drifts slowly, so a high-
pass filter was used to remove this nonzero mean component.
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Fig. 5. Dynamic phasor controller: No forcing (black solid), model (blue
dashed), and full DNS (red solid), with κ = 2σ.
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Fig. 7. Behavior of controller designed for M = 0.6 at off-design Mach
numbers of M = 0.55 (top), M = 0.65 (middle); and M = 0.70 (bottom).

C. Results

Figure 5 shows the results of a controller and observer
with κ = 2σ, and L1 = 1. The behavior predicted by
the model (13) is shown, and compared to the results of
the full DNS simulation. The full simulation matches the
model well, and remarkably, the amplitude of oscillations
continues to decrease until a steady state is reached. The
full simulations have been run until time t = 120, in the
units in Fig. 5, and oscillations are virtually eliminated by
time t = 60. The steady state reached is shown in Fig. 6,
and looks similar to the time average of the uncontrolled
flow. Different gains were also tried in the full simulation.
For κ/σ = 0.5, the amplitude of oscillations was reduced,
but not eliminated, while for κ/σ ∈ [1, 3] the oscillations
were eliminated completely. For κ = 5σ the controller was
too aggressive, and increased the amplitude of oscillations,
deviating from the behavior predicted by the model.

As the Mach number varies, the frequency of oscillation
changes, so one would not expect this controller to be very
robust to changes in Mach number. Figure 7 shows the
behavior of the controller designed for M = 0.6, when used
at off-design flow conditions. As shown, for M = 0.55, the
controller increases the amplitude of oscillations, while for
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Fig. 6. Instantaneous vorticity contours before controller is turned on (left), and with phasor-based controller (right). The flow at right is steady, indicating
that this is an equilibrium of Navier-Stokes, stabilized by the controller.

M = 0.65 and 0.70, the controller reduces the amplitude
slightly, but does not stabilize.

IV. CONCLUSIONS

Observers and feedback laws for suppressing oscillations
in the flow past a cavity were presented using two differ-
ent modeling techniques: empirical Galerkin models, and a
dynamic phasor model. The Galerkin models work well for
state estimation, but can be unreliable for control design,
because of their very limited envelope of validity. Con-
trollers designed from the dynamic phasor model were able
to suppress oscillations completely, matching the behavior
predicted by the model, as long as the control design was not
too aggressive. This steady state was reached and maintained
with zero average force being supplied by the actuator, only
with small oscillatory forces that decrease with the amplitude
of oscillations.

Of course, in experiments in which turbulence is present,
one would not expect such a simple controller to be able
to stabilize the flow, as this would imply removing all
turbulence. However, it is reasonable to expect that a sim-
ilar control design could suppress the primary resonance
mechanism for cavity oscillations, and therefore significantly
reduce the tones produced.
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