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Abstract— In this paper a nonlinear observer which synthe-
sizes sliding mode techniques and neural state space models is
proposed and is applied for robust fault diagnosis in a class
of nonlinear systems. The sliding mode term is utilized to
eliminate the effect of system uncertainties, and the switching
gain is updated via an iterative learning algorithm. Moreover,
the neural state space models are adopted to estimate state
faults. Theoretically, the robustness, sensitivity, and stability of
this neural sliding mode observer-based fault diagnosis scheme
are rigorously investigated. Finally, the proposed robust fault
diagnosis scheme is applied to a satellite dynamic system and
simulation results illustrate its satisfactory performance.

I. INTRODUCTION

Due to the importance of safety and reliability of the
control systems in many complex system applications, fault
detection, isolation, identification and accommodation have
received considerable attention over the past two decades.
Prompt fault detection indicates the occurrence of faults.
Correct fault isolation determines the locations of the faults.
Precise fault identification specifies the characteristics of the
faults. All of this work helps to develop fault accommodation
strategies to guarantee failsafe operations of the control
systems.

In the categories of fault diagnosis (FD) techniques, ana-
lytical redundancy approaches based on linear or nonlinear
models have been widely considered. Fruitful contributions
are summarized in the books [1], [2], [3]. In general,
model-based fault diagnosis methods generate a residual via
comparing the measurable output of a system with that of
its mathematical model. Then, fault diagnostic decisions are
made based on the residual.

Efficient fault diagnosis depends on the robustness of
the residual with respect to system uncertainties. For linear
systems, robust fault diagnosis can be obtained via unknown
input observers and eigenstructure assignment methods, both
of which decouple the effect of the uncertainties from the
residual. For nonlinear systems, learning approaches based
FD schemes, which use neural networks [4], [5] or adap-
tive observers [6], [7], [8] to estimate faults have been
investigated in many literatures. Dead-zone operators are
always adopted in the learning algorithms to achieve a robust
estimation of the faults [9], [10].

Owing to the inherent robustness to system uncertainties,
sliding mode observers have been applied to the fault detec-
tion and diagnosis [11], [12], [13]. In order to guarantee
the stability of the fault diagnosis scheme, the bound of
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system uncertainties is usually estimated and involved in the
design of the switching gain. However, a large amount of
chattering occurs when this method is implemented by digital
computers at a given sampling frequency. Thus, a variety of
approaches have been proposed to reduce the unnecessary
chattering. One method is to use a continuous saturation
function rather than the discontinuous sign function. Other
methods adaptively estimate the bound of the system uncer-
tainties [14] or construct an adaptive switching gain [15].

This work establishes a nonlinear observer and applies it
to the fault diagnosis of a class of nonlinear systems. The
observer consists of an adaptive sliding mode term and a
neural state space (NSS) model. The sliding mode term is
used to eliminate the effect of the system uncertainties, and
the NSS model is adopted to identify various faults. In this
fault diagnosis scheme, the adaptive switching gain avoids
unnecessary chattering, and the iterative learning algorithm
can be easily implemented. Additionally, This fault diagnosis
scheme is not only robust to the system uncertainties, but also
able to identify various faults with satisfactory performance.
Finally, the application of the proposed FD scheme to a
satellite control system demonstrates its effectiveness.

II. PROBLEM FORMULATION
The class of nonlinear dynamic systems under this study

is described by

ẋi(t) = ξi(x1, x2, · · · , xn) + Bi(y, u) + ηi(x, u, t)

+fi(y, u, t)

ẋi+1(t) = xi(t), (i = 1, 3, · · · , n − 1)

y(t) = [x2, x4, · · · , xn]�, (1)

where x = [x1, · · · , xn]� ∈ �n with x(0) = x0 is the state
vector, u ∈ �m is the control input vector, and y ∈ �p is the
measurable output vector of the system. The vector ξ(x) =
[ξ1(x), x1, · · · , ξn−1(x), xn−1]� is defined as the state func-
tion, B(x, u) = [B1(y, u), 0, · · · , Bn−1(y, u), 0]� denotes
the input function, η = [η1(t), 0, · · · , ηn−1(t), 0]� represents
the uncertainty vector, and f = [f1(t), 0, · · · , fn−1(t), 0]� is
the state fault vector.

In a vector form, (1) can be rewritten as

ẋ(t) = ξ(x(t)) + B(y, u) + η(x, u, t) + f(y, u, t)

y(t) = Cx(t), (2)

where η : �n ×�m ×�+ → �n, f : �p ×�m ×�+ → �n

are all smooth vector fields.
Remark 1: The system (1) only contains modeling uncer-

tainties and state faults, and our work focuses on the robust
diagnosis of state faults in the presence of state uncertainties.
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For convenience of analysis, the following assumptions are
introduced.

Assumption 1: The state function ξ(x(t)) is differentiable
at x̂, that is

A(t) =
∂ξ

∂x

∣∣∣∣
x=x̂

where A(t) is an n×n matrix. Hence, the following equation
can be obtained through series expansion of ξ(x) at x̂.

ξ(x) − ξ(x̂) = A(t)x̃(t) + ψ(x̂, x), (3)

where ‖ψ(x̂, x)‖ ≤ kψ‖x̃(t)‖, and x̃(t) = x(t)− x̂(t) is the
state estimation error.

Assumption 2: A symmetric matrix Pe(t) satisfies inequal-
ity β1I ≤ Pe(t) ≤ β2I , where β1 and β2 are two positive real
numbers. Moreover, Pe(t) is the solution of the following
Lyaponov equation:

A�Pe(t) + Ṗe(t) + Pe(t)A = −Q, Q = Q� > 0, (4)

where A is defined in Assumption 1.
Assumption 3: The uncertainty vector η is unstructured and

bounded, i.e., ‖η‖ ≤ η0.

III. FAULT DIAGNOSIS STRATEGY

In this section, a nonlinear observer which integrates
a sliding mode term and NSS models is established for
detecting and identifying faults of the systems represented
by (1).

A. Neural Sliding Mode Observer
Based on the system representation (1), a nonlinear diag-

nostic observer is proposed as follows:

˙̂xi(t) = ξ̂i(x̂1, y1, · · · , x̂n−1, yn) + Bi(y, u) + θ̂i(t)

+gi(t)sign(si(t))

˙̂xi+1(t) = x̂i(t) + θ̂i+1(t), (i = 1, 3, · · · , n − 1)

ŷ(t) = [x̂2, x̂4, · · · , x̂n]�, (5)

where x̂i is the ith state of the observer, and ŷ is the output
vector of the observer. The term sign is a signum function,
and θ̂i(t) is the ith NSS model represented in [17], [18] as

˙̂
θi(t) = Wi,1(t)θ̂i(t)+Wi,2(t)σ(Wi,3(t)θ̂i(t)+Wi,4(t)si(t)) (6)

where si(t) is chosen according to the following rule:

si(t) = (θ̂i+1(t))eq

si+1(t) = xi+1(t) − x̂i+1(t)
(7)

Wi,j , (j = 1, · · · , 4) is the parameters of the NSS model.
The activation function is selected to be the tangent hyper-
bolic function σ(z) = (1 − e−z)/(1 + e−z).

The (θ̂i+1(t))eq is computed based on the equivalent
control method, i.e., ˙̃xi+1(t) = (xi(t) − x̂i(t)) − θ̂i+1(t),
when ˙̃xi+1(t) = 0.

The dynamics of the observer can be written in a vector
form as

˙̂x(t) = ξ̂(x̂, y) + B(y, u) + G(t)sign(S(t)) + θ̂(t)

ŷ(t) = Cx̂, (8)

where B(y, u) = [B1, 0, · · · , Bn−1, 0]� is the nonlinear
input vector. G = diag{g1, 0, · · · , gn−1, 0} is a diagonal
gain matrix. The sliding mode surface is defined as S(t) =

[s1(t), · · · , sn(t)]�. θ̂(t) = [θ̂1, · · · , θ̂n]� is the vector of
neural state space models.

Defining ỹ(t) = y(t)− ŷ(t) as the output estimation error,
based on Assumption 1, the dynamics of the estimation error
can be derived by subtracting (8) from (2)

˙̃x(t) = Ax̃(t) + ψ(x̃) + η(x, u, t) − G(t)sign(S(t)) + θ̃(t)

ỹ(t) = Cx̃(t), (9)

where θ̃(t) = f(y, u, t) − θ̂(t) is the fault estimation error.

B. Adaptive Switching Gain

When designing the switching gain of the sliding mode
term, we need to avoid unnecessary high-frequency chatter-
ing. Some adaptation laws of the switching gain have been
introduced in [16]. Here, a P-type iterative learning update
law is proposed for the switching gain as follows

Gj+1(t) = Gj(t) + Φ|Sj(t)| · sign(Sj(t) · Sj−1(t)), (10)

where j indicates the iteration number at time t. Φ is a
positive definite iterative learning gain matrix which deter-
mines the rate of convergence. The operator | · | takes the
absolute value of each element in a vector. The result of
the dot multiplication of two vectors is still a vector whose
element is the product of the corresponding two elements in
each vector.

Remark 2: From the adaptation law (10), we see that if
the system has not reached the sliding surface (the switching
gain should be larger), the element of sign(Sj(t) · Sj−1(t))
is +1, and the switching gain will increase. If the system
cross the sliding surface (the switching gain should be less),
the component of sign(Sj(t) · Sj−1(t)) is -1, and the gain
will decrease correspondingly.

The convergence property of the proposed switching gain
update law is analyzed in the following theorem.

Theorem 1: If the inequality (15) holds, the iterative update
law (10) for the switching gain is convergent.

Proof: Subtracted by G∗ from both sides of (10) yields

ΔGj+1 = ΔGj − Φ|Sj | · sign(Sj · Sj−1), (11)

where G∗ is the ideal switching gain, and ΔGj = G∗−Gj .
Inner products of both sides of (11) with themselves via Φ−1,
we have

ΔG�
j+1Φ

−1ΔGj+1 = ΔG�
j Φ−1ΔGj + |Sj |�Φ|Sj |

−2ΔG�
j |Sj | · sign(Sj · Sj−1). (12)

Integration of (12) over the time interval [0, t] results in

‖ΔGj+1‖2
Φ−1

= ‖ΔGj‖2
Φ−1 + ‖Sj‖2

Φ

−2
t

0

ΔG�
j (τ)|Sj(τ)| · sign(Sj(τ) · Sj−1(τ))dτ

= ‖ΔGj‖2
Φ−1 + ‖Sj‖2

Φ − 2
t

0

|ΔG�
j (τ)||Sj(τ)|dτ, (13)

where ‖ · ‖Φ−1 is defined as

‖ΔGj‖Φ−1 =
t

0

ΔG�
j (τ)Φ−1ΔGj(τ)dτ

1/2

(14)
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If the estimation error dynamics satisfies dissipativity, i.e.,
there exists a positive constant α such that

t

0

|ΔG�
j (τ)||Sj(τ)|dτ ≥

t

0

ΔG�
j (τ)Sj(τ)dτ

≥ 1 + α

2

t

0

Sj(τ)�ΦSj(τ)dτ

=
1 + α

2
‖Sj‖2

Φ. (15)

Then, it follows from (13) that

‖ΔGj+1‖2
Φ−1 ≤ ‖ΔGj‖2

Φ−1 − α‖Sj‖2
Φ. (16)

This inequality implies that the sequence {‖ΔGj‖Φ−1} will
monotonously decrease with increasing j as long as ‖Sj‖Φ

is nonzero. Since {‖ΔGj‖Φ−1} is bounded from below, the
monotonous decrease of {‖ΔGj‖Φ−1} means ‖Sj‖Φ → 0
as j → ∞. Thus, Gj(t) → G∗(t) as j → ∞, that is, the
switching gain update law is convergent.

Remark 3: The inequality (15) is able to be guaranteed
by choosing a suitable iterative learning gain Φ. Normally, a
small Φ results in a steadily but slowly convergent process. A
large Φ leads to a fast convergence rate, though the iterative
learning process may be unstable.

In order to make the sliding mode term only eliminate the
deviation in the dynamics caused by the system uncertainties,
the switching gain G(t) is set to be bounded by G0, i.e.,

‖G(t)‖ < G0, which is set to G0 =
ε(1 − λkψ)

λ‖C‖ − η0. The ε

is a positive constant used to indicate a fault, which implies

‖ỹ(t)‖ < ε no fault occurs
‖ỹ(t)‖ ≥ ε fault has occurred (17)

where λ is defined to be λ =
∫ ∞
0

∥∥eAt
∥∥ dt. The setting of

the upper bound distinguishes the effects of faults from those
of the system uncertainties.

C. Update Law for Neural State Space Model
The parameters of the NSS model are updated by using a

modified extended Kalman filter algorithm:

Ki(k) = Pi(k)Hi(k) Hi(k)�Pi(k)Hi(k) + Ri(k)
−1

Pi(k + 1) = Pi(k) − Ki(k)Hi(k)�Pi(k)

Wi(k + 1) = Wi(k) + Ki(k)D[ei(k)], (18)

where k denotes discrete sampling time. Wi(k) is the weight
vector in the NSS model. Ki(k) is known as the Kalman gain
matrix. Pi(k) is the covariance matrix of the state estimation
error, and Ri(k) is the estimated covariance matrix of noise.
For SISO systems, Ri(k) is recursively calculated by:

Ri(k) = Ri(k − 1) + ei(k)2 − Ri(k − 1) /k. (19)

Hi(k) is the derivative of the NSS model output with respect
to its weight Wi. The estimation error is defined as ei =
si − θ̂i. The dead-zone operator D[·] is defined as

D[ei(k)] =
0 if |si(k)| < δsi

ei(k) otherwise (20)

Remark 4: The dead-zone operator is introduced to make
the observer robust with respect to system uncertainties.
When the magnitude of si is greater than the bound δsi,
which implies the occurrence of a fault fi, the parameters

of the NSS model will be updated to drive the model to
approximate the fault. Otherwise, the system is considered
to be healthy, and the output of the NSS model remains zero,
even though si(k) is nonzero.

The convergence property of the modified EKF algorithm
is analyzed in the following theorem.

Theorem 2: The parameter update law (18) is convergent,
provided that Pi(k) is a positive definite matrix.

Proof: Since for SISO systems, Ri(k) is the estimated
variance of noise, it keeps nonnegative in all iterations. Thus,
if Pi(k) is positive definite, the following inequality can be
guaranteed.

Hi(k)�Pi(k)Hi(k) > 0. (21)

Hence, with (21) we have

0 < Hi(k)�Pi(k)Hi(k) < 2[Hi(k)�Pi(k)Hi(k) + Ri(k)],

which is equivalent to

0 < Hi(k)�Pi(k)Hi(k)[Hi(k)�Pi(k)Hi(k) + Ri(k)]−1 < 2.

Based on the update law (18), we have

0 < Hi(k)�Ki(k) < 2. (22)

Consider a positive Lyapunov function candidate:

V (k) =
1

2
ei(k)2. (23)

The first order difference of (23) is

ΔV (k) =
1

2
ei(k + 1)2 − ei(k)2

= Δei(k) ei(k) +
1

2
Δei(k) . (24)

The difference of ei(k) can be approximated by

Δei(k) =
∂ei(k)

∂Wi

�
ΔWi

= −Hi(k)�Ki(k)D[ei(k)]. (25)

Hence, based on (22) and (25), when |si| ≥ δsi, (24) is
further derived to be

ΔV (k) = −Hi(k)�Ki(k) 1 − 1

2
Hi(k)�Ki(k) ei(k)2

< 0, (26)

and when |si| < δsi, ΔV (k) = 0. Therefore, in summary,
if the condition (21) is guaranteed, then ΔV (k) < 0, which
implies the parameter update process using the modified EKF
algorithm is convergent.

Remark 5: The convergence of the modified EKF learning
algorithm implies that limt→∞ |fi(t)− θ̂i(t)| = 0, or ‖f(t)−
θ̂(t)‖ ≤ δf after a finite time, where δf is the upper bound
of the fault estimation error.

Remark 6: In numerical computation, in order to guarantee
(21), Pi(0) is usually set to a large diagonal matrix.

IV. ANALYTICAL PROPERTIES

The purpose of this section is to obtain some theoretical
guarantees in the aspects of robustness, sensitivity and sta-
bility of the proposed observer based fault diagnosis scheme.
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A. Robustness

Robustness of a fault diagnosis scheme refers to its ability
to prevent false alarms in the presence of system uncer-
tainties. As for the fault diagnosis scheme described above,
robustness is achieved by using a dead-zone operator in the
learning algorithm of NSS models and the upper bound of
the adaptive switching gain.

Consider the time interval prior to the occurrence of any
fault, i.e., t ∈ [0, Tx), where Tx refers to the beginning time
of a state fault.

Theorem 3: The robust fault diagnosis scheme developed
in (5) guarantees that θ̂(t) = 0, when t < Tx.

Proof: Using Contradiction method, we suppose that
there exists a finite time te ∈ (0, Tx) such that ‖ỹ(t)‖ < ε
for t < te and

‖ỹ(te)‖ = ε. (27)

Prior to any fault, the dynamics of the estimation error is

˙̃x(t) = Ax̃(t) + ψ(x̃) + η(t) − G(t)sign(S(t))

ỹ(t) = Cx̃(t), x̃(0) = 0. (28)

By solving this differential equation (28), we obtain

‖x̃‖
≤

te

0

eA(te−τ) ‖ψ(x̃) + η − Gsign(S(τ))‖ dτ

≤ λ(kψ‖x̃‖ + η0 + ‖G‖). (29)

Therefore, the output estimation error is

‖ỹ‖ <
‖C‖λ(η0 + G0)

1 − λkψ
= ε. (30)

This contradicts (27). Therefore, It is concluded that for
all t < Tx, the output estimation error ỹ(t) remains within
the bound ε, and the output of the NSS model remains zero.

B. Sensitivity

Not only do we want the fault diagnosis scheme to be
robust to the system uncertainties, but also we hope that it is
sensitive to any faults. However, an inherent tradeoff exists
between the robustness and sensitivity of the fault diagnosis
scheme, because high sensitivity to faults may reduce its
robustness to the system uncertainties. Sensitivity properties
focus on the characteristics of the fault diagnosis scheme in
the time interval between the occurrence of a fault and the
time of its detection.

Theorem 4: Consider the fault diagnosis scheme presented
by (5). If there exists a time interval tx > 0 such that the
state fault f(t) satisfies

Tx+tx

Tx

eA(Tx+tx−τ)f(τ)dτ ≥ (‖C‖‖C†‖ + 1)

‖C‖ ε, (31)

then the state fault will be detected, i.e., ‖ỹ(Tx + tx)‖ ≥ ε.
Proof: In the time interval between the occurrence of a

state fault and the adaptation of the NSS model, the dynamics
of the estimation error satisfy

˙̃x(t) = Ax̃(t) + ψ(x̃) + η(t) − G(t)sign(S(t)) + f(t)

ỹ(t) = Cx̃(t). (32)

Solving (32) for any tx > 0 gives

x̃(Tx + tx)

=
Tx+tx

0

eA(Tx+tx−τ) [ψ(x̃) + η(τ) − G(τ)sign(S(τ))] dτ

+
Tx+tx

Tx

eA(Tx+tx−τ)f(τ)dτ. (33)

Then, using the triangle inequality and the result from (29),
we obtain

‖x̃(Tx + tx)‖
≥ −

Tx+tx

0

eA(Tx+tx−τ)ψ(x̃)dτ

≥ −
Tx+tx

0

eA(Tx+tx−τ)η(τ)dτ

−
Tx+tx

0

eA(Tx+tx−τ)G(τ)dτ

+
Tx+tx

Tx

eA(Tx+tx−τ)f(τ)dτ

≥ −λ(η0 + ‖G‖)
1 − λkψ

+
Tx+tx

Tx

eA(Tx+tx−τ)f(τ)dτ . (34)

Using matrix properties, the output estimation error satisfies

‖ỹ(Tx + tx)‖ ≥ ‖x̃(Tx + tx)‖
‖C†‖

≥ − λ(η0 + ‖G‖)
‖C†‖(1 − λkψ)

+
1

‖C†‖
Tx+tx

Tx

eA(Tx+tx−τ)f(τ)dτ ,(35)

where C† is the left pseudo-inverse of C.
Therefore, if the state fault function satisfies (31), then

‖ỹ(Tx + tx)‖ ≥ ε, which implies that the state fault will
be detected, and the parameters of the NSS model will be
updated correspondingly.

C. Stability

In above subsections, the robustness and sensitivity of
the proposed fault diagnosis scheme have been discussed
respectively. Another key performance of a fault diagnosis
scheme is its stability. In this subsection, stability of the fault
diagnosis scheme (5) after the occurrence of a state fault is
analyzed as follows.

Theorem 5: In the presence of state faults f(t), the pro-
posed nonlinear robust fault diagnosis scheme (5) guarantees
that the state estimation error x̃(t) is uniformly bounded by,

sup ‖x̃(t)‖ ≤ μ0

λmin(Pe)
(36)

with μ0 = max

(
V (x̃(0)),

ε0

λmin(Re)

)
, where Re =

ρP−1
e , and ε0 = (η0 + G0 + δf )β2

2 .
Proof: Construct a Lyapunov function candidate:

V (t) = x̃(t)�Pe(t)x̃(t), (37)

where Pe(t) is given in Assumption 2, and Q is chosen such
that ρ = λmin(Q) − 2kψ‖Pe‖ − η0 − G0 − δf ≥ 0.
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Based on Assumption 2, the derivative of V (t) with
respect to time t is

V̇ (t)

= ˙̃x(t)�Pe(t)x̃(t) + x̃(t)�Ṗe(t)x̃(t) + x̃(t)�Pe(t) ˙̃x(t)

= [Ax̃(t) + ψ(x̃) + η(t) − G(t)sign(S(t)) + θ̃(t)]�Pe(t)x̃(t)

+x̃(t)�Ṗe(t)x̃(t)

+x̃(t)�Pe(t)[Ax̃(t) + ψ(x̃) + η(t) − G(t)sign(S(t)) + θ̃(t)]

= x̃(t)�(A�Pe(t) + Ṗe(t) + Pe(t)A)x̃(t)

+2x̃(t)�Pe(t)ψ(x̃) + 2x̃(t)�Pe(t)η(t)

−2x̃(t)�Pe(t)G(t)sign(S(t)) + 2x̃(t)�Pe(t)θ̃(t)

= −x̃(t)�Qx̃(t) + 2x̃(t)�Pe(t)ψ(x̃) + 2x̃(t)�Pe(t)η(t)

−2x̃(t)�Pe(t)G(t)sign(S(t)) + 2x̃(t)�Pe(t)θ̃(t)

≤ −λmin(Q)‖x̃(t)‖2 + 2kψ‖Pe‖‖x̃(t)‖2

+2‖x̃(t)‖‖Pe‖(η0 + G0 + δf )

≤ −(λmin(Q) − 2kψ‖Pe‖)‖x̃(t)‖2

+(‖x̃(t)‖2 + ‖Pe‖2)(η0 + G0 + δf )

= −ρ‖x̃(t)‖2 + (η0 + G0 + δf )‖Pe‖2

≤ −ρ‖x̃(t)‖2 + ε0. (38)

Therefore, when ‖x̃‖ >
√

ε0/ρ, V̇ < 0, i.e., the state
estimation error is uniformly bounded. Rewrite (38) to be

V̇ (x̃(t)) ≤ −ρx̃(t)�x̃(t) + ε0

= −x̃(t)�P 1/2
e (ρP−1

e )P 1/2
e x̃(t) + ε0

≤ −λmin(Re)x̃(t)�Pex̃(t) + ε0

= −λmin(Re)V (x̃(t)) + ε0. (39)

Solving the differential equation (39) obtains the following
inequality

V (x̃(t)) ≤ V (x̃(0))e−λmin(Re)t

+ε0
t

0

e−λmin(Re)(t−τ)dτ

= V (x̃(0))e−λmin(Re)t

+
ε0

λmin(Re)
1 − e−λmin(Re)t . (40)

From (37), we have

V (x̃(t)) ≥ λmin(Pe)‖x̃(t)‖2. (41)

Then, the following inequality can be obtained

‖x̃(t)‖ ≤ V (x̃(t))

λmin(Pe)
(42)

Thus,

sup ‖x̃(t)‖ ≤ sup V (x̃(t))

λmin(Pe)
(43)

From (40), due to the first order exponential nature of its
right-hand side, the upper bound of V (x̃(t)) is

sup V (x̃(t)) ≤ max V (x̃(0)),
ε0

λmin(Re)
≡ μ0. (44)

Therefore,

sup ‖x̃(t)‖ ≤ μ0

λmin(Pe)
(45)

V. AN APPLICATION EXAMPLE
In this section, the proposed robust fault diagnosis scheme

is applied to a fourth-order satellite dynamic system, which
is described in [10]. The original model of the system is

ṙ = v r(0) = r0

v̇ = rw2 − k

mr2
+

u1

m
v(0) = 0

φ̇ = w φ(0) = 0

ω̇ = −2vω

r
+

u2

mr
ω(0) = ω0

(46)

where m = 200kg is the mass of the satellite, (r, φ) are the
polar coordinates of the satellite, v is the radial speed, and ω
is the angular speed. Control inputs u1 and u2 are the radial
and tangential thrust forces, respectively.

In the simulation, the mass of the satellite is supposed to
be underestimated by ςx = 3% (m∗ = m(1 − ςx), k∗ =
k(1 − ςx)).

Using a local diffeomorphism, (46) can be converted into
a state space model where (A,C) are given by

A =

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

, C =
0 1 0 0
0 0 0 1

The nonlinear term B(y, u) is expressed as

B(y, u) =

− y1

(y2
1 + y2

2)3/2

k∗

m∗ +
u1y1 + u2y2

(y2
1 + y2

2)1/2

1

m∗
0

− y2

(y2
1 + y2

2)3/2

k∗

m∗ +
u1y2 − u2y1

(y2
1 + y2

2)1/2

1

m∗
0

and the state uncertainty is represented by

η(x, u, t) =

−u1x2 + u2x4

(x2
2 + x2

4)
1/2

ςx

m∗
0

−u1x4 + u2x4

(x2
2 + x2

4)
1/2

ςx

m∗
0

Based on the nominal model and (5), a neural sliding mode
observer is designed, where NSS models θ̂1(t) is used to
estimate state fault f1(t) which occurs in the first state. Since
the sliding mode minimizes the output error caused by the
system uncertainties, the dead-zone values can be set to be
very small without losing robustness. In this simulation, the
dead-zone in NSS models is set to δsi = 2 × 10−5.

The simulation results are shown in the Fig. 1 and Fig.
2, respectively. Fig. 1 illustrates the system outputs y1 and
y2. Fig. 2 demonstrates the characteristics of f1(t) and NSS
model outputs. In Fig. 1, the practical system output deviates
from that of the nominal system when a state fault occurs,
but the observer outputs follow the system outputs for all
time. Moreover, all the outputs of the NSS models remain
zero prior to the occurrence of a fault. After the occurrence
of a state fault, only the NSS model that associates with
the faulty state identifies the fault quickly, and other NSS
model outputs are close to zero. These two figures shows
that the proposed FD scheme is a reliable fault detection
and diagnosis method.
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Fig. 1. Time-behavior of system outputs under fault 1

0 1 2 3 4 5
−0.1

−0.05

0

0.05

0.1

Time (sec)

Fault 1 and NSS model output 1

0 1 2 3 4 5
−0.05

0

0.05

Time (sec)

NSS model output 2

0 1 2 3 4 5
−0.05

0

0.05

Time (sec)

NSS model output 3

0 1 2 3 4 5
−0.05

0

0.05

Time (sec)

NSS model output 4

Fault 1
NSS model output 1

Fig. 2. Time-behavior of fault 1 and outputs of NSS model

VI. CONCLUSIONS

In this paper, a neural sliding mode observer-based fault
diagnosis scheme for a class of nonlinear systems is investi-
gated. In this scheme, an adaptive sliding mode term is used
to diminish the effect of the state uncertainties, and NSS
models are adopted to identify state faults. The switching
gain of the sliding mode is updated via an iterative learning
algorithm, and the parameters in the NSS models are updated
through a modified EKF algorithm. Theoretically, the con-
vergence of these two update laws are proved respectively.
Moreover, the robustness, sensitivity and stability properties
are all rigorously analyzed. Practically, the proposed FD
scheme is applied to a satellite, and the simulation results
demonstrate its effectiveness.
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