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Abstract— This paper is concerned with the explicit solu-
tion to constrained receding-horizon reference tracking control
problems. The goal of this work is, for any scalar reference
trajectory, to find the optimal control law for SISO linear
systems such that a quadratic cost functional is minimised over
a horizon of length N , subject to the satisfaction of input con-
straints, and under the assumption that the reference is known
over the entire horizon. A global solution (i.e., valid in the
entire data-space) for this problem, and for arbitrary horizon
N , is derived analytically by using dynamic programming. The
optimal solution is given by a piece-wise affine function of the
data (the initial state of the system and the reference sequence),
and the data-space is partitioned into a number of polyhedral
regions, inside each of which a unique affine function is applied.
From the dynamic programming solution, a clear relationship is
exposed between input-constrained reference tracking problems
and state estimation problems in the presence of constrained
disturbances.

I. INTRODUCTION

The explicit solution of constrained optimal control prob-
lems has attracted considerable attention recently (see, e.g.,
[5], [7]). This interest is, mainly, due to the fact that
these problems constitute the core underlying optimisation
problem that is solved, at each sampling time, by model pre-
dictive control algorithms (one of the most popular control
methodologies used in industry at present). Model predic-
tive control has been traditionally associated with process
industries, where the plants are sufficiently slow and, hence,
there is plenty of time to perform the on-line optimisations
required in the implementation of the control law (see,
e.g., [4]). Explicit solutions, on the other hand, provide a
characterisation of the optimal solution that is pre-computed
off-line, thus making the on-line numerical optimisation for
such problems unnecessary. This has, at least, two potential
benefits. One benefit is related to implementation aspects,
as explicit solutions provide an alternative approach (to
traditional numerical on-line optimisation) to implement the
control algorithm, which could offer advantages in terms
of the computational time required to compute on-line the
control action. Another area in which explicit solutions,
distinctively, offer benefits is in terms of the verifiability of
the control scheme, since the complete knowledge of the
controller structure allows to perform off-line tests such as
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closed-loop stability, robustness analysis, sensitivity analysis,
etc., using traditional analytical and/or numerical methods.
Hence, the complete closed-form characterisation provided
by explicit solutions allows for such off-line analysis and
a better understanding of the control algorithm (whether
implemented using the off-line explicit solution or on-line
optimisation methods).

In the present paper we obtain, using dynamic program-
ming, the explicit solution to constrained receding-horizon
reference tracking control problems. The result is based on
a previous result obtained by the authors in [8] for the
case of regulation problems. The new problem, studied here,
has more generality than the previous one (as a regulation
problem can be thought of as a zero-reference tracking one).
Tracking problems, in spite of their importance in control
applications, have received significantly less attention in the
control literature as compared to regulation problems. And,
although both problems share many common features, the
more general problem of reference tracking poses some new
challenges in, for example, obtaining explicit closed-form
solutions. The technique used in [8], based on dynamic
programming, is extended here to deal with the case of
reference tracking. It is assumed that at each sampling time
it is possible to preview the present and N future samples
of the reference signal. The approach is quite general, in the
sense that the reference trajectory, over the entire horizon N ,
is allowed to change at each sample instant.

One of the outcomes of the analytical solution to refer-
ence tracking problems presented here is that it exposes a
clear connection to another optimisation-based problem of
current interest; namely, state estimation in the presence of
constraints. Drawing a parallel with a recent result reported
by the authors in [9], a clear relationship emerges between
input-constrained reference tracking problems and state esti-
mation problems in the presence of constrained disturbances.
In fact, as explained in this paper, both problems are identical
under a suitable change of the system parameters and a
different interpretation of the problem data.

II. REFERENCE TRACKING WITH INPUT CONSTRAINTS

Consider the discrete-time linear state-space model

xk+1 = Axk + Buk, (1a)

yk = Cxk, (1b)

ek = y∗
k − Cxk, (1c)

where xk ∈ IRn and uk ∈ IR are the state and control input
respectively, yk ∈ IR is the system output, y∗

k ∈ IR is a given
output reference trajectory, and ek is the tracking error. In
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(1a) the pair (A, B) is assumed to be stabilisable, and the
control input is required to satisfy the constraint uk ∈ Ω,
where Ω � [∆1, ∆2], ∆1 < ∆2.

The following notation will be employed. The control
sequence, for some horizon N , is denoted u � u0 �

{u0, u1, . . . , uN−1}. For some initial time r ∈ {0, . . . , N −
1}, let ur denote the partial control sequence ur �

{ur, ur+1, . . . , uN−1}. By u ∈ ΩN (ur ∈ ΩN−r) we denote
the case in which each element in the sequence satisfies
uk ∈ Ω, k = 0, . . . , N − 1 (k = r, . . . , N − 1).

The solution of (1a) at time k ≥ r when the initial state
at time r is xr, and the control sequence is ur, is denoted
xur

k (xr, r). To simplify notation, the initial time is dropped
when it is zero; i.e., xu

k (x0) � xu0

k (x0, 0). The fixed-horizon
optimal control problem considered is

Pc
N : V OPT

0 (x0, µN , y∗
N−1, . . . , y

∗
0)

= min
u

V0(x0, µN , y∗
N−1, . . . , y

∗
0 ,u), (2)

subject to the constraint u ∈ ΩN . The cost V0(·) in (2) is
defined by

V0(x0, µN ,y∗
N−1, . . . , y

∗
0 ,u)

=

N−1∑
k=0

[(y∗
k − Cxk)T Q(y∗

k − Cxk) + uT
k Ruk]

+ (xN − µN )T PN (xN − µN ) , (3)

with initial state x0 and xk = xu

k (x0), and where µN is any
vector in IRn satisfying y∗

N = CµN . A suitable choice is the
minimum-norm solution, given by µN = CT(CCT)−1y∗

N

(see, e.g., [3]). The matrix Q is the tracking error weighting
matrix, assumed to be positive semidefinite, R is the control
weighting matrix, assumed to be positive definite. (Notice
that, in the present context, both Q and R are 1×1 matrices,
and the transpose operations in, e.g., expression (3) are not
required. However, without loss of rigour, we have used
the standard notation from the vector case.) The matrix PN

is the terminal state weighting matrix which is chosen as
the positive definite matrix solution of the algebraic Riccati
equation

PN = ATPNA + CTQC − KTR̄K, (4)

where K � R̄−1BTPNA, R̄ � R + BTPNB. This
particular choice for the terminal weighting matrix PN is
not essential for the developments of this paper, however it
is well known (see, for example, [6]) that, for regulation
problems, with this choice of terminal weight PN , and
provided that the horizon N is large enough, the resulting
receding-horizon implementation of the control law gives
an asymptotically stable closed-loop system and possesses
all the properties of infinite-horizon optimal control. By
the receding-horizon implementation it is understood the
standard technique (also known as model predictive control)
in which the first control action u0 in the optimal control
sequence u that minimises (2)–(3) is applied to system (1)
and, as the state evolves to a new value in the next sampling
time, the optimisation process is repeated over a horizon of

length N (receding horizon).

III. DYNAMIC PROGRAMMING

For r = 0, . . . , N−1, the partial value function (or optimal
cost to go), is defined as

V OPT
r (xr , µN ,y∗

N−1, . . . , y
∗
r)

= min
ur

Vr(xr, µN , y∗
N−1, . . . , y

∗
r ,ur), (5)

subject to the constraint ur ∈ ΩN−r, where the partial cost
Vr(·) is defined by

Vr(xr , µN ,y∗
N−1, . . . , y

∗
r ,ur)

=

N−1∑
k=r

[(y∗
k − Cxk)T Q(y∗

k − Cxk) + uT
k Ruk]

+ (xN − µN )T PN (xN − µN ) , (6)

with xk = xur

k (xr , r), k = r, r + 1, . . . , N . We refer to
V OPT

r (·) as the partial value function (or, just the value
function) ‘at time r’, meaning that the (partial) value function
‘starts at time r’. We also define

V OPT
N (xN , µN ) � (xN − µN )T PN (xN − µN ). (7)

To solve problem Pc
N defined in (2)–(3), dynamic

programming (see [1]) will be used, which is based on the
Principle of Optimality: An optimal policy has the property
that whatever the initial state and initial decision are,
the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision.
Applying the principle of optimality to problem Pc

N , we have

V OPT
N (xN , µN ) = (xN − µN )T PN (xN − µN ),

V OPT
r (xr, µN , y∗

N−1, . . . , y
∗
r )

= min
ur∈Ω

{
(y∗

r − Cxr)
T Q(y∗

r − Cxr) + uT
r Rur

+ V OPT
r+1 (Axr + Bur, µN , y∗

N−1, . . . , y
∗
r+1)

}
, (8)

for r = 0, . . . , N − 1. Thus, by using the principle
of optimality, the sequence of optimal costs to go
{V OPT

0 (·), V OPT
1 (·), . . . , V OPT

N (·)} and the sequence of
optimal controls {uOPT

0 , uOPT
1 , . . . , uOPT

N−1} are obtained by
solving (8) recursively.

IV. ANALYTICAL SOLUTION

In the sequel, I denotes the identity matrix of the same
size as A, 0i×j denotes the zero matrix with i rows and j
columns, and c denotes a generic constant. Let us define

YN � µN , YN−1 �

[
µN

y∗
N−1

]
, . . . , Y0 �

⎡
⎢⎢⎢⎣

µN

y∗
N−1

...
y∗
0

⎤
⎥⎥⎥⎦ . (9)

Let us also define αN � I, βN � 0n×1 such that x∗
N �

αNYN + βN = µN . The partial value function at time N
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is considered first, which from (7) and the above definitions
can be written as

V OPT
N (xN , x∗

N ) = (xN − x∗
N )TPN (xN − x∗

N ).

Then, the partial value function at time N − 1 is expressed,
using the Principle of Optimality (8), as

V OPT
N−1 (xN−1, x

∗
N , y∗

N−1) = min
uN−1∈Ω

{
uT

N−1RuN−1

+ (y∗
N−1 − CxN−1)

TQ(y∗
N−1 − CxN−1)

+ V OPT
N (AxN−1 + BuN−1, x

∗
N )

}
. (10)

Consider first the minimisation problem (10) in the absence
of constraints. Substituting the expression for V OPT

N into
V OPT

N−1 , taking derivatives with respect to uN−1 and setting
to zero, the expression of the unconstrained uunc

N−1 that
minimises V OPT

N−1 is obtained as:

uunc
N−1 =

[
BTPNB + R

]−1
BTPN (x∗

N − AxN−1). (11)

Notice that the objective function in (10) is a quadratic func-
tion of uN−1 whose unconstrained minimum is achieved at
uunc

N−1 computed above. From the convexity of the objective
function it follows that the constrained optimum, uOPT

N−1, is
given by the point in the allowed interval Ω = [∆1, ∆2] that
is closest in distance to the unconstrained optimum uunc

N−1.
Hence, three different cases arise, depending on whether
uunc

N−1 < ∆1, ∆1 ≤ uunc
N−1 ≤ ∆2, or uunc

N−1 > ∆2. It follows
that the optimal constrained solution can be written as

uOPT
N−1 = LNZN (x∗

N − AxN−1) + hN , (12)

where

ZN =
[
B

T
PNB + R

]
−1

B
T
PN , (13)

LN =

{
1 if ∆1 ≤ ZN (x∗

N − AxN−1) ≤ ∆2,

0 otherwise,
(14)

hN =

⎧⎪⎨
⎪⎩

0 if ∆1 ≤ ZN (x∗

N − AxN−1) ≤ ∆2,

∆1 if ZN (x∗

N − AxN−1) < ∆1,

∆2 if ZN (x∗

N − AxN−1) > ∆2.

(15)

To simplify the notation, in the sequel we make the assump-
tion that matrix A is invertible. Note that this assumption is
not very restrictive since any matrix A obtained from the
time-discretisation of an underlying continuous-time system
will satisfy it.

Substituting (12) into (10) and completing squares, the
minimum attained in (10) can be written as

V OPT
N−1 (xN−1, x

∗
N−1) =

(xN−1 − x∗
N−1)

TPN−1(xN−1 − x∗
N−1) + c,

where

x∗
N−1 =

[
(I − P−1

N−1C
TQC)A−1 P−1

N−1C
TQ

] [
x∗

N

y∗
N−1

]
− (I − P−1

N−1C
TQC)A−1BhN , (16)

PN−1 = AT
[
(I − LNBZN )TPN (I − LNBZN)

+ LNZT
NRZN

]
A + CTQC. (17)

The fact that, from the definitions (14) and (15), L2
N = LN

and LNhN = 0 ∀ x∗
N , xN−1 ∈ IRn has been used to sim-

plify the expressions. Note that when LN = 1 (that is, when
the constraints are inactive, ∆1 ≤ uunc

N−1 ≤ ∆2), equation
(17) reduces to the standard Riccati equation. Substituting
x∗

N � αNYN + βN into (16), we have

x∗
N−1 =

[
(I − P−1

N−1C
TQC)A−1αN P−1

N−1C
TQ

] [
YN

y∗
N−1

]
+ (I − P−1

N−1C
TQC)A−1(βN − BhN )

= αN−1YN−1 + βN−1, (18)

where we have defined

αN−1 �
[
(I − P−1

N−1C
TQC)A−1αN P−1

N−1C
TQ

]
, (19)

βN−1 � (I − P−1
N−1C

TQC)A−1(βN − BhN ). (20)

From the previous discussion, if the induction hypothesis

V OPT
k (xk, x∗

k) = (xk − x∗
k)TPk(xk − x∗

k) + c,

with x∗
k = αkYk + βk, were introduced, following the same

steps as before, an equivalent set of equations (10)–(20), with
subindex k instead of N , would be obtained, proving by
induction the validity of these equations for k = 1, . . . , N .

Based on the matrices αk of size n×(n+N−k) obtained
by solving the recursive relations given by (19) and (20)
starting at αN � I , βN � 0n×1, for k = N, N − 1, ..., 0
we will define matrices α∗

k of constant size n× (N +n), for
which the first n + N − k columns correspond to the matrix
αk, and the last k columns are zeros:

α∗
k � [αk 0n×k]. (21)

In this way we can rewrite each x∗
k in terms of the full

reference vector Y0 (cf. (9)), i.e., for k = 0, ..., N , we have:

x∗
k = α∗

kY0 + βk. (22)

Notice that the results obtained thus far define the fixed-
horizon optimal control sequence {uOPT

0 , uOPT
1 , . . . , uOPT

N−1}
implicitly, in terms of the resulting state sequence (cf.
equation (12), and recall that this expression is also valid
when k replaces N , for k = 1, ..., N ). However, as we
show next, it is straightforward to express the optimal control
sequence as a function of the initial state of the system, x0,
and the rest of the data of the problem (i.e., the reference
trajectory y∗

0 , y∗
1 , . . . , y∗

N−1, and µN ).
The elements of the sequence of states driven by

the optimal constrained input sequence, denoted by
x

OPT(x0, µN , y∗
N−1, . . . , y

∗
0), will be derived by induction.

The initial state in the sequence can be written as

xOPT
0 = φ0x0 + γ0Y0 + δ0, (23)

where we define φ0 � I , γ0 � 0n×(N+n), and δ0 � 0n×1.
Assuming xk−1 = φk−1x0 + γk−1Y0 + δk−1, from (1) and
(12) (with subindex k instead of N in the latter equation),
and from (22), it is easy to prove by induction that

xOPT
k = φkx0 + γkY0 + δk, (24)
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with

φk =(I − LkBZk)Aφk−1, (25)

γk =(I − LkBZk)Aγk−1 + LkBZkα∗
k, (26)

δk =(I − LkBZk)Aδk−1 + B(LkZkβk + hk), (27)

starting at φ0 � I , γ0 � 0n×(N+n), and δ0 � 0n×1.
We are now ready to express the optimal control sequence

in terms of the initial state of the problem and the reference
vector. We do this in the next subsection.

Main Result

The following theorem summarises the derivations
presented so far, that provide the solution of problem Pc

N

defined by (2)–(3).

Theorem 1: Consider the linear system (1) and the fixed-
horizon optimal control problem Pc

N defined in (2)–(3).
Then, given the initial state x0 and the full data vector Y0 �[
µT

N , y∗
N−1, . . . , y

∗
0

]T
, the control sequence that minimises

Pc
N is given by

uOPT
k = Lk+1Zk+1[(α

∗
k+1 − Aγk)Y0

− Aφkx0 + (βk+1 − Aδk)] + hk+1, (28)

for k = 0, ..., N − 1.

In (28), Lk and hk, k = 1, ..., N , are given by

Lk =

⎧⎪⎨
⎪⎩

1 if ∆1 ≤ Zk[(α∗

k − Aγk−1)Y0 − Aφk−1x0

+(βk − Aδk−1)] ≤ ∆2,

0 otherwise,

hk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ∆1 ≤ Zk[(α∗

k − Aγk−1)Y0 − Aφk−1x0

+(βk − Aδk−1)] ≤ ∆2,

∆1 if Zk[(α∗

k − Aγk−1)Y0 − Aφk−1x0

+(βk − Aδk−1)] < ∆1,

∆2 if Zk[(α∗

k − Aγk−1)Y0 − Aφk−1x0

+(βk − Aδk−1)] > ∆2;

Zk, k = 1, ..., N , are given by

Zk =
[
BTPkB + R

]−1
BTPk,

with Pk, k = 1, ..., N , given by the following recursive
equation, starting at the terminal weighting matrix PN ,

Pk−1 = AT
[
(I − LkBZk)TPk(I − LkBZk)

+ LkZT
k RZk

]
A + CTQC;

α∗
k and βk, k = 1, ..., N , starting at αN � I , βN � 0n×1,

are given by the recursive equations

αk−1 =
[
(I − P−1

k−1C
TQC)A−1αk P−1

k−1C
TQ

]
,

α∗
k = [αk 0n×k],

βk−1 = (I − P−1
k−1C

TQC)A−1(βk − Bhk).

Finally, φk, γk, and δk, k = 1, ..., N , are given by the
recursive equations

φk =(I − LkBZk)Aφk−1,

γk =(I − LkBZk)Aγk−1 + LkBZkα∗
k,

δk =(I − LkBZk)Aδk−1 + B(LkZkβk + hk),

starting at φ0 � I , γ0 � 0n×(N+n), and δ0 � 0n×1.

Remark 2: Note that as each pair {Lk, hk}, for
k = 1, . . . , N , used in the calculations can take 3
different sets of values corresponding to uunc

k−1 saturating or
not (i.e., {1, 0}, {0, ∆1}, or {0, ∆2}), there are 3N possible
sequences u

OPT
0 . The methodology we are presenting

consists in calculating the 3N possibilities, and determining
in which region of the data-space each of these possibilities
is valid (see [8]).

From Theorem 1 it is easy to obtain the regions for which
each of the 3N possible sequences u

OPT
0 , as discussed in

Remark 2, is valid. The result is presented next.

Corollary 3: The region of the data-space {Y0, x0} where
the constrained control sequence u

OPT
0 computed from

Theorem 1 for any particular choice of {Lk, hk}, for k =
1, . . . , N , is optimal, is given by the intersection of linear
inequalities chosen according to one of the following cases,
for each k = 1, . . . , N ,

∆1 ≤ Zk[(α∗
k − Aγk−1)Y0 − Aφk−1x0

+ (βk − Aδk−1)] ≤ ∆2, if {Lk, hk} = {1, 0} , (29)

or

Zk[(α∗
k − Aγk−1)Y0 − Aφk−1x0

+ (βk − Aδk−1)] < ∆1, if {Lk, hk} = {0, ∆1} , (30)

or

Zk[(α∗
k − Aγk−1)Y0 − Aφk−1x0

+ (βk − Aδk−1)] > ∆2, if {Lk, hk} = {0, ∆2} . (31)

Note that the regions, computed from Corollary 3 as the
intersection of a number of linear inequalities, constitute a
polyhedral partition of the data-space {Y0, x0}. Although
for large horizons N the number of possible regions, 3N ,
is potentially very large, in practice a considerable number
of these regions are actually empty, arising from infeasible
sequences of active/inactive constraints. Thus, the complexity
of the resulting partition, and of the controller structure, can
be considerably reduced.

Note as well that, inside each polyhedral region, a unique
optimal control sequence is valid, given by equation (28)
with all the coefficients (Zk+1, αk+1, γk+1, etc.) computed
for the particular combination of {Lk, hk}, k = 1, . . . , N ,
corresponding to that specific region.
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Online Receding-horizon Implementation

The first control law in the optimal control sequence (28)
can be rewritten, using φ0 = I , γ0 = 0n×(N+n), and δ0 =
0n×1, as:

uOPT
0 = F1

[
Y0

x0

]
+ G1, (32)

where F1 = [L1Z1α
∗
1 − L1Z1A], and G1 = L1Z1β1 + h1.

Thus, the on-line receding-horizon implementation of the
controller reduces to: Given the data Y0 and x0 (where,
using the standard notation in receding-horizon control,
the subindex 0 stands for the current time k), find the
corresponding region and, via the simple affine function
evaluation (32), obtain the optimal current control action
(i.e., the first element uOPT

0 of the optimal fixed-horizon
control sequence). The coefficients in equation (32) can be
precomputed and stored off-line (for all the possible combi-
nations of {Lk, hk} that result in non-empty regions in the
data-space partition) and then the main on-line computational
requirement is that of determining the region to which the
current data belongs to.

Example

Consider the discrete time linear system given by (1),
with matrices A = [1.6375,−0.6703; 1, 0], B = [0.2500; 0],
C = [0.0701, 0.0613], corresponding to a sampling period
Ts = 0.2.
For horizon N = 5, Theorem 1 and Corollary 3 are used to
implement a receding-horizon strategy aimed at tracking a
reference trajectory given by sampling a sinusoidal function,
sin ωt. For the fixed-horizon cost function, the values Q =
10, R = 0.5 are chosen, PN is chosen as the positive
definite matrix solution of (4), and µN = CT(CCT)−1y∗

N .
The control input uk is constrained to lie in the interval
[−1.5, 1.5].

A partition of the data-space is obtained, as explained in
Corollary 3. To illustrate the solution for horizon N = 5,
a projection, corresponding to y∗

0 = · · · = y∗
5 = 0, of this

partition onto the plane x̃0 = Tx0 is shown in Figure 1.
(Note: the state-space coordinates have been transformed
by a 2π

7 -rotating matrix T so as to display the regions
in a clearer way.) The values of the coefficients in the
affine control law (32) (for the original coordinates x0),
corresponding to some of these regions, are shown in Table I.

Figure 2 shows the reference trajectory (with frequency
ω = π/12) and the output of the system obtained with
the receding-horizon controller. The initial condition x0 was
arbitrarily chosen as [4 − 2]T. The control signal is plotted
in the lower subplot of the figure.

V. RELATIONSHIP TO STATE ESTIMATION WITH

CONSTRAINED DISTURBANCES

In this section we will briefly present some related results
obtained for a different problem; namely, the problem
of estimating the states of a linear system under the
assumption that the process disturbance is bounded to
satisfy some, known a priori, constraint. The exposition
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Fig. 1. Projection of the data-space partition onto the plane x̃0 = (x̃1
0
, x̃2

0
)

for horizon N = 5 (cut corresponding to y∗

0
= · · · = y∗

5
= 0).

TABLE I

OPTIMAL CONTROL LAW uOPT
0

= F1[YT
0

xT
0
]T + G1 FOR SOME OF

THE REGIONS IN FIGURE 1

Ri F1 G1

R0 [ 0.285 -0.082 0.655 0.699 0.606 0.269 0 -1.023 0.627 ] 0

R1 [ 0.546 -0.219 0.654 0.615 0.526 0.247 0 -1.247 0.796 ] 0.813

R2 [ 0.781 -0.321 0.842 0.733 0.535 0.213 0 -1.619 1.052 ] 1.680

R3 [ 0 0 0 0 0 0 0 0 0 ] -1.5
...

...
...
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t = kTs [s]

y
∗

,
y

u

Fig. 2. Upper plot: reference trajectory (dashed-dot line) and system output
(stairwise continuous line). Lower plot: constrained control input. Horizon
N = 5.

is very brief (for the details, see [9]) as our aim here
is to draw some parallels and symmetries between both
problems (i.e., reference tracking and state estimation),
that become evident from their dynamic programming
solutions. In fact, we conclude that, with a suitable
change of the system parameters (as shown in table II
below), both problems are actually identical and the same
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solution (as presented in Section IV) applies to both of them.

Consider the discrete-time linear state-space model

xk+1 = Aexk + Bewk, (33a)

yk = Cexk + vk, (33b)

where xk ∈ IRn, and wk , yk, and vk ∈ IR. Suppose that
x0, {wk}, {vk} are i.i.d. sequences, mutually independent,
x0 and {vk} have Gaussian distributions, and {wk} has a
truncated Gaussian distribution (i.e., every element in the
sequence {wk} is constrained to lie on some interval Ωe in
IR).

Given the observations y
d
N = {yd

1 , . . . yd
N} and the mean

value of x0, denoted by µe
0, the aim is to obtain the

joint a posteriori most probable (JAPMP) state estimates
x̂N = {x̂0, . . . x̂N}. That is, based on the knowledge of
the a posteriori distribution of xN = {x0, . . . xN} given
yN = {y1, . . . yN}, denoted pxN |yN

, and on the observations
y

d
N , we want to determine the vector x̂N that solves the

following optimization problem

x̂
OPT
N � arg max

x̂N

pxN |yN
(x̂N |yd

N ). (34)

This problem can be formulated as a quadratic program (see
[2] for the details), as follows:

Given the observations y
d
N = {yd

1 , . . . yd
N} and the mean

value of x0, µe
0, solve

Pe
N : JOPT

N (µe
0,y

d
N ) � min JN ({x̂k}, {v̂k}, {ŵk}), (35)

subject to:

x̂k+1 = Aex̂k + Beŵk for k = 0, . . . , N − 1, (36)

v̂k = yd
k − Cex̂k for k = 1, . . . , N, (37)

ŵk ∈ Ωe for k = 0, . . . , N − 1 (38)

where

JN ({x̂k}, {v̂k}, {ŵk}) �

N−1∑
k=0

ŵT
k Q−1

e ŵk +

N∑
k=1

v̂T
k R−1

e v̂k

+ (x̂0 − µe
0)

TP−1
e0 (x̂0 − µe

0).
(39)

Based on recent results concerning the analytical solution
of problem Pe

N defined above (see [9]), we describe below
how to obtain the solution of problem Pe

N using Theorem 1
of Section IV, with a suitable change of system parameters.

Given the state estimation problem Pe
N with constrained

process noise defined in (35)–(39), there exists an associated
tracking problem Pc

N defined by (1) and (2)–(3), with
parameters obtained from those of problem Pe

N according to
Table II, such that solving the tracking problem (i.e., using
Theorem 1 to obtain the matrices α∗

k, βk, φk, γk, and δk, for
k = 0, . . . , N ) for this new set of parameters, the solution
for the original estimation problem is obtained as follows:

1) The reference vector Y0 in the tracking problem (cf.
(9)) is set to Y0 =

[
µe

0
T, yd

1 , . . . , yd
N

]T
.

2) The optimal estimate for x̂N is obtained as

x̂N = α∗
0Y0 + β0. (40)

3) The rest of the elements in the sequence x̂N =
{x̂0, . . . x̂N} are obtained, for k = 1, . . . , N , as

x̂N−k = φkx̂N + γkY0 + δk. (41)

As explained in Remark 2, again there are 3N possible
sequences x̂N , according to which choices of {Lk, hk} have
been used in the recursions, for k = 1, . . . , N . The regions
where a particular sequence x̂N is optimal can be determined
by means of Corollary 3, using, instead of x0, the expression
for x̂N given by equation (40).

TABLE II

PARAMETERS TRANSLATION

Pc

N
Pe

N
Pc

N
Pe

N

A = A−1
e R = Q−1

e

B = −A−1
e Be Q = R−1

e

C = Ce PN = P−1

e0

µN = µe

0
Ω = Ωe

VI. CONCLUSIONS

An analytical solution for the input-constrained reference
tracking problem was derived using dynamic programming,
that comprises a piece-wise affine control law structure and a
partition of the data-space in regions where each affine con-
trol law is valid. An example was provided to illustrate the
behaviour of the optimal solution for a sinusoidal reference
trajectory. Some connections, emerging from the dynamic
programming solution, between the constrained reference
tracking problem and a related constrained state estimation
problem were discussed.
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