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Abstract— An LTI estimation framework is proposed for
networked control systems (NCS), in which local Kalman filter
estimates are sent to the remote estimator. Both controlled
and uncontrolled data communications are considered. For
uncontrolled communication, minimum rate requirements are
given for stochastic moment stability, which depend only on
the least stable poles. For controlled communication, suffi-
cient stability conditions are formulated. The framework also
makes it possible to improve the trade-off between estimation
performance and communication cost.

I. INTRODUCTION

We address an estimation problem for linear plants in

networked control systems. The continuous-time plant un-

der consideration is

ẋ = Ax + w (1)

y = Cx + v

where A∈R
n×n, C ∈R

l×n, and (C, A) is an observable pair.

The Gaussian white disturbance w ∈ R
n and noise v ∈ R

l

are mutually independent and zero-mean with covariance

matrices Σw > 0 ∈ R
n×n and Σv > 0 ∈ R

l×l .

The estimation scheme is motivated by the burgeon of

smart sensors, which incorporate both computation and

communication units. A smart sensor is co-located with the

plant, Fig. 1. The sensor has a Kalman filter to estimate the

plant state, which is sampled and sent to a remote estimator.
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Fig. 1. The estimation scheme: the Kalman filter state is sent with
controlled or uncontrolled communications over a lossy network to the
remote estimator.

Significant research efforts have been devoted to the

problem of determining the minimum bit rate that is needed

to stabilize a system through feedback [1], [2], [3], which

is of great theoretical interest. However, in most digital

networks, data is transmitted in atomic units called packets,

and sending a single bit or several hundred bits consumes

the same amount of network resources. For example, an

Ethernet IEEE 802.3 frame has a 112 or 176-bit header

and a data field that must be at least 368-bit long, and each
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Bluetooth time slot carries 625 bits leaving at least 499 bits

for data payload. This observation leads to an alternative

view of band-limited channels, in which communication

is measured as packet rate. Smaller packet rate results in

shorter queuing delay and fewer dropouts due to time-out in

the communication systems. It was shown in [4], [5] that the

packet rate is reduced by only transmitting data when the

remote estimation error becomes large. This is also related

to the concept of Lebesgue Sampling [6].

The flow of data to the remote estimator is mediated by

the smart sensor and the network. The former decides when

to send data, whereas the latter may drop some of the data.

In view of this, the data flow has both controlled (by the

sensor) and uncontrolled (due to the network) components.

For uncontrolled communication, we model the times at

which data is sent to the remote estimator by a Poisson pro-

cess with a constant rate λ . For controlled communication,

we model data sending times as jumps of an integer random

process, whose jump ‘intensity’ depends on the estimation

error. Typically, a smart sensor would increase the message

sending rate when the estimation error increases.

This paper provides necessary and sufficient conditions

for stability in the mth moment of the remote estimation

error. For uncontrolled communication, there is a minimum

Poisson rate below which the statistical moments of the

remote estimates are unbounded and above which they are

bounded. This rate depends on the order of the moment,

the unstable eigenvalues of the plant, and the probability

of data loss. For controlled communication, the proposed

polynomial data sending rates guarantee moment stability

of any order. The results obtained are contrasted with related

work in the literature.

The remote estimation of linear plants is investigated by

many authors. In the references below, raw measurements
are sent to the remote time-varying Kalman filter (TVKF)

via a lossy network in an uncontrolled fashion.
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Fig. 2. The scheme in the cited references: the measurements are sent
over a lossy network to a remote time-varying Kalman filter.

In their seminal paper [7], Sinopoli et. al. model inter-
mittent observations as a Bernoulli process with success

probability 1− p, where p is the data loss probability. They
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consider the discrete-time LTI

x+ = Adx + w (2)

y = Cdx + v

where the matrices are similarly defined as in (1), and w
and v are i.i.d. Gaussian random processes. They show that

there exists a critical value pc such that if p < pc the ex-

pected error covariance is finite. Section III-E contains more

discussion of this paper. In [8], an estimator is explicitly

constructed for a one-dimensional unstable system over a

noisy binary communication link.

Matveev and Savkin [9] study an optimal estimation

problem for a plant similar to (2), in which partial ob-

servations are sent from different sensors via independent

time-delayed lossy networks. Packet losses are modeled as

infinite network delay. They obtain a TVKF by solving a

Kalman filtering problem on an enlarged state space.

The estimation scheme is set up in Section II, followed by

a discussion of communication schedulers and their stochas-

tic models. The main result, which includes the construction

of communication schedules and their stochastic stability

properties, appears in Section III. Section IV proves the

theorems, and Section V provides a simulation example.

II. AN ESTIMATION SCHEME IN NCS

The estimation scheme consists of a smart sensor, a

remote estimator and a network in between, as shown

in Fig. 3. The smart sensor has a Kalman filter and a

communication scheduler. The Kalman filter state x̃(t) is

computed locally in a continuous fashion (or with a short

sampling period) and sent to the remote estimator at times

determined by the communication scheduler. The decision

on when to send data is based on how well the remote

estimate x̂ matches the current Kalman filter state x̃. To

implement this idea, the smart sensor keeps an identical

copy of the remote estimate x̂. To reduce notations, the

copy of x̂ on the smart sensor is also denoted by x̂.
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Fig. 3. A detailed structure of the estimation scheme.

The Kalman filter for plant (1) is

˙̃x = Ax̃+ L(y−Cx̃) (3)

where L ∈ R
n×l makes A − LC Hurwitz. The estimator,

which has two identical copies on both the smart sensor

and the remote site, propagates the estimate in open-loop

most of the time, and resets to the Kalman filter state x̃

when data is received

˙̂x = Ax̂ (4)

x̂(tk) = x̃(t−k )− zk

where tk, k ≥ 0, indicates the instants of data arrivals, and

the term zk models the quantization errors. It is assumed

that zk has probability distribution µk such that all finite

moments are bounded, i.e.,

E
[
‖zk‖

2m]
< ∆z(m) < ∞, m ≥ 1.

We assume i.i.d. quantization errors with probability distri-

bution function µ(z) on a finite support, and use z in place

of zk when the context allows. Two assumptions are implicit

in the equations above:

Assumption 1. Delay is negligible.

Assumption 2. In case of lossy networks, an instantaneous
acknowledgment of the packet arrival is available to the
smart senor.

Assumption 1 can be relaxed if data packets are time-
stamped so that state propagation is possible. This is pur-

sued in [10]. Assumption 2 is needed to synchronize the

remote estimator and the estimator on the smart sensor.

The communication instants are decided by the com-

munication scheduler, for which several patterns will be

considered. Before talking about communication patterns,

we derive the error dynamics, assuming the communication

instants are given.

A. Error dynamics

The estimation error ê, the propagation error ẽ, and the

Kalman filtering error ξ are defined as follows,

ê := x− x̂, ẽ := x̃− x̂, ξ := x− x̃ (5)

of which only ẽ is known to the smart sensor.

The main objective of the estimation structure is to keep

the 2mth moment of ê small, m ≥ 1 while reducing the

communication rate. The communication rate R is the long-

term average message rate

R := limsup
T→∞

Ew,v
[

number of messages in [0,T ]

T

]
,

where Ew,v[·] stands for the expectation with respect to w
and v. This communication rate definition is in contrast

to the logarithm based concepts such as entropy rate or

channel capacity [11].

Given m≥ 1, the process ê is stable in the 2mth moment if

for ∆0(m) > 0 such that E
[
‖ê(0)‖2m

]
< ∆0(m), ∃ ∆(m) < ∞

such that

E
[
‖ê(t)‖2m]

< ∆(m), ∀t > 0.

From (5), ê(t) is stable if both E
[
‖ẽ(t)‖2m

]
and

E
[
‖ξ (t)‖2m

]
are bounded. The error systems of ẽ(t) and
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ξ (t) are from (1), (3)-(4),

˙̃e = Aẽ+ LCξ + Lv ẽ(tk) = zk (6a)

ξ̇ = (A−LC)ξ −Lv + w (6b)

the first of which is a jump diffusion process [12]. The

stability of A − LC guarantees that ξ has all finite-order

moments bounded, i.e.,

E
[
‖ξ (t)‖2m]

≤ ∆ξ (m). (7)

Remark 1. The process ẽ(t) in (6a) is right continuous and
has a left limit. It is known as cadlag in stochastic literature
[13, pp 3]. The left limit is denoted as ẽ(t−), or ẽ− when t
is implicit.

We regard ẽ(t) in (6a) as a process driven by ξ (t) as

given in (6b). Alternatively, stack the states, e :=
[

ẽ
ξ

]
,

ė = Āe+ w̄, ẽ(tk) = zk (8)

where

Ā :=
[

A LC
0 A−LC

]
and w̄ ∈ R

2n has a covariance matrix,

Σ =

[
LΣvL′ LΣvL′

LΣvL′ LΣvL′ + Σw

]
≥ 0. (9)

B. Data communication Patterns

The communication scheduler on the smart sensor and the

communication network are modeled in this subsection. The

emphasis is on the former. The network is lossy, dropping

packets with probability p in an i.i.d. fashion.

The smart sensor uses certain mechanisms to schedule

when to send data. There are many ways to specify the

intermittent time, i.e., the time interval between one data

sending and the next. The simplest one is periodic. It

can also follow any other pre-specified time sequences.

The intermittent time can also be random, of which a

simple case is exponential distribution with average T . The

associated integer process is known as the Poisson process,

with Poisson rate λ = 1
T . Viewed from another point, data

sending is triggered whenever the Poisson process has a
jump.

The intermittent time can also be determined by con-

trolled random processes so as to use system dynamics

information. Motivated by the Poisson process mechanism,

an integer-valued random measure N(t) is constructed,

assigning a rate that depends on the system dynamics. N(t)
is right-continuous, non-decreasing, and at any time t, its

increment is either zero or one, i.e., N(t)− lims→t− N(s) ∈
{0,1}. For stricter definitions, the readers are referred to

[13, pp 65-71]. Because the state x̂(t) of the estimator

evolves as a right-continuous process, as in (4), at time t, the

smart sensor does not know x̂(t). Denote the information

available to the smart sensor at time t as I (t−), which is

the maximum information set for communication decision

making. Let Λ(I (t−)) be the intensity of the jumps, i.e.,

in any infinitesimal time interval (t,t + dt],

Pr

[
N(t + dt)− lim

s→t−
N(s) = 1

]
= Λ

(
I (t−)

)
dt

Note that the Poisson process is a special case with a

constant intensity Λ(I (t−)) = λ . In this paper, to minimize

the error variance, the intensity is chosen as a function of

error ẽ as in (5), i.e., Λ(I (t−)) = λ (ẽ(t−)), which can be

proved not to lose optimality [4].
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Fig. 4. A communication pattern: a communication scheduler on the
smart sensor and a lossy network.

The communication pattern models the communication

scheduling and the network uncertainties, as in Fig. 4.

Specifically, we consider two patterns:

1) The communication scheduler is driven by a Poisson

process with a constant Poisson rate λ , and the

packets get lost with probability p, 0 ≤ p < 1. Since

packet loss is independent of the Poisson process, data

arrives at the remote estimator according to another

Poisson process with rate (1− p)λ .

2) The communication scheduler is driven by an integer-

valued process with jump intensity λ (ẽ−), and the

packets get lost with probability p. In this case, the

effective intensity becomes (1− p)λ (ẽ−).

For analysis purposes, the data loss probability p does not

add complexity. From now on, λ or λ (ẽ−) refers to the

intensity that data are received on the remote estimator.

III. MAIN RESULTS

This section gives a tight bound on the Poisson rate for

stochastic moment stability in uncontrolled communication,

and sufficient stability conditions for controlled communi-

cations. The results are interpreted in the discrete-time do-

main, and compared to the corresponding theorem from [7].

It is assumed that the matrix A is not Hurwitz. Otherwise,

a trivial estimator does the job with zero communication

rate.

A. Uncontrolled communication

Consider a communication scheduler that is driven by a

Poisson process with a rate γ > 0. Define

γ2m := 2mmax{ℜ[Eig(A)]}.

Theorem 1. Let the estimation error ê be defined as in (1),
(3)-(5), in which the time sequence tk, k ≥ 0, is generated
by a Poisson process with a nonnegative rate γ . For any
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m ≥ 1, if γ > γ2m, E[(ê(t)′ê(t))m] is bounded, ∀ t ≥ 0, and
if γ < γ2m, limt→∞ E[(ê(t)′ê(t))m] → ∞.

It is seen that γ2m is a tight bound for the 2mth moment

stability, i.e., ∀ε > 0, ∃γ > γ2m−ε such that E[(ê(t)′ê(t))m]
is unbounded. Note that the bound γ2m is only dependent

on the least stable mode of the plant (1).

B. Controlled communication

Consider the communication scheduler that is driven by

an integer-valued process N(t) with a jump intensity that

depends on the measured error dynamics. One choice is

λ (ẽ−) = (ẽ−′Pẽ−)k, (10)

where P > 0 ∈ R
n×n and k ∈ R

+. Section V will show that

for fixed communication rates, communication schedules

of this type lead to smaller error variances compared to

uncontrolled communication.

Theorem 2. Let the estimation error ê be defined as in (1),
(3)-(5), in which the time sequence tk, k ≥ 0, is generated by
an integer-valued process with jump intensity λ (ẽ−) given
by (10). All finite moments of ê(t) are bounded, t ≥ 0.

C. Controlled communication: saturated intensity

When the intensity function (10) is “saturated”, the

moment stability is achieved as long as the saturation levels

are given by Theorem 1.

Theorem 3. Let the estimation error ê be defined as in (1),
(3)-(5), in which the time sequence tk, k ≥ 0, is generated
by an integer-valued process with jump intensity

λ (ẽ−) = min{γ,(ẽ−′Pẽ−)k}

where P ∈ R
n×n > 0, γ > γ2m, m > 0, and k > 0. Then

E[(ê(t)′ê(t))m] is bounded, t ≥ 0.

D. Periodic communication over lossy networks

If data is sent to the network periodically with period Ts
and gets lost with probability p, Theorem 1 leads to the

following corollary.

Corollary 1. When the data loss probability p satisfies

p < exp(−2mTs max{ℜ[Eig(A)]})

for m ≥ 1, the 2mth moment of the estimation error is
bounded.

Proof: [Corollary 1] In applying Theorem 1, subtleties

arise from the fact that the Poisson process does not

necessarily jump at the sampling instants, and there may

be more than one jump in one sampling period. We start

from the process e(t) in (8) with constant Poisson rate γ , and

define a continuous-time jump diffusion process ep =
[

ẽp
ξp

]
,

∀k ≥ 0

ėp = Āep + w̄ (11)

ẽp(kTs) = zk if ẽ(t) has jumps in
(
(k−1)Ts,kTs

]
,

i.e., ep is driven by the same disturbance and noise w̄ as e is,

but has a jump on any instant kTs if and only if e has jump(s)

in the previous interval
(
(k − 1)Ts,kTs

]
. By construction,

the process ep(t) is the error system for a periodic sending

scheme with period Ts and data loss rate p = exp(−γTs),
which is the probability that the process e(t) has no jumps

on the interval
(
(k−1)Ts,kTs

]
.

If the process e(t) in (8) has bounded 2mth moment, t ≥ 0,

so does ep(t) in (11). A proof can be adapted from the

proof of Theorem 3 in [10]. It is omitted here due to space

limitations.

According to Theorem 1, if γ > 2mmax{ℜ[Eig(A)]}, the

2mth moment of e in (8) is bounded. Hence the 2mth

moment of ep in (11) is also bounded. Therefore, it is

sufficient to have

p = exp(−γTs)) < exp(−2mTs max{ℜ[Eig(A)]}),

which completes the proof.

E. Discussions

This section compares the stability conditions between

the discrete-time estimation schemes in which the Kalman

filter state is sent (Fig. 1) and schemes in which the raw

measurement is sent (Fig. 2).

To this effect, Corollary 1 is interpreted in the discrete-

time domain. Let the discrete-time LTI plant (2) be a zero-

order-hold discretization of (1) with sampling time Ts, i.e.,

Ad = exp(ATs) and Cd = C. For simplicity, suppose there

is no quantization error, i.e., zk = 0 in (11). When the

sensor sends the Kalman filter state (Fig 1) with a data

loss probability p = exp(−γTs), the discrete-time estimator

has the same dynamics as the process ep defined in (11),

sampled at times kTs, k ≥ 1. From Corollary 1, the 2mth

moment of the discrete-time estimation error is bounded

provided that the data loss probability p satisfies

p <
1

(max{|Eig(Ad)|})
2m . (12)

The authors of [7] consider an estimation scheme in

which raw measurements are sent and show the existence

of a critical value pc for the drop rate, beyond which a

transition to an unbounded state error covariance occurs.

This critical value is bounded by p ≤ pc ≤ p̄, where p and

p̄ are solved by LMIs and the latter has a closed form,

p̄ =
1

(max{|Eig(Ad)|})2 .

The lower bound p depends on Ad and Cd . In general, pc <

p̄, pc = p̄ only in special cases.

This shows that the remote estimation structure in Fig.

1 tolerates a data loss rate, which is in general higher than

the one for Fig. 2, to achieve the second moment stability.

Moreover, the bound in (12) solely depends on the matrix

Ad . Eq. (12) also provides stability conditions for higher

order moments.
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IV. PROOF OF THEOREMS

The theorems in Section III are proved here. The key is

to establish the boundedness of ẽ(t) as in (6a). We omit the

proof of Theorem 1 [14].

A. Stochastic generators

Given a twice continuously differentiable function V de-

fined on R
n and a jump diffusion process e, the infinitesimal

generator L of e is defined by

(LV )(e) = lim
τ→t

E[V (e(τ))|e(t) = e]−V(e)
τ − t

, (13)

∀e ∈ R
n, τ > t ≥ 0.

The following lemma can be obtained from [15], [12].

Lemma 1. The generator for the jump diffusion process (8)

is given by

LV (e) =
∂V (e)

∂e
·Ae+

1

2
trace

(
Σ

∂ 2V (e)
∂e2

)

+ λ (e−)
(∫

V (z,ξ )dµ(z)−V(e−)
)
,

where ∂V (e)
∂e and ∂ 2V (e)

∂e2 denote the gradient and Hessian
matrix of V , respectively, Σ is defined in (9), and ξ is as in
(6b).

B. Proof of Theorem 2

Lemma 2. [14] Given a random variable x that is nonneg-
ative with probability one, any constant δ > 0 and k > � > 0,
E[xk] ≥ δ � E[xk−�]− δ k.

Proof: [Theorem 2] Since the jump intensity λ (·) in

(10) is only dependent on ẽ(t−) and it is known that ξ (t)
is stochastically bounded, to simplify the proof, take V :=
(ẽ′Pẽ)m, P > 0 ∈ R

n×n. Following similar derivation, the

generator for the jump diffusion process (6a) is given by

LV (ẽ) =
∂V (ẽ)

∂ ẽ
·
(
Aẽ+ LCξ

)
+

1

2
trace

(
ΣLv

∂ 2V (ẽ)
∂ ẽ2

)

+ λ (ẽ−)
(∫

V (z)dµ(z)−V (ẽ−)
)
,

where
∂V (ẽ)

∂ ẽ and
∂ 2V (ẽ)

∂ ẽ2 denote the gradient and Hessian

matrix of V , respectively, ΣLv := LΣvL′, and ξ is considered

external as given by (6b).

For a positive definite matrix P, ∃c1,c2 > 0 such that

PA + A′P ≤ c1P

PΣLvP ≤ c2P

and ∃c3 > 0 such that

ẽ′(PLC +C′L′P)ξ ≤ c3(ẽ
′Pẽ)

1
2 (ξ ′ξ )

1
2

∀ ẽ and ξ ∈ R
n. Now consider the generator,

LV (ẽ)

= m(ẽ′Pẽ)m−1 ẽ′(PA + A′P)ẽ

+ m(ẽ′Pẽ)m−1 ẽ′(PLC +C′L′P)ξ
+(ẽ−′Pẽ−)k Ez [

V (z)
]
+ 2m(m−1)(ẽ′Pẽ)m−2 ẽ′PΣLvPẽ

+ m(ẽ′Pẽ)m−1 trace(ΣLvP)− (ẽ−′Pẽ−)m+k

≤ c1mV (ẽ)+ c3m(ẽ′Pẽ)m− 1
2 (ξ ′ξ )

1
2 +(ẽ−′Pẽ−)k Ez [

V (z)
]

+ m
(
2c2(m−1)+ trace(ΣLvP)

)
(ẽ′Pẽ)m−1 − (ẽ−′Pẽ−)m+k.

Consider the case in which m > k. Set e = e(t) in (13) and

take the expectation,

d

dt
E[V (e(t))] = E[(L V )(e(t))]. (14)

The process ẽ has only countably many jumps and at any

time t, the probability of a jump is zero. We have that

E[(ẽ−′Pẽ−)k] = E[(ẽ′Pẽ)k]

E[(ẽ−′Pẽ−)m+k] = E[(ẽ′Pẽ)m+k].

Take the expectation of the generator w.r.t. ẽ and ξ . ∀ δ1 > 0,

δ2 > 0, and δ3 > 0

E
[
(ẽ′Pẽ)k

]
≤

E [V (ẽ)]
δ m−k

1

+ δ k
1

E
[
(ẽ′Pẽ)m+k

]
≥ δ k

2 E [V (ẽ)]− δ m+k
2 (15)

E
[
(ẽ′Pẽ)m−1] ≤ 1

δ3
E [V (ẽ)]+ δ m−1

3 .

By Hölder’s Inequality and Lemma 2, it is easy to verify

that, ∀ δ4 > 0,

Eẽ,ξ
[
(ẽ′Pẽ)m− 1

2 (ξ ′ξ )
1
2

]

≤
(
∆ξ (m)

) 1
2m

⎛
⎝ 1

δ
1

2m
4

E [V (ẽ)]+ δ 1− 1
2m

4

⎞
⎠ (16)

where ∆ξ (m) is as in (7). By the Comparison Lemma

for ODEs, from (14), (15) and (16), it is established that

E[V (e(t))] is bounded by choosing large enough δ2.

For k ≥ m, use Lemma 2 again, ∀ δ5 > 0

E
[
(ẽ′Pẽ)m]

≤
E

[
(ẽ′Pẽ)k+1]
δ k+1−m

5

+ δ m
5 ,

which leads to the boundedness of E [(ẽ′Pẽ)m] since the

boundedness of E
[
(ẽ′Pẽ)k+1] is already established in the

previous case.

C. Proof of Theorem 3

The rate can be written as λ (ẽ) = γ −b(e), where

b(ẽ) =

{
γ − (ẽ′Pẽ)k if (ẽ′Pẽ)k < γ
0 otherwise.

Note that E
[
b(ẽ)V (ẽ)

]
is uniformly bounded. Similar

arguments go through as in the proof of Theorem 1 as long

as γ satisfies the conditions in Theorem 1. The details are

omitted [14].
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V. SIMULATION

The second-order plant with two unstable poles in [7] is

recaptured in continuous settings with Ts = 0.1s, and

A =
[

2.23 0
8.52 0.95

]
, C = [1 1 ]

and the disturbance and noise covariance matrices are

Σw =
[

200 0
0 200

]
, Σv = 25.

The Kalman filter gain is L =
[

31.88
8.36

]
. Figure 5 is the

variance of 5000-sample Monte Carlo simulation for dif-

ferent constant Poisson rates γ , which are chosen around

Γ := 2max{ℜ[Eig(A)]} ≈ 4.46. For γ = 0.2Γ, the error

variance blows up, and for γ = 1.8Γ, it is well below 1000.

For γ = 1.1Γ, the variance is still bounded, but not as clear-

cut. The curve for γ = 0.9Γ has a trend of going up. It

is conjectured that limited samples in the simulation cause

statistical variations.
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Fig. 5. Variances of 5000 samples by Monte Carlo simulation for different
Poisson rates.

For communication schedules mediated by integer-valued

processes, the intensity functions are λ (ẽ−) = ẽ−′Pẽ−, P >

0. Fig. 6 gives the variance and communication rate for

different P. For P = 0.2I2×2, the corresponding rate is 5.25,

which is roughly the same as that of constant γ = 1.1Γ. But

the former has a variance around 5, as in Fig. 6, while the

latter has 427, as in Fig. 5. The schedule associated with

the integer-valued process reduces error variances given the

same communication rates in this case.
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Fig. 6. Variances (left) and communication rates (right) of 5000 samples
by Monte Carlo simulation for integer-valued processes with jump intensity
ẽ−′Pẽ−.

VI. CONCLUSION AND FUTURE WORK

An LTI estimation framework is proposed, in which

Kalman filter estimates are sent to the remote estimator.

Data communication patterns based on uncontrolled and

controlled random processes are proposed and analyzed.

The tight bound on the Poisson rate is given for stochastic

moment stability in uncontrolled communications. Suffi-

cient stability conditions for controlled communications are

also proposed. Simulations show that the controlled commu-

nications improve the trade-off between the communication

rate and the estimation variance.

In the Fig. 1 scheme, the remote estimator actually en-

codes more measurements, thanks to the Kalman filter, than

that from Fig. 2. Simulations for the discrete-time estimators

show that the former achieves lower error variances, but

we need to calculate the expected covariance matrices for

this case. It is left as future work to investigate stronger

notions of performance, e.g., the system transient response,

and to design the matrix P in (10) so as to improve the

communication rate and estimation performance trade-off.
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