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Abstract— This paper presents a new approach to the reach-
ability problem for a class of hybrid systems called Piecewise
Linear Systems (PLS). The principal tool used is the impact
map between switching surfaces. The method consists of speci-
fying a ellipsoidal set on the initial switching surface and finding
upper- and lower-bound estimates of the possible reach sets
using tools such as the S-procedure to set up linear matrix
inequalities, of which numerical solutions are then computed.

I. INTRODUCTION

Systems that consist of interactions between discrete and
continuous dynamics are termed hybrid systems, and these
represent a general class of systems widely modelled today
such as digitally-controlled continuous systems, the cell
cycle, walking robots, systems with hysteresis and saturating
systems.

Knowledge of reachability gives us a range of important
details for a particular system such as:

• Safety: Will the system ever go into unsafe regions?
• Liveness: Will the system reach a ‘good’ state?
• Stability: Will the system remain in an invariant set

about an equilibrium point?
• Performance: Will the system remain in an invariant set

about a specific reference point?
• Tracking: Can we identify what states will be reached

in order to aid tracking of the system?

In this paper we analyse a particular class of hybrid systems,
namely those that are piecewise linear (PLS). These are
characterised by a finite number of linear systems covering
separate cells in the state-space, together with a set of rules
for switching among the various models.

In the literature, much of the reachability analysis is of
systems with uncertainty, as in [1]. There have been numer-
ous papers, such as [2], [3], that have dealt with reachability
in discrete time systems. Little work on reachability in
continuous-time PLS has been done, however.

In [4] a new approach was introduced that globally
analysed PLS, consisting of finding Lyapunov functions on
the switching surfaces to prove that Poincaré type maps
associated with the system were contracting. These gener-
alised Poincaré maps, or impact maps, are defined from one
switching surface to another. This work introduced a new
technique that involved expressing the impact map as a linear

transformation parameterised by the switching time. This
led to the ability to numerically solve sets of linear matrix
inequalities (LMIs) to find surface Lyapunov functions.

The main technique in this paper involves setting up
constraints relating the start and reach sets. From these, we
can derive LMIs that are functions of the switching times
and we obtain approximations of the reach set by solving
these inequalities. This paper begins by briefly describing
PLS and impact maps. The next step is to find the range
of switching times associated with a particular initial set,
which will be needed in solving the LMIs. We then discuss
various approaches to computing upper and lower bounds
on the reach set, and then end with a two examples of this
technique and ideas for Future Work.

II. PIECEWISE LINEAR SYSTEMS

In Piecewise Linear Systems the state-space is divided into
M different regions. In each region, the system is linear (see
Figure 1). The over-all system obeys:

ẋ = Aαx + Bα, α ∈ {1 . . .M}
Switches occur at switching surfaces consisting of hyper-
planes of dimension n-1, given by points Sj = {x ∈
Rn|Cjx = dj} for some row vector Cj and scalar dj ,
j = {1 . . . N}.

x1=A1x+B1
S1 S2

S3

x4=A4x+B4

x3=A3x+B3

x5=A5x+B5

x2=A2x+B2

Fig. 1. A piecewise linear system is composed of multiple cells separated
by switching surfaces.

III. IMPACT MAPS

Consider two switching surfaces S0, S1 such that:

S0 = {x ∈ Rn|C0x = d0}
S1 = {x ∈ Rn|C1x = d1} (1)

We can define a set Ud ⊂ S0 of points where any trajectory
starting in Ud will next switch at S1. We can also call the

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeA01.1

0-7803-9568-9/05/$20.00 ©2005 IEEE 4169



set in S1 which those points first reach Ua. Next, consider a
general vector ∆0 ∈ S0 (∆1 ∈ S1) with a reference origin
at x∗

0 ∈ S0 (x∗
1 ∈ S1). We can now define a point x0 ∈ S0

(x1 ∈ S1) as x0 = x∗
0 +∆0 (x1 = x∗

1 +∆1), as is illustrated
in Figure 2.

x0 x1

∆0 ∆1
Ud

Ua

S0
S1

x1
*x0

*

Fig. 2. Point x∗
0 (x∗

1) is a reference point in S0 (S1). We can therefore
write any point x0 ∈ S0 (x1 ∈ S1) as x0 = x∗

0 + ∆0 (x1 = x∗
1 + ∆1).

Ud is the departure set of points in S0 that next switch at S1, and Ua is
their arrival set on S1.

The dynamics in between S0 and S1 are given by:

ẋ(t) = Ax(t) + B (2)

With initial condition x0 ∈ S0, integrating (2) gives:

x(t) = eAtx0 +
∫ t

0

eA(t−τ)Bdτ (3)

Assume the first switch is at x1 ∈ S1 with a switching
time t = ts, i.e. x1 = x(ts). Let x∗

0 ∈ S0 and x∗
1 ∈ S1.

Substituting x0 = x∗
0 + ∆0 and x1 = x∗

1 + ∆1 into (3) gives
∆1 = eAt∆0 + x∗

0(t) − x∗
1, where x∗

0(t) is the trajectory
of (3) with initial condition x∗

0. Note that if A is invertible:

x∗
0(t) = eAt(x∗

0 + A−1B) − A−1B

The impact map from ∆0 to ∆1 is then given by [4]:

∆1 = H(t)∆0 (4)

where:
H(t) = eAt + (x∗

0(t) − x∗
1)w(t) (5)

and

w(t)∆0 =
C1e

At∆0

d1 − C1x∗
0(t)

= 1 (6)

The function H(t) defines the impact map from S0 to S1.
At first, this mapping appears to be non-linear. However, if
we fix the switching time, we notice that H(t) becomes a
linear mapping, thus simplifying the analysis. This idea will
be used throughout this thesis to analyse mappings between
switching surfaces.

In general, for an n-dimensional system, a switching
surface Sj is an n − 1-dimensional hyperplane where we
can write:

Cj∆j = 0 (7)

since column vector ∆j lies on the hyperplane Sj and Cj is
a row vector perpendicular to Sj . In fact, we can write ∆j

as ∆j = Πjδj , where Πj ∈ C⊥
j , the orthogonal complement

of Cj . Πj is therefore a matrix composed of the the maximal
number of normalised column vectors orthogonal to Cj .
Since the switching surface is of dimension n−1, the width
of matrix Πj and the dimension of vector δj are n − 1.

We can therefore think of (4) as the mapping of two n−1
dimensional vectors on the switching surface, δ0 to δ1:

δ1 = H̄(t)δ0 (8)

where H̄(t) = ΠT
1 H(t)Π0, since ΠT

1 Π1 = I .

IV. BOUNDS ON SWITCHING TIMES

When mapping a set of points from Ud ⊂ S0 to Ua ⊂ S1,
each point will have a switching time associated with it.
Since impact maps are parameterised by the switching time,
we need to find bounds on the switching times of initial sets
in Ud.

In [4] we saw that the set of points on S0 having the same
switching time is always a convex subset of a linear manifold
of dimension n−2. This follows from the fact that any point
on S0 must satisfy two linear equations on ∆0: (6) and (7).
This is illustrated in Figure 3.

For example, if the initial set were an ellipse, then by
finding subsets of constant switching time that are tangent
to the ellipse, we find the range of switching times T of
points in the ellipse, as shown in Figure 4.

S0
S1

x2(0)

x1(0)

x3(0)

x4(0)

x1(t1)

x2(t1)

x3(t2)

x4(t2)

Fig. 3. Lines are subsets of the same switching time.

S1S0

t1

t2

t1

t2

Start set Reach set

Fig. 4. The range of switching times T is [t1,t2].

V. MINIMUM UPPER BOUND COMPUTATION

We wish to find the lowest upper bound on the reachable
set when starting in some initial set on the switching surface
S0. If we wish to ensure that the system will not enter any
unsafe regions, we would use this upper bound to compute
the trajectories in the cell and we would need to ensure that
the trajectories emanating from this upper bound do not enter
unsafe regions. We begin by defining an ellipsoid containing
the initial set. Therefore, we can write that for any vector
∆0 = Π0δ0, centered on x∗

0, in this initial set:
∥∥∥P

1
2
0 δ0

∥∥∥2

= δT
0 P0δ0 ≤ Γ2

0

where P0 ≥ 0 is the matrix defining the ellipsoid on the
switching surface. From now we will use the shorthand

notation
∥∥∥P

1
2

j δj

∥∥∥2

≡
∥∥∥δj

∥∥∥2

Pj

.
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A vector δ0 ∈ S0 will map onto a vector δ1 ∈ S1. Now
let the reach set be similarly bounded by an ellipsoid given
by:

‖δ1‖2
P u

1
≤ Γ2

1

where Pu
1 ≥ 0 is a matrix defining the ellipsoid, the

superscript u denoting this ellipsoid as an upper bound.
Without loss of generality, let Γ0 = Γ1 = 1. This can be
done by scaling Pj by 1

Γ2
j

to give P̄j . Therefore the problem
we want to solve is to find the smallest ellipsoid in S1 such
that:

1 − ‖δ0‖2
P̄0

≥ 0 ⇒ 1 − ‖δ1‖2
P̄ u

1
≥ 0 (9)

Figure 5 illustrates these constraints. Now we want a single
relation that says that non-negativity of of the left side of 9
implies non-negativity of the right. We therefore apply the
S-procedure (see [5] for a discussion of the S-procedure):(

1 − ‖δ1‖2
P̄ u

1

)
− τ1

(
1 − ‖δ0‖2

P̄0

)
≥ 0 (10)

where τ1 ≥ 0. The point of using the S-procedure here is
to find a condition such that non-negativity of 1 − ‖δ0‖2

P̄0

implies non-negativity of 1 − ‖δ1‖2
P̄ u

1
. In other words, if δ0

lies within the ellipsoid on the departure switching surface,
the vector δ1 lies within the ellipsoid on arrival switching
surface. We wish to find the smallest ellipsoid making up
the reach set. For this, we first need to find the limits on τ1

in (10). From (8) we know that as ‖δ0‖ → 0, (10) approaches
a limit where τ1 ≤ 1:

The tightest bound, and therefore the smallest upper bound
on the reach set, is obtained when τ1 = 1. Substituting (8)
and this value of τ1 into (10) yields a linear matrix inequality
(LMI) that we need to solve for P̄u

1 ≥ 0 given by:

δT
0

(
P̄0 − H̄T (t)P̄u

1 H̄(t)
)
δ0 ≥ 0 (11)

If we define Q1(t) as:

Q1(t) =
(
P̄0 − H̄T (t)P̄u

1 H̄(t)
)

(12)

then to find the minimum upper bound we need to find a
P̄u

1 ≥ 0 such that Q1(t) ≥ 0, ∀t ∈ T .

δ
0 δ

1

S
0

S
1

δ
0
P

0
δ

0
=1

δ
1
P

1
δ

1
=1

T
T u

Fig. 5. Upper bound approximations on initial and reach sets for a 3D
system.

VI. MAXIMUM LOWER BOUND COMPUTATION

We now consider a reverse approach to the reachability
problem compared to one proposed above. We now wish to
find the set that we know we can reach given an initial set
on S0. We begin by specifying a candidate ellipsoid on S1

and call this δT
1 P̄ l

1δ1 = 1, where P l
1 ≥ 0 and the superscript

l denotes this as a lower bound. We then map this ellipsoid
onto the initial switching surface S0 to see if it maps entirely
into the initial ellipsoid given by δT

0 P̄0δ0 = 1. If it does then
we have a lower bound on the reach set. In this case we say
that if we start in a given ellipsoid δT

0 P̄0δ0 = 1 on S0, then
we are certain that we can reach an ellipsoid δT

1 P̄ l
1δ1 = 1

on S1, though δT
0 P̄0δ0 = 1 will then contain points that

can reach beyond the limits of δT
1 P̄ l

1δ1 = 1 as well. If we
seek to maximise the reachable regions of the system we
would therefore need to maximise the size of the ellipsoid
δT
1 P̄ l

1δ1 = 1.
We start as in section V, by first scaling Pj by 1

Γ2
j

to give

P̄j and then writing:

1 − ‖δ1‖2
P̄ l

1
≥ 0 ⇒ 1 − ‖δ0‖2

P̄0
≥ 0

That is, if the point reached is in δT
1 P̄ l

1δ1 = 1, then the initial
state was within δT

0 P̄0δ0 = 1. Applying the S-procedure:(
1 − ‖δ0‖2

P̄0

)
− τ2

(
1 − ‖δ1‖2

P̄ l
1

)
≥ 0 (13)

In analogy with (4), we will now define a ‘reverse’ impact
map, J(t) (see Appendix I) which maps ∆1 ∈ S1 onto ∆0 ∈
S0:

∆0 = J(t)∆1 (14)

If we let J̄(t) = ΠT
0 J(t)Π1 as in (8) we can write (14) as:

δ0 = J̄(t)δ1 (15)

As ‖δ0‖ → 0, (13) approaches the limit: τ2 ≤ 1. The
tightest bound, giving the greatest lower bound on the reach
set, is obtained when τ2 = 1.
Substituting (14) and τ2 = 1 back into (13):

δT
1

(
P̄ l

1 − J̄T (t)P̄0J̄(t))
)
δ1 ≥ 0 (16)

This LMI can then be solved numerically by finding a P̄0 ≥ 0
that gives a Q2(t) ≥ 0∀t, where:

Q2(t) =
(
P̄ l

1 − J̄T (t)P̄0J̄(t)
)
≥ 0 (17)

Note that (17) is a different LMI for each switching time
t ∈ T . Therefore, to compute the maximum lower bound,
we must solve (17) for the matrix P̄ l

1 that gives the largest
ellipsoid δT

1 P̄ l
1δ1 = 1 while ensuring that Q2(t) ≥ 0, ∀t ∈

T .
With this approach, we specify a reach set in S1, and then

find the starting set in S0. To find the range of switching
times given the reach set, we use a similar approach to
that detailed in section IV, only this time, we cannot use
the relation in (6) as it operates on ∆0. We can write an
expression v(t), similar to w(t) in (6) that operates on ∆1,
if we are given the reach set (see Appendix I):

v(t)∆1 = 1 (18)

Note that if the switching time is fixed, (18) is a linear
equation. Also, we can write, for ∆1 ∈ S1 that C1∆1 = 0.
Therefore, we have two linear equations that we can use to
characterise sets of points in S1 with the same switching

4171



time, and therefore each such set of points is again of
dimension n − 2.

We apply this method after the one described in section
V. We began in the previous section by defining a set Γ0 ∈
S0, computing the nominal reach point x∗

1 and the reach set
Γ1 ∈ S1. Now consider a proper subset of Γ1 ∈ S1, centered
on x∗

1 and call this new subset Γ2. Now this new subset
becomes the new ‘start set’ and we use the reverse impact
map, J̄(t), to compute the new ‘reach set’, say Γ3 ∈ S0.
Now, if Γ3 ⊂ Γ0, we know that every point in Γ2 ∈ S1 can
be reached from Γ3 ∈ S0, and so Γ2 ∈ S1 is a lower bound
on the reach set. Therefore we gradually increase Γ2 ∈ S1

until Γ3 � Γ0. At that point we would know that Γ2 is a
maximum lower bound on the reach set.

VII. CONTINUITY AND TANGENTIAL TRAJECTORIES

When we consider the mapping of a set of points from
S0 to S1 we need to ensure that the map is continuous
in the domain of the impact map. Consider, however, two
trajectories in a PLS that start close to each other on S0, as
in Figure 6. One of the trajectories is tangential to S1 and
does not switch, whilst the other one does. In this case, the
set in which these two trajectories start is non-continuous,
as the distance between the two paths becomes unbounded
with time.

S1

S0

Fig. 6. A transversal trajectory (blue) and a tangential one (red).

From [6], at the switching time of trajectory x(t), t = ts,
we have C1x(t) = C1x

∗
1 + C1∆1 = d1. Also, the distance

between the switching surface and the trajectory at time t
is C1x(t) − d1. At the switching time, this distance is zero,
and therefore tangential trajectories are those where:

d(C1x(t) − d1)
dt

∣∣∣∣
t=ts

= 0 (19)

Therefore in an initial set on S0 that maps onto S1, to
ensure that there are no trajectories emanating from this set
that are tangential to S1, we must ensure that the hyperplanes
of (19) do not intersect with the set of points on S0. This
ensures that the initial set is continuous.

In this analysis, all trajectories starting from points in a
given start set on S0 must next switch on the same switching
surface S1. Thus, the initial set may need to be reduced
to guarantee the domain of S0 has no points that switch
before reaching S1, as in Figure 7. If the switching surfaces
form convex cells, which are the simplest and most common
cases, the procedure explained above can be applied to derive
an equality similar to (19) for each hyperplane that is a

boundary of the cell. The case of non-convex cells is still
under investigation.

S0
S1

St

Fig. 7. Trajectories may switch at St before reaching S1.

VIII. TWO-DIMENSIONAL EXAMPLE

We have a LTI system given by:[
ẋ1

ẋ2

]
=

[
1 3
0 1

] [
x1

x2

]
+

[
1 0
0 1

] [
u1

u2

]
(20)

This LTI system is part of an autonomous system where the
outputs y1 and y2 are each fed into a saturater with outputs u1

and u2 respectively (see Figure 8). Each saturater has three
linear regions of operation, and so the state-space is divided
into nine cells by four switching surfaces. The outputs are
functions of the state and are given by:[

y1

y2

]
=

[
C1

C2

] [
x1

x2

]
=

[
1 1
−1 1

] [
x1

x2

]

LTI

u
1

u
1 u

2
u
2

y
1

y
2

y
1

y
2

Fig. 8. Outputs y1 and y2 are each fed into a saturater with outputs u1

and u2 respectively.

The four switching surfaces are given by Cmx = dn for
m,n = 1, 2, with d1 = 1 and d2 = −1. Now consider a
nominal trajectory starting at x∗

0 = [ 2 −1 ]T , which is
on C1x = d1. The trajectory will enter a cell where the
dynamics of the system are:[

ẋ1

ẋ2

]
=

[
2 4
0 1

] [
x1

x2

]
+

[
0
−1

]
(21)

Here, the switching surfaces are lines, and so instead of
the ellipsoid, we consider a segment of the line around x∗

0

that contains all vectors ∆0 = Π0δ0 = 1√
2
[ 1 −1 ]T δ0.

The nominal trajectory next switches at x∗
1 = [ 1 −2 ]T ,

which is on C1x = d2. If there is now an uncertainty in the
initial state given by Γ0, we can define all points up to Γ0

away from x0 along the switching surface to be the initial
set. Here, Γ0 = 0.75

√
2 ≈ 1.06 and we now wish to find an

upper and lower bound on the reach set Γ1 on C1x = d2.
Figure 9 shows the initial points and the points that are

reached in green and red respectively, computed numerically.
Now applying the method proposed in sections V and VI,
we need to find the values of Γ1 where the functions Q1(t)
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and Q2(t) (from equations (12) and (17) in previous chapter)
become positive for all switching times. Note that since this
is a 2D case we need not examine any eigenvalues of Q1(t)
and Q2(t) to ensure that they are positive semi-definite, as
these are scalar functions. We also set P0 = P1 = 1 and
multiply through by Γ2

0.
Figure 10 shows the functions Q1(t) and Q2(t) against

switching time. When Γ1 is equal to the upper bound shown
in Figure 9 the function Q1(t) just becomes positive for all
switching times. At the point where Γ1 just becomes equal
to the lower bound shown in Figure 9, Q2(t) just becomes
positive for all switching times.

Table I compares the sizes of the reach sets Γ1 obtained
both numerically and with the proposed method. It can
be seen that the results obtained are almost exact and the
discrepancy can be attributed to numerical error for this
two dimensional example. Subsequent mappings also show
exact agreement and the upper and lower bounds for these
mappings are shown in Figures 11(a) and 11(b).

Γ1: Numerically Γ1: Proposed Method
Upper Bound 0.8910 0.8910
Lower Bound 0.4544 0.4545

TABLE I

SIZES OF REACH SETS

0 0.5 1 1.5 2 2.5 3
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.5 1 1.5 2 2.5 3
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

x
1

x
2

x
1

x
2

Start set

Extreme, 1.06

away from nominal

start point

Reach set

Extreme, 1.06

away from nominal

start point Nominal

start point

Start set

Extreme, 1.06

away from nominal

start point

Reach set

Extreme, 1.06

away from nominal

start point Nominal

start point

Lower bound

Upper bound

Nominal

reach point

Fig. 9. Start and reach points with Γ0 = 1.06. The upper bound reach
set is Γ1 = 0.89 and the lower bound reach set is Γ1 = 0.45.
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Switching Time (t)

(a) 1st map - Upper bound

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1
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0.3
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0.5

0.6
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1
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4
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 (want it always positive)

2
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Switching Time (t)

(b) 1st map - Lower bound

Fig. 10. Values of functions Q1(t) and Q2(t)

IX. THREE DIMENSIONAL EXAMPLE

For an example of this method at work for a three-
dimensional system, consider the following LTI system,

-8 -6 -4 -2 0 2 4 6 8
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

-8 -6 -4 -2 0 2 4 6 8
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

x1

x
2

x1

x
2

(a) Upper bounds

-8 -6 -4 -2 0 2 4 6 8
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

-8 -6 -4 -2 0 2 4 6 8
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

x
1

x
2

x
1

x
2

(b) Lower bounds

Fig. 11. Upper and lower bounds on the reachable states on the switching
surfaces are highlighted.

having state vector x =
[

x1 x2 x3

]T
and inputs u =[

u1 u2

]T
, with two non-linearities (shown in Figure

12) which give piecewise linear behaviour. The switching
surfaces are parallel to the x3 direction:

ẋ =

⎡
⎣ 1 5 1

−2 −1 1
0 0 1

⎤
⎦x +

⎡
⎣ −7 −7

2 −2
0 0

⎤
⎦u

[
y1

y2

]
=

[
1 0 0
−1 1 0

]
x

-1

1

y
1-2

u1

-2

2

u
2

y
2-2 2

LTI

y
1

u
1

y
2

u
2

Fig. 12. LTI system with non-linearities.

Let the nominal initial state be x∗
1 = [ −4 −2 1 ]T

with an uncertainty in initial states bounded by the ellipse:

δT
1

[
2 0
0 18

]
δ1 = 1

Here, δ1 is a vector on the initial switching surface. Using the
technique we have proposed, we numerically find elliptical
approximations to the reach sets on the switching surfaces.
The upper bounds are shown in Figure 13 along with the
nominal trajectory.

-10 -8 -6 -4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4

5

6

7

x
2

x
1

Sa

Sb

Fig. 13. Nominal trajectory and upper bounds on reach states.
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Figure 11 shows the shapes of the actual reach sets in
addition to the upper bound elliptical approximations on the
surfaces Sa and Sb (shown in Figures 14(a) and 14(b)) and
the lower bound approximations (show in Figures 14(c) and
14(d)). As can be seen, the actual reach sets are not elliptical
and can only be approximated by the ellipses. The degree of
the approximation ultimately depends on the shape of the
actual reach set.
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(a) Upper bound on Sa
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(c) Lower bound on Sa
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Fig. 14. Approximations on switching surfaces.

X. CONCLUSIONS AND FUTURE WORK

A new method of finding approximations to the reach set
on an arrival switching surface, given an initial start set on a
departure switching surface for a general continuous-time
piecewise linear system has been introduced and demon-
strated. Since the system is piecewise linear, the reachable
regions within each cell may be found by numerical inte-
gration and through the use of standard, well documented
methods. What we have gained from this analysis is a bound
on the set on a switching surface to which an initial set of
points can map. This bound acts as a starting set for the next
map, thus allowing us to compute reachable regions for the
linear cell which the trajectories enter next. We have seen
that the method is exact for two-dimensional systems, but
conservative for higher order systems where the reach set
cannot be bounded exactly by an ellipsoid.

The method we have described relies on our ability to
solve linear matrix inequalities. The complexity of this prob-
lem is such that the LMI can be solved in polynomial time.
For low order systems, computing the reachable region point
by point may be possible, but it becomes computationally
intractable as the degree of the system rises, hence the
advantage of the method introduced here.

This analysis considered continuous-time piecewise linear
systems with uncertainties in the starting set. It would be

interesting to extend this to PLS with uncertainties in the
shapes and positions of the switching surfaces or even the
dynamics of the individual cells. This analysis may also be
extended to find reachability information for systems that
have piecewise behaviour that is not necessarily linear. Such
systems, however, would need to have dynamics in each
cell that can be described as almost linear or which can be
approximated to a linear system.

APPENDIX I

The development with time of the state of a system, x, is
given by the relation:

x1 = eAtx0 +
∫ t

0

eA(t−τ)Bdτ

Since x0 = x∗
0 + ∆0 and x1 = x∗

1 + ∆1, this is equal to:

x∗
1 + ∆1 = eAt∆0 + eAtx∗

0 + eAtA−1B − A−1B

Rearranging for ∆0:

∆0 = e−At
(
x∗

1 + ∆1 − eAtx∗
0 − eAtA−1B + A−1B

)
We know that C0∆0 = 0 and C0x

∗
0 = d0. Pre-multiplying

by C0 and rearranging yields:

C0e
−At∆1

d0 + C0A−1B − C0e−AtA−1B − C0e−Atx∗
1

= 1

If we let:

v(t) =
C0e

−At

d0 + C0A−1B − C0e−AtA−1B − C0e−Atx∗
1

then we can write v(t)∆1 = 1. We can also write:

J(t) = e−At +
(
e−Atx∗

1 − x∗
0 − A−1B + e−AtA−1B

)
v(t)

Hence we obtain the impact map: ∆0 = J(t)∆1.
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