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Abstract— A neural control synthesis method is considered
for a class of non-affine uncertain single-input, single-output
systems. The method eliminates a fixed-point assumption and
does not assume boundedness on the time derivative of a control
effectiveness term. One or the other of these assumptions exist
in earlier papers on this subject. Using Lyapunov’s direct
method, it is shown that all the signals of the closed-loop
system are uniformly ultimately bounded, and that the tracking
error converges to an adjustable neighborhood of the origin.
Simulation with a Van Der Pol equation with non-affine control
terms illustrates the approach.

I. INTRODUCTION

In recent years, there have been a number of efforts
on developing systematic design tools for adaptive control
of uncertain nonlinear systems. The common assumptions
in these efforts were that the system to be controlled is
affine, i.e. the plant is linear in the input variables, and
the nonlinearities are linearly parameterized by unknown pa-
rameters [1]. Employing a neural network (NN) in adaptive
control has relaxed the assumption on linear parameterized
nonlinearities and greatly broadened the class of systems
that can be treated by adaptive control [2], [3]. However,
developing a systematic synthesis method for general non-
affine systems still remains as a challenging problem.

The difficulty associated with a control design for non-
affine control systems is that an explicit inverting control
design is in general not possible even if the inverse exists
[4]. One may avoid this problem by introducing an integrator
before control signal, i.e., u =

∫ t
0 u̇dt, and treating the aug-

mented system as an affine system with respect to the new
input u̇ as in [4], [5]. However, the augmented system may
have undesirable properties such as: stabilizability of the new
system with a static feedback implies only stabilizability
of the original system by dynamic feedback, the relative
degree of the new system is one higher than that of the
original system, and the transformation into normal form
may introduce singularities [6]. In [7], [8], an inverting
controller is designed with a NN employed for compensating
modelling errors due to inexact inversion. The main feature
of an inverting approach is that the uncertainty to be approx-
imated by an adaptive signal contains the adaptive signal
itself as a part of uncertainty, thus constituting a fixed-point
problem. In [7], [8] this problem is addressed by assuming
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the uncertainty is a contraction mapping with respect to the
adaptive control signal. This introduces two conditions:1)
the control effectiveness of the design model should have
known sign, and 2) the magnitude of it should be greater
than half the actual value. Nevertheless, the stability analysis
presented in [7], [8] did not explicitly use the assumption
and the requirement for the assumption was not clear. In [9],
[10], a NN was employed to approximate an ideal control
signal the existence of which is guaranteed by the implicit
function theorem. However, the stability proof in [9], [10]
requires that the time derivative of the control effectiveness
term should be bounded apriori . Motivated by [9], Ref.s
[11], [12] clarified the role of known sign in the stability
analysis, but required a similar assumption on the time
derivative of the control effectiveness term as in [9]. This
assumption raises the question of circularity with respect to
proof of boundedness.

In this paper, we relax the assumption on the boundedness
of the time-derivative of the control effectiveness term.
In addition, we show that the known sign condition for
the control effectiveness term and its boundedness on the
domain of interest are sufficient to achieve an adjustable
ultimate bound for a class of non-affine systems with internal
dynamics, which previously could only be achieved for
affine systems without internal dynamics [2], [3]. As is
common in the literature [2], [3], [9], we introduce an error
signal the convergence of which guarantees convergence of
the output tracking error. By this, we prove that the output
tracking error converges to the adjustable neighborhood of
the origin. We also clarifies the relations between initial
conditions, adaptation gains, and the size of the ultimate
bound.

The paper is organized as follows. The problem is
formulated in Section II. Control design based on input-
output linearization for systems with internal dynamics is
presented in Section III. Uncertainty approximation using
NNs and the NN weights update law are described in
Section IV. A stability analysis is given in Section V and
the introduction of a robustifying signal is described in
Section VI. Simulation results are provided in Section VII.
We summarize the paper in Section VIII. Throughout the
manuscript, ‖·‖ means Euclidean norm, and Ba represents
the set {x : ‖x‖ ≤ a, a > 0} in a Euclidean space with a
compatible dimension.
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II. PROBLEM FORMULATION

Consider a single-input single output (SISO) non-affine
system described by the following normal form [6]

i̇ = i+1, i = 1, . . . ,r−1
˙
r =h( , ,u)
˙ = fo( , ,u)
y = 1,

(1)

where = [ 1, . . . , r]T ∈ BR ⊂ R
r, ∈ BR ⊂ R

n−r, u ∈
Du ⊂R is the input, y∈R is the output, h( , ) is a smooth
partially known function (h(0,0,0) = 0), and fo( , ,u) is
a smooth partially known vector field ( fo(0,0,0) = 0).

Assumption 1: The relative degree r is known, and
hu( , ,u) � h( , ,u)

u �= 0 on BR ×BR ×Du has a known
sign. Without loss of generality, we assume hu > 0.

Assumption 2: A desired trajectory yd(t) is bounded
and r-times differentiable with respect to time. Let d =
[yd , . . . ,y

(r−1)
d (t)]T , d̄ = [ T

d y(r)
d ]T . Then, d ∈Ba ⊂R

r, and

d̄ ∈ Bb ⊂ Rr+1 with known bounds a,b > 0.
The control objective is to design a control law for u so that
the system output y tracks the desired trajectory yd with
bounded error.

III. ERROR SYSTEM AND INPUT-OUTPUT

LINEARIZATION

A. Error System

Let e = yd − y. Following [3], [9], we define the tracking
error as

r = e(r−1) + r−1e
(r−2) + . . .+ 1e = [ T 1] ˜ , (2)

where ˜ = d − , and i’s are chosen such that
s(r−1) + r−1s(r−2) + . . . + 1 is Hurwitz. Define =
[ ˜1, ˜

2, . . . , ˜
r−1]T . The following properties will be used

through the manuscript, the proof of which is given in [10,
Lemma 2.1].

Proposition 1: Define rM(t) = sup
0≤s≤t

|r(s)| and RT1 =

sup
s≥T1

|r(s)|. The following inequalities hold:

‖ (t)‖ ≤ k0 ‖ (0)‖+ k0
0
rM(t) (3)

‖ (t)‖ ≤ k0e− 0t
{
‖ (0)‖+ e 0T1

0
rM(T1)

}
+ k0

0
RT1 (4)∥∥∥ ˜

r

∥∥∥ ≤ rM(t)+d1 ‖ ‖ (5)∥∥∥ ˜
∥∥∥ ≤ d2rM(t)+d3 (6)

where k0 > 0, 0 > 0, d1 = ‖ ‖, d2 = k0/ 0(1+d1)+1, and
d3 = k0(1+d1)‖ (0)‖.
With the definition of the tracking error in (2), the following
error dynamics are immediate

ṙ = y(r)
d − [0 T ] ˜ −h( , ,u). (7)

B. Input-Output Linearization and Inversion Error

Input-output linearization is carried out by introducing an
invertible (with respect to u) model

= ĥ( , ,u), (8)

which is the best available model, and is the so-called
pseudo-control [7].

Assumption 3: ĥu � u [ĥ( , ,u)] > 0, and there exists
bl ,bu > 0 such that bl ≤ hu/ĥu ≤ bu on BR ×BR ×Du.

The inversion process involves designing a pseudo-control
signal:

= rm + dc − ad , (9)

where rm = −y(r)
d +[0 T ] ˜ , dc is a linear control signal

that is to stabilize the error dynamics in the absence of
modelling error, ad is an adaptive signal used to approxi-
mately cancel the modelling error. Inverting (8) leads to the
following control law:

u = ĥ−1( , , ). (10)

Let dc = Kr. Then, applying (10) to (7) leads to the
following error dynamics:

ṙ = −Kr+ ad − ( , ,u), (11)

where the modelling error is defined as:

( , ,u) � h( , ,u)− ĥ( , ,u). (12)

Ref. [7] points out that finding ad to cancel ( , ,u)
that includes ad through u constitutes a fixed-point problem
and introduces a contraction mapping assumption on with
respect to its argument ad . To avoid this, we follow [9],
[11], [12]. The term ad − can be expressed as

ad − =−h( , , ĥ−1( , , rm +Kr− ad))
+ rm +Kr

(13)

Note that r = r( , d) and rm = rm( , d̄). Since h
u

ĥ−1

ad
�=

0 by Assumptions 1 and 3 , applying the implicit function
theorem as in [9] guarantees that there exists a smooth
function ∗

ad = ∗
ad( , , d̄) such that

−h( , , ĥ−1( , , rm + kr− ∗
ad))+ rm +Kr = 0 (14)

for every ( , , d̄) ∈ BR ×BR ×Bb. With the definition
of ∗

ad , and using the mean value theorem [13], (14) can be
expressed as

ad − =−h( , , ĥ−1( , , rm +Kr− ad))

+h( , , ĥ−1( , , rm + kr− ∗
ad))

=h (¯) [ ad − ∗
ad ]

(15)

where h (¯) � h
u

ĥ−1
∣∣∣

=¯
= h

u/ ĥ
u

∣∣∣
u=ĥ−1( , ,¯)

, and ¯ =

rm +Kr− ad − (1− ) ∗
ad , ∈ [0,1]. Using (15), Eq.

(11) can be expressed as

ṙ = −Kr+h (¯) [ ad − ∗
ad ] . (16)
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C. Internal Dynamics

While the notion of minimum phase is well established
for affine control systems [14], a corresponding notion for
non-affine systems is still an open problem, because for
non-affine systems the zero dynamics may not be uniquely
defined. In other words, different control laws may yield
either stable or unstable zero dynamics [6]. To avoid this
situation, we introduce assumptions similar to those in [12],
[15].

Assumption 4: Let qc( , , d̄) � ĥ−1( rm( , d̄) +
Kr( , d) − ∗

ad( , , d̄)). The system ˙ =
f0( , d ,qc( d , , d̄)) has a unique steady state
solution c(t) ∈ D and ‖ c(t)‖ ≤ c . Furthermore,
with ˜ = c(t)− (t), the system

˙̃ = f0( , d ,qc( d , , d̄))− f0( , ,qc( , , d̄))

= f̃0( ˜ , ˜ , c, d̄)
(17)

has a continuously differentiable function V (t, ˜ ) satisfying

c1 ‖ ˜ ‖2 ≤V (t, ˜ ) ≤ c2 ‖ ˜ ‖2

V̇ ≤−c3 ‖ ˜ ‖2 + c4 ‖ ˜ ‖
∥∥∥ ˜

∥∥∥ .
(18)

This assumption implies that with ˜ as an input, the in-
ternal dynamics in (17) are input-to-state stable (ISS) [16].
Substituting the bound for ˜ in (6) into (18) leads to

V̇ ≤−c3 ‖ ˜ ‖
[
‖ ˜ ‖− c4

c3
(d2rM(t)+d3)

]
. (19)

Whenever ‖ ˜ ‖≥ c4
c3

(d2rM(t)+d3), V̇ ≤ 0. This leads to the
following bound for ‖ ˜ ‖ (See [3, Theorem 6.4])

‖ ˜ ‖ ≤
√

c2

c1
max(‖ ˜ (0)‖ ,

c4

c3
(d2rM(t)+d3)). (20)

Then the internal state is bounded by

‖ ‖ ≤ c +
√

c2

c1
max(‖ ˜ (0)‖ ,

c4

c3
(d2rM(t)+d3)). (21)

IV. NN APPROXIMATION AND ADAPTIVE LAW

A radial basis function NN (RBF NN) is used to approx-
imate ∗

ad in (14). It is a universal approximator if a set of
basis functions can be selected over a compact domain of
approximation. Following the approach in [17], given ∗ > 0,
the continuous ideal signal ∗

ad can be parameterized via
a suitably chosen set of Gaussian basis functions on the
compact set x̄ = BR ×BR ×Bb

∗
ad( , , d̄) = WT ( x̄)+ ( x̄), ‖ ‖ ≤ ∗, (22)

where x̄ = ( , , d̄), W ∈ R
N is a vector of unknown

constants, ( x̄)∈ RN is a vector of basis functions, and ( x̄)
is the function reconstruction error.

Assumption 5: On the compact set x̄, the ideal NN
weight vector W is bounded, i.e., ‖W‖ ≤W ∗.

The adaptive signal ad is designed as

ad =ŴT ( x̄) (23)

where Ŵ (t) are the weight estimates for W . The NN weights
are updated using

˙̂W = −F[ ( x̄)r+ (Ŵ −Ŵ0)] (24)

where F > 0 is a learning rate, and > 0 is a
−modification factor.

V. STABILITY ANALYSIS

Substituting (22) and (23) into (16), we have

ṙ = −Kr+buW̃
T +{h (¯)−bu}W̃T −h (¯) , (25)

where W̃ = Ŵ −W . With Assumption 3, the following is
immediate ∣∣(h (¯)−bu)W̃T

∣∣ ≤ b∗
∥∥W̃

∥∥‖ ‖ , (26)

where b∗ = bu −bl > 0.
Theorem 1: Consider the system in (1) regulated by the

control law in (10). Suppose that Assumptions 1-5 hold,
and that the NN weights are updated according to (24).
Then, all the closed loop signals are uniformly ultimately
bounded, and the tracking error r is attracted to an adjustable
neighborhood of the origin if the following conditions are
satisfied:

i): >
2b∗2 ‖ ‖2

buK
ii):Ŵ (0) is set such that with a constant w > 0

W̃ (0) ∈ Bw �
{
W̃ ∈ R

N :
∥∥W̃

∥∥ ≤ w
}

(27)

iii): ‖ (0)‖ ≤ p0( M) and ‖ (0)‖ ≤ q , where

M = max
{

> 0 : p0( ) ≤ R , p1( ) ≤ R ,

p2( ) ≤ R − c
}
,

q =
√

c1

c2
(R − c )− c ,

(28)

and

p0( ) =

√
2 − bu

min(F)w
2 − (1+d1)a

1+d1

p1( ) = [1+ k0(1+d1)]a+d2
√

2 + k0(1+d1)p0( ),

p2( ) =
√

c2

c1

c4

c3

[
d2
√

2 + k0(1+d1)[a+ p0( )]
]

Proof: The proof is carried out in two steps.
Step 1. Since the NN approximation in (22) holds when
( , , d̄) ∈ x̄, we suppose that ( , ) ∈ BR × BR for
all t ≥ 0, which is proven in Step 2. Let us consider the
following Lyapunov candidate function

V (r,W̃ ) =
1
2
r2 +

bu

2
W̃T F−1W̃ . (29)

Then the following is immediate.

V1(|r|,
∥∥W̃

∥∥) ≤V (r,W̃ ) ≤V2(|r|,
∥∥W̃

∥∥), (30)
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where V1(|r|,
∥∥W̃

∥∥) = 1
2 r2 + bu

2 max(F)

∥∥W̃
∥∥2, and V2(|r|,

∥∥W̃
∥∥) =

1
2 r2 + bu

2 min(F)

∥∥W̃
∥∥2. Along with (25), we have

V̇ =−Kr2 − rh (¯) + r{h (¯)−bu}W̃T

+buW̃
T

{
r+F−1 ˙̂W

}
.

(31)

After applying the update law in (24), using (26), V̇ is upper
bounded by

V̇ ≤−Kr2 + 1|r|+ 2|r|
∥∥W̃

∥∥−bu W̃T (Ŵ −Ŵ0), (32)

where 1 = bu
∗ and 2 = b∗ ‖ ‖. With the following

property and bounds on product terms:

W̃T (Ŵ −Ŵ0) =
1
2

∥∥W̃
∥∥2 +

1
2

∥∥Ŵ −Ŵ0
∥∥2 − 1

2

∥∥W −Ŵ0
∥∥2

,

1|r| ≤ K
4
|r|2 +

2
1

K
, 2|r|

∥∥W̃
∥∥ ≤ K

4
|r|2 +

2
2

K

∥∥W̃
∥∥2

,

rearranging terms leads to

V̇ ≤−K
2

r2 − bu

2
( − 2 2

2

buK
)
∥∥W̃

∥∥2 + (33)

where

=
2
1

K
+

bu

2

∥∥W −Ŵ0
∥∥2

. (34)

Let r �
√

2
K , W̃ �

√
2

bu( − 2 2
2

buK )
. Then, either |r| > r or

∥∥W̃
∥∥ > W̃ renders V̇ < 0. Thus, we conclude that r(t) and

W̃ are bounded. Moreover, there exists a T1 > 0 such that
V (r,W̃ ) ≤V2( r, W̃ ), ∀t ≥ T1, where

V2( r, W̃ ) = �
K

+
1

min(F) − 2 2
2

buK

(35)

which can be made small by properly choosing K, ,F . This
leads to:

|r(t)| ≤
√

2 , ∀t ≥ T1 =⇒ RT1 ≤
√

2 . (36)

From (4), it is clear that ‖ (t)‖ converges to arbitrarily close
to k0

0

√
2 . This implies that the output tracking error yd(t)−

y(t) can be regulated within a adjustable bound for t ≥ T1.
The boundedness of is immediate, using (21), from that
rM(t) is bounded for all t ≥ 0.

Step 2. To complete the proof, we need to show that
given initial conditions, ( (t), (t))∈BR ×BR for all t ≥ 0.
Towards this end, we define a Lyapunov level set

L �
{
(r,W̃ ) : V (r,W̃ ) ≤ }

, (37)

where can be varied. By Eq.(2), r(t) is bounded as
|r(t)| ≤ (1 + d1)a + (1 + d1)‖ (t)‖. Therefore, the condi-
tions ‖ (0)‖ ≤ p0( M) ≤ R and W̃ (0) ∈ Bw mean that
(r(0),W̃ (0)) ∈ L M . If V (r(0),W̃ (0)) ≤ , L becomes an
positively invariant set. Otherwise, V̇ < 0 whenever L M \L ,
therefore L M becomes an positively invariant set. Now,
in order to prove that ( (t), (t)) ∈ BR × BR for all
t ≥ 0, it suffices to show that (r(t),W̃ (t)) ∈ L M implies
( (t), (t)) ∈ BR × BR . If (r,W̃ ) ∈ L M , |r| ≤ √

2 M .

Then, by Eq.(6), ‖ ‖ ≤ ‖ d‖ +
∥∥∥ ˜

∥∥∥ ≤ a + d2
√

2 M +

k0(1+d1)‖ (0)‖≤ a+d2
√

2 M +k0(1+d1)[a+ p0( M)]≤
p1( M)≤R . For , from Eq.(21), we proceed as follows. If
‖ ˜ (0)‖> c4

c3
(d2

√
2 M +k0(1+d1)[a+ p0( M)], then ‖ ‖ ≤

‖ c(t)‖+ ‖ ˜ ‖ ≤ c +
√

c2
c1
‖ ˜ (0)‖ ≤ c +

√
c2
c1

[c + q ] ≤
R . Otherwise, ‖ ‖≤ c +

√
c2
c1

c4
c3

(d2
√

2 M +k0(1+d1)[a+
p0( M)] ≤ c + p2( M) ≤ R . Therefore we conclude that
(r,W̃ ) ∈ L M guarantees that ( , ) ∈ BR ×BR . This com-
pletes the proof.

VI. ALTERNATIVE DESIGN WITH A ROBUSTIFYING

SIGNAL

When the parameters bl ,bu and W ∗ in Assumptions 3 and
5 are known, a robustifying signal can be introduced in the
form

ad = nn + rb, (38)

where nn is the same as in (23) and rb is designed as

rb = − br

1−br
[
∥∥Ŵ

∥∥+W ∗]‖ ( x̄)‖sgn(r), (39)

where br = 1− bl
bu

< 1.
Theorem 2: Consider the system in (1) regulated by the

control law in (10) with the NN weights updated by (24) and
ad designed as in (38). Suppose that Assumptions 1-5 hold,

and that the bounds bl ,bu and W ∗ are known. Then, all the
closed loop signals are uniformly ultimately bounded and the
tracking error r is attracted to an adjustable neighborhood of
the origin under the same initial conditions as in Theorem
1.
Note that condition i) in Theorem 1 is not required. The
significance of this theorem is explained in the remark 2.
Proof: Most of the stability proof is the same as that for The-
orem 1. However, with the robustifying signal in (39), the
bound |

{
h (¯)

bu
−1

}[
rb +W̃T

] | ≤ br| rb|+br
∥∥W̃

∥∥‖ ‖ is
required. Consider the Lyapunov candidate function given
in (29). Then, similarly as (25), we have

V̇ ≤−Kr2 + rbu

[
rb +{h (¯)

bu
−1}( rb +W̃T )

]
− rh (¯) −bu W̃T (Ŵ −Ŵ0).

(40)

Applying the robustifying term in (39) leads to

V̇ ≤−Kr2 + 1|r|−bu W̃T (Ŵ −Ŵ0), (41)

which is the same as that in (32) with 2 = 0. Thus,
following the same line, it is straightforward to obtain the
following.

V̇ ≤−K
2

r2 − bu

2

∥∥W̃
∥∥2 + n (42)

where

n =
2
1

2K
+

bu

2

∥∥W −Ŵ0
∥∥2

. (43)

Let nr �
√

2 n
K , nW̃

�
√

2 n
bu

. Then, either |r| > nr or∥∥W̃
∥∥ > nW̃

renders V̇ < 0. Thus, we conclude that r(t) and

4
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W̃ are bounded. Moreover, there exists a T2 > 0 such that
V (r,W̃ ) ≤V2( nr , nW̃

), ∀t ≥ T2, where

V2( nr , nW̃
) = n � n

K
+

1

min(F)
n (44)

which can be made small by properly choosing K, ,F . The
rest of the stability proof is the same as in the proof for
Theorem 1.

Remark 1: The discontinuity in (39) raises the question
of the existence of a solution in the sense of Filippov [18],
and raises an implementation issue. Therefore, a stability
proof with the sign function replaced by a hyperbolic tangent
function is under investigation.

Remark 2: How the sizes of the ultimate bounds in The-
orems 1 and 2 determine the sizes of ultimate bounds on
r and W̃ can be considered as follows. Since V1(r,W̃ ) ≤
V (r,W̃ ) ≤V2(r,W̃ ), |r| and W̃ are ultimately bounded by

r2 +
bu

max(F)

∥∥W̃
∥∥2 ≤C, (45)

where C can be either 2 in (35) for Theorem 1 or 2 n in
(44) for Theorem 2. Figure 1 depicts the sets in (45) for
Theorems 1 and 2 when the same parameters for K, , and
F are used. It can be seen that the robustifying term further
reduces the size of the ultimate bound and thus further
reduces the tracking error. Also note that the adaptation gain
F determines the “shape” of the ultimate bound set in (45).
Let us consider the set in (45) for Theorem 1. The set is

|r|
2
√

2 n max(F)
bu

2
√

2 max(F)
bu

∥∥W̃
∥∥

2
√

2 n

2
√

2

Fig. 1. Diagram for Ultimate Bounds

determined by in (34) and in (35) that depend on the

parameters K, , and F . Reducing requires small NN
reconstruction error ( 1), a good initial guess for the ideal
NN weights (

∥∥W̃ (0)
∥∥2

), and a high gain for K.
Once the control gain K is fixed, is set to satisfy the

first condition in Theorem 1. Then, is fixed. In this case,
the size of the tracking error is determined by

√
2 , which

can be decreased by increasing the adaptive gain F . For the
case of Theorem 2, the same arguments as the above holds
with the only difference being the size of the ultimate bound
as depicted in Figure 1.

Remark 3: We can show that the ultimate bound on the
tracking error r (thus e) can be made arbitrarily small by
choosing K and F as follows. First, it is straightforward to
show that for any given 0 > 0 there exists K0 ∈ R such that

/
(

− 2 2
2

buK

)
≤ ( bu

2

∥∥W̃ (0)
∥∥2 + 0) for ∀K ≥ K0. Now, for

given ∗ > 0, let 0, 0, and K3 be such that 0 > 2buw2

∗ , 0 ≤
0
2 ∗, and 2 /K ≤ ∗

4 , ∀K ≥ K3 respectively. By selecting
F such that F > 0I, we can ensure that 2 ≤ ∗ for all
K ≥ K∗ � max(K3,K0). This can be seen by

2 =
2
K

+
2

min(F) − 2 2
2

buK

≤ ∗
4

+
2

0
[
bu

2

∥∥W̃ (0)
∥∥2 + 0]

≤ ∗
4

+ ∗
2

+ ∗
4

= ∗.

Since |r(t)| ≤ √
2 , t ≥ T1, |r| ≤ √

∗, ∀t ≥ T1. In other
words, the ultimate bound for r can be made arbitrarily
small.

Remark 4: The sizes of the sets BR and BR are de-
termined by the number of neurons employed for NN
approximation. Once R and R are fixed, this determines
the size M in (28), which is the size of the largest positively
invariant set in (r,W̃ ) space. Then, increasing w in (27) leads
to decrease in p0( M) in (1), which restricts ‖ (0)‖.

VII. SIMULATION RESULTS

We illustrate the approach using a Van Der Pol equation
described by

ẋ1 =x2,

ẋ2 =−2(x2
1 −1)x2 − x1 +(2+ sin(x1x2))[u+

1
3
u3 + sin(u)]

ẋ3 =x4

ẋ4 =− x3 −0.2x4 + x1

y =x1 + x3,

with initial conditions: x1(0) = 0.5, x2(0) = 2.5, x3(0) = 0,
and x4(0) = 0.2. With the transformation [ 1 2 1 2]T =
[y ẏ x3 x4]T , the system is put into a normal form:

˙
1 = 2

˙
2 =−2(( 1 − 1)2 −1)( 2 − 2)− 1 −0.2 2

+(2+ sin([ 1 − 1][ 2 − 2]))[u+
1
3
u3 + sin(u)]

˙1 = 2

˙2 =−2 1 −0.2 2 + 1

y = 1.
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The desired trajectory yd is constructed by a command filter
driven by a square wave reference command yc(t) as follows:
ÿd =−2 c cẏd + 2

c yd + 2
c yc(t), where c = 1[rad/sec] and

c = 0.8. The error system is designed such that r = ė+ e,
where = 3. The invertible design model is chosen as ÿ =
10u with the pseudo-control design as rm = ÿd + (ẏd −
y), dc = Kr, K = 2. When u ∈ [−2,2], the above design
model leads to 0.1 ≤ h

u/ ĥ
u ≤ 2.

Figure 2(a) shows the output response when the inverting
controller is applied without the adaptive signal. Note os-
cillatory behavior caused by the nonlinear elements in the
Van Der Pol equation. To compensate for the uncertainties,
a RBF NN consisting of 6 neurons are employed. The basis
functions of the NN are given by

i( x̄) = e−( x̄− x̄ci )
T ( x̄− x̄ci )/R2

, i = 1, . . . ,6,

where x̄ci are randomly selected from a grid of points on
the input domain, and R is set as 1. In simulation, the
robustifying term in (39) is realized as rb = − br

1−br
[
∥∥Ŵ

∥∥+
W ∗]‖ ( x̄)‖ tanh( r

r
), where br = 0.95, W ∗ = 4, and r =

0.01, and tanh(s) = es−e−s

es+e−s . Figure 2(b) shows output re-
sponses when the adaptive signals ad in (23) and (38) are
applied with F = 10I and = 0.1. Even though the adaptive
signal greatly suppresses the oscillations compared to Figure
2(a), there still remain oscillations. With the robustifying
signal rb added, the tracking error is regulated close to
zero, illustrating its smaller ultimate bound as explained in
Figure 1.

0 5 10 15 20 25 30 35 40
1.5

1

0.5

0

0.5

1

1.5

time(sec)

y

y
d

y

(a) Time Response of y without
Adaptive Signal
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(b) Output Responses with and
without the Robustifying Signal
with F = 10I and K = 2.

Fig. 2. Output responses with and without Adaptive Signal

Figures 3 illustrates that the ultimate bound on the track-
ing error can be reduced by either increasing the adaptation
gain F (Figure 3(a)) or increasing the gain K (Figure 3(b)).
Note that increasing the adaptation gain is more effective
than increasing the control gain for suppressing the initial
oscillations in this example.

VIII. SUMMARY

A synthesis method that uses a neural network to compen-
sate for inexact inversion error is considered for a class of
non-affine systems. The adaptive signal is obtained without
introducing a contraction mapping assumption, and without
assuming a bound on the time derivative of the control
effectiveness. The only requirement is that the control ef-
fectiveness has a known sign and is bounded. The stability
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(a) Output Responses with F =
100I and K = 2.
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(b) Output Responses with F =
10I and K = 5.

Fig. 3. Output Responses with varying F and K.

proof shows that all the signals in the closed-loop system
are bounded, and the tracking error can be adjusted using
the control parameters. Simulation results with a Van Der
Pol equation illustrate the approach for varying sets of gains
used in the control design.

REFERENCES

[1] R. Marino and P. Tomei. Nonlinear Control Design: Geometric,
Adaptive, & Robust. Prentice Hall, New Jersey, 1995.

[2] F.L. Lewis, S. Jagannathan, and A. Yeşildirek. Neural Network
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