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Abstract— Synchronization is a key concept to the under-
standing of self-organization phenomena occurring in coupled
oscillators of the dissipative type. In this paper we study one
of the most representative models of coupled phase oscillators,
the Kuramoto model. The traditional Kuramoto model (all-to-
all connectivity) is said to synchronize if the angular frequencies
of all oscillators converge to the mean frequency of the group
and the oscillators get phase locked. Recently, Jadbabaie et.
al. calculated a lower bound on the coupling gain which is
necessary for the onset of synchronization in the traditional
Kuramoto model. It was also shown that there exists a large
enough coupling gain so that the phase differences are locally
asymptotically stable. Furthermore, the authors demonstrated
that the convergence is exponential when all oscillators have
the same natural frequency. In this paper we assume that
the natural frequencies of all oscillators are arbitrarily chosen
from the set of reals. We develop a tighter lower bound on the
coupling gain, as compared to the one proposed by Jadbabaie
et. al., which is necessary for the onset of synchronization in
the traditional Kuramoto model. Our main result says that
it is possible to find a coupling gain such that the angular
frequencies of all oscillators locally exponentially synchronize to
the mean frequency of the group. To the best of our knowledge,
this is the first result which demonstrates that in the traditional
Kuramoto model, with all-to-all coupling and different natural
frequencies, the oscillators locally exponentially synchronize.
Simulations are also presented to validate the proposed results.

I. INTRODUCTION

Collective synchronization phenomena have been observed
in biological, chemical, physical and social systems for
centuries. The concept of synchronization implies that mul-
tiple periodic processes with different natural frequencies
come to acquire a common natural frequency as a result
of their mutual or one-sided interaction. This phenomenon
is observed when system of oscillators lock on to a com-
mon frequency despite differences in the natural frequency
of the individual oscillators. Biological examples include
groups of synchronously flashing fireflies [1], crickets that
chirp in unison [13] etc. Examples in physics include the
superconducting Josephson junction [16]. The importance of
synchronization in nature may be realized from the fact that
what looks like a single periodic process on a macroscopic
scale often turns out to be collective oscillation resulting
from the mutual synchronization among large number of
constituent oscillators. The human heartbeat may be taken
as an example of this phenomenon. As the constituent
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oscillators in nature rarely posses identical frequencies, mu-
tual synchronization appears to be a unique mechanism for
producing and maintaining macroscopic rhythmicity.
Collective synchronization was first studied by Weiner [15],
who speculated that it is involved in the generation of alpha
rhythms in the brain. It was then taken up by Winfree [17]
who used it to study circadian rhythms in living organisms.
He contended that theoretical understanding of the origin
of collective rhythmicity would be best studied by studying
its onset, that is, by treating it as a kind phase transition
or bifurcation. His attempt to study mutual synchronization
in multi-oscillator systems was based on a phase descrip-
tion [18]. Winfree’s model was significantly extended by
Kuramoto in [5], [6] where he developed results what is
now popularly known as the Kuramoto model. Kuramoto’s
work, and the later attempts to answer the questions that were
raised by his formulations, have been elegantly summarized
in [11].
Recently, control theoretic methods have been used in [14],
[10], [4], [2] to address the synchronization phenomenon.
Phase models of coupled oscillators were used to derive
control laws for stabilizing collective motion of a group of
self-propelled particles in [10]. In [7] consensus problems
were discussed for a network of dynamic agents with fixed
and switching topologies. Stability analysis was carried out
for a unidirectional ring of oscillators with Kuramoto type
dynamics in [9]. In [8] it was shown that only phase
locking solutions corresponding to (−π

2 , π
2 ) can be locally

asymptotically stable, and a condition for guaranteeing local
asymptotic stability was also derived. However, the condition
was dependent on the parameter r∞ , along with the coupling
gain and natural frequencies of the oscillators. Recently
in [3], control and graph theoretic methods were used to
analyze Kuramoto oscillators for an arbitrary bidirectional
graph topology. The authors derived the value of the coupling
gain KL for the onset of synchronization in the traditional
Kuramoto Model (all-to-all connectivity). It was also shown
that there exists a large enough coupling gain K gain so
that the phase differences are locally (−π

2 , π
2 ) asymptotically

stable. Furthermore, the authors also demonstrated that the
convergence is exponential, when all oscillators have the
same natural frequency.
In this paper we study the case of a large but finite (N )
number of Kuramoto oscillators where every oscillator is
connected to every other oscillator (the original Kuramoto
model). We assume in this note that the natural frequencies
ωi of all oscillators are arbitrarily chosen from the set of
reals and we do not impose any particular distribution on
them. We construct a tighter lower bound on the coupling
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gain, as compared to the one developed by Jadbabaie et. al.,
which is necessary for the onset of synchronization in the
traditional Kuramoto model. Our main result says that it is
possible to find a coupling gain K = Kinv such that all
trajectories which start within the set defined by

D = {θi, θj ∈ R | |θi − θj | ≤ π

2
− 2ε}

where ε < π
4 is an arbitrary positive number, exponentially

synchronize.

II. SUMMARY OF KURAMOTO’S RESULTS

In this section we describe the original Kuramoto model
and summarize the main findings. The Kuramoto model
consists of a population of N oscillators who dynamics are
governed by the following equations

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi), i = 1, 2, ..., N (1)

where θi ∈ S1 is the phase of the i − th oscillator,
ωi ∈ R is its natural frequency and K > 0 is the
coupling gain. The natural frequencies are distributed with
probability density g(ω), where g(ω) is assumed to be
unimodal and symmetric about the mean frequency Ω
i.e., g(Ω + ω) = g(Ω − ω). By making a suitable choice
of a rotating frame, θi → θi + Ωt, where Ω is the first
moment (mean) of g(ω), the dynamics (1) get transformed
to an equivalent system of phase oscillators whose natural
frequencies have a zero mean. Therefore we have that
g(ω) = g(−ω) for all ω. To get a nice intuition about the
problem, the oscillators may also be thought of as points
moving on a unit circle. The problem is then to characterize
the coupling gain K so that the oscillators synchronize.

The oscillators are said to synchronize if

θ̇i − θ̇j → 0 as t → ∞ ∀i, j = 1, . . . , N

or in other words the phase differences given by θi −
θj ∀i, j = 1, 2, ..., N become constant asymptotically.
Imagining these oscillators on circle as points, the points
then move with the same angular frequency and hence, an-
gular distance (phase difference) between the points remain
constant with time. Define the order parameter r as

reiΨ =
1
N

N∑
j=1

eiθj

The order parameter r(t) with 0 ≤ r(t) ≤ 1 is a measure of
phase coherence of the oscillator population. If the oscillators
synchronize, then the parameter converges to a constant
r∞ ≤ 1, but if the oscillators add incoherently then the order
parameter r remains close to zero. Using the order parameter,
the model (1) can be rewritten as [11]

θ̇i = ωi +
K

N
rsin(θi − Ψ), i = 1, 2, ..., N

In the continuum limit case where N → ∞, Kuramoto
showed that there exists a value of the coupling gain K

such that for all K < Kc, the oscillators are incoherent
(or remain unsynchronized), but for K > Kc the incoherent
state becomes unstable, the oscillators start synchronizing
and eventually r(t) settles at some r∞(K) < 1. Kuramoto
calculated closed form solutions for the gain Kc (the critical
gain for the onset of synchronization), and r∞(K). Further-
more it has been shown via simulations that for K > Kc,
the population of oscillators divides into two groups. The
oscillators whose natural frequencies is close to the mean
frequency, lock on to form a synchronized cluster and start
rotating with the mean frequency Ω, while those whose
natural frequencies are far way from the mean of the group,
drift relative to the synchronized cluster oscillators.
However there are some important questions still associated
with the Kuramoto model and they form the motivation for
this paper. We list here one of the open problems which
we address in this paper. It has been shown via numerical
simulations that for when K > Kc, the parameter r(t) grows
exponentially and saturates at some r∞ < 1. Till date there
is no analysis which shows that the oscillators in the orig-
inal Kuramoto model (where the oscillators have different
natural frequencies) synchronize exponentially (even locally)
and quoting Strogatz [11] “Nobody has even touched the
problems of global stability and convergence”.
The paper is organized as follows. In the next section
we calculate the critical gain Kc which is necessary for
the onset of synchronization in the whole population of
oscillators. In Section (IV) we develop a lower bound on the
coupling gain K = Kinv which is sufficient for oscillator
synchronization within an arbitrary compact set of (−π

2 , π
2 ),

and then in Section (V) it is demonstrated that the oscillators
locally exponentially synchronize. The results are validated
by simulations in (VI) and summarized in (VII).

III. ONSET OF SYNCHRONIZATION

As we are interested in the evolution of the phase differ-
ences, the phase difference dynamics can be written down
using (1) as

θ̇i − θ̇j = ωi − ωj +
K

N

{ − 2sin(θi − θj)

+
N∑

k=1 k �=i,j

(
sin(θk − θi) + sin(θj − θk)

)}
(2)

If the oscillators are to synchronize i.e. θ̇i − θ̇j → 0 as t →
∞ ∀i, j = 1, . . . , N , the R.H.S of (2) must go to zero.
In this section, we calculate a lower bound on the coupling
gain K so that there is a possibility of the R.H.S of (2) to go
to zero. In other words, we calculate a necessary condition
for the onset of synchronization in (1). The oscillators can
only synchronize if equation (1) has at least one fixed point
∀i, j = 1, . . . , N i �= j. The fixed point equation can be
written down as

ωj − ωi =
K

N

{
2sin(θj − θi) +

N∑
k=1 k �=i,j

(
sin(θk − θi)

+sin(θj − θk)
)}

(3)
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Assuming without loss of generality that ωj > ωi, to calcu-
late a lower bound on the coupling gain K satisfying (3),
we need to maximize the expression

E = 2sin(θj − θi) +
N∑

k=1 k �=i,j

sin(θk − θi) + sin(θj − θk) (4)

Using elementary calculus, the first order necessary condi-
tions for maximizing (4) are given by

∂E

∂θi
= −2cos(θj − θi) −

N∑
k=1 k �=i,j

cos(θk − θi) = 0 (5)

∂E

∂θj
= 2cos(θj − θi) +

N∑
k=1 k �=i,j

cos(θj − θk) = 0 (6)

∂E

∂θk
= cos(θk − θi) − cos(θj − θk) = 0 (7)

Using (7), we get that either

θk =
θi + θj

2
or θi = θj

It is easily seen that θi = θj = 0 implies that E = 0, as we
are looking for a maximum we investigate the other solution.
Substituting θk as θi+θj

2 in (5) we get the condition

2cos(θj − θi) +
N∑

k=1 k �=i,j

cos
(θj − θi

2

)
= 0

⇒ 2cos(θj − θi) + (N − 2)cos
(θj − θi

2

)
= 0

⇒ 4cos2
(θj − θi

2

)
− 2 + (N − 2)cos

(θj − θi

2

)
= 0

It is to be noted that the same equation will be obtained by
substituting θk as θi+θj

2 in (6). Solving the above quadratic
equation we get

cos
(θj − θi

2

)
=

−(N − 2) ± √
(N − 2)2 + 32

8
As cos(x) ≤ 1 ∀x ∈ R, a well defined solution for all N is
given by

cos
(θj − θi

2

)
=

−(N − 2) +
√

(N − 2)2 + 32
8

(8)

Denote the optimal value of θj − θi maximizing (4) by
(θj − θi)opt. It can also be verified that the second order
necessary condition for optimality (maximum in this case)
given by

∂E

∂θm∂θn
≤ 0 ∀m, n = 1, . . . , N

is also satisfied by (θj − θi)opt, and hence the optimal
(maximum) value of E is given as

Emax = 2sin(θj − θi)opt + 2(N − 2)sin
( (θj − θi)opt

2

)

Thus the critical gain coupling gain required for onset of
synchronization in (2) is given by

Kc =
(ωj − ωi)N

Emax

If the natural frequencies belong to a compact set, then the
critical gain coupling gain required for onset of synchroniza-
tion in (1) is given as

Kc =
(ωmax − ωmin)N

Emax
(9)

where ωmax > 0, ωmin is the maximum and minimum fre-
quencies in the set of natural frequencies. The phrase critical
gain coupling gain required for onset of synchronization
does not imply that at Kc the oscillators synchronize. The
critical gain Kc is the gain below which the oscillators cannot
synchronize.
It is interesting to compare the condition (9) with that for
the critical gain obtained in [3]. The value for the critical
coupling in [3] is given as

KL =
(ωmax − ωmin)N

2(N − 1)
(10)

Therefore, comparing (9) with (10) we find that in (10)
Emax = 2(N − 1) implicitly. We contend that Emax =
2(N − 1) is a value not achievable by the function E. This
is so because in [3] the authors assumed that at Emax,
|θm − θn| = π

2 ∀ m,n = 1, . . . , N . This clearly is not
possible as the phase differences θm−θn ∀ m, n = 1, . . . , N
are not independent. Thus the onset of synchronization is not
possible for all coupling gains K satisfying KL ≤ K < Kc.
Only for K ≥ Kc, the dynamical system given by (1) may
synchronize.

IV. SYNCHRONIZATION OF KURAMOTO OSCILLATORS

In the previous section we developed the lower bound on
the critical gain K denoted by Kc which is necessary for the
onset of synchronization in the traditional Kuramoto model.
In this section we develop a lower bound on the coupling gain
K which is sufficient for synchronization of the oscillators
within an arbitrary compact set of (−π

2 , π
2 ). The assumption

in the analysis that follows is that the initial phase of all
oscillators lie within the set described by

D = {θi, θj ∈ R | |θi − θj | ≤ π

2
− 2ε}

where ε < π
4 is an arbitrary positive number. We will develop

a lower bound on the coupling gain K denoted by Kinv

which makes this set positively invariant for all oscillators,
i.e. θi − θj ∈ D at t=0 ⇒ θi − θj ∈ D ∀ t > 0. Then
having phase-locked the oscillators in D, we will show that
the oscillators synchronize.
The phase difference dynamics as described by (2) can be
rewritten as

θ̇i − θ̇j = K
{ωi − ωj

K
− sin(θi − θj) +

1
N

( N∑
k=1

sin(θi − θj)

+sin(θk − θi) + sin(θj − θk)
)}

(11)

Consider the term

1
N

(
sin(θi − θj) + sin(θk − θi) + sin(θj − θk)

)
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This can be rewritten using some trigonometric rearrange-
ments as

1
N

sin(θi − θj)
(
1 − cos(θk − (θi+θj)

2 )

cos( (θi−θj)
2 )

)

=
1
N

sin(θi − θj)Ck

where Ck =
(
1 − cos(θk− (θi+θj)

2 )

cos(
(θi−θj)

2 )

)
. It is easy to see that

∀(θi − θj) ∈ D, 0 ≤ Ck < 1. Using this, (11) can be
rewritten as

θ̇i − θ̇j = K
{ωi − ωj

K
− sin(θi − θj)

+
1
N

N∑
k=1

Cksin(θi − θj)
}

= K
{ωi − ωj

K
− sin(θi − θj)

(
1 − 1

N

N∑
k=1

Ck

)}
(12)

We are now in a position to state the first result of this
section.

Theorem 4.1: Consider the system dynamics as described
by (12). Let all initial phase differences at t=0 be contained
in the compact set D = {θi, θj | |θi − θj | ≤ π

2 − 2ε ∀i, j =
1, . . . , N}. Then there exists a coupling gain Kinv > 0 such
that (θi − θj) ∈ D ∀t > 0.

Proof: Let the positive definite Lyapunov function for
the dynamic system governed by (12) be given as

V =
1

2K

(
θi − θj

)2

The derivative of the Lyapunov function along trajectories of
the system (12) is given as

V̇ =
1
K

(θi − θj)
(
θ̇i − θ̇j

)

= (θi − θj)
(ωi − ωj

K
− sin(θi − θj)

(
1 − 1

N

N∑
k=1

Ck

))

≤ |θi − θj ||ωi − ωj

K
| − (θi − θj)sin(θi − θj)

(
1 −

N∑
k=1

Ck

N

)

≤ |θi − θj ||ωi − ωj

K
| − (θi − θj)sin(θi − θj)

(
1 − N − 2

N

)

where it has been used in the last equation that Ck < 1 and
that Ck = 0 for k = i, j. Thus the derivative can be written
as

V̇ ≤ |θi − θj ||ωi − ωj

K
| − (θi − θj)sin(θi − θj)

2
N

It is to be noted that the function sin(θi − θj)(θi − θj) is
always nonnegative in the considered domain. Therefore, if
K >

N |ωi−ωj |
2cos(2ε) , the derivative of the Lyapunov function is

negative at |θi − θj | = π
2 − 2ε and thus the phase difference

θi − θj cannot leave the set D. Finally, if K = Kinv >
N |ωmax−ωmin|

2cos(2ε) , all phase differences θi−θj ∀i = 1, 2, ..., N
are positively invariant with respect to the compact set D.

Having trapped the phase differences within the desired
compact set D by appropriately choosing the coupling gain,
we demonstrate that the oscillators synchronize.

Theorem 4.2: Consider the system dynamics as described
by (12). Let all initial phase differences at t=0 be contained in
the compact set D. If the coupling gain K is chosen such that
K = Kinv , then all the oscillators synchronize i.e. θ̇i− θ̇j →
0 as t → ∞ ∀i, j = 1, . . . , N

Proof: Consider the positive function,

S =
1
2
θ̇T θ̇

where θ̇ = [θ̇1 . . . θ̇N ]
T

Differentiating along trajectories of
the system (1) we get

Ṡ = θ̇1θ̈1 + θ̇2θ̈2 + . . . + θ̇nθ̈n

=
θ̇1

β

(
cos(θ1 − θ2)(θ̇2 − θ̇1) + . . . + cos(θn − θ1)(θ̇n − θ̇1)

)

+
θ̇2

β

(
cos(θ1 − θ2)(θ̇1 − θ̇2) + . . . + cos(θn − θ2)(θ̇n − θ̇2)

)

...

+
θ̇n

β

(
cos(θ2 − θn)(θ̇2 − θ̇n) + . . . + cos(θ1 − θn)(θ̇1 − θ̇n)

)

where β = N
K . On rearranging terms and simplifying we

have that,

Ṡ = −K

N

N∑
j=1

N∑
i=1

cos(θi − θj)(θ̇i − θ̇j)2 (13)

Due to Theorem (4.1) we have that (θi−θj) ∈ D, ∀i, j. This
gives us that cos(θi − θj) > 0 ∀i, j and hence Ṡ ≤ 0. Hence
all angular frequencies (i.e. θ̇i ∀i) are bounded. Consider
the set E = {θi − θj , θ̇i ∈ R ∀i, j | Ṡ = 0}. The set E
is characterized by all trajectories such that θ̇i = θ̇j , ∀i, j.
Let M be the largest invariant set contained in E. Using
Lasalle’s Invariance Principle, all trajectories starting in D
converge to M as t → ∞. Hence the oscillators synchronize
asymptotically.
The above theorem tells us that all the oscillators start
moving with the same angular frequency, but what is the
consensus value of the group? Or in other words what is
the common angular frequency to which all the oscillators
converge? We provide an answer to this question in the next
result.

Corollary 4.3: Consider the system represented by (1). If
K = Kinv , then the oscillatory asymptotically converge to
the mean natural frequency of all oscillators i.e., θ̇i = θ̇j =∑ N

i=1 ωi

N = Ω ∀i, j = 1, . . . , N as t → ∞.
Proof: It is easy to see from (1) that

N∑
i=1

θ̇i =
N∑

i=1

ωi (14)

As θ̇i → θ̇j ∀i, j = 1, . . . , N as t → ∞, we have that

θ̇i →
∑ N

i=1 ωi

N ∀i = 1, 2, .., N , and hence asymptotically all
oscillators start moving with the mean natural frequency of
the group.
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V. EXPONENTIAL SYNCHRONIZATION

In the previous section we demonstrated that with suitable
choice of the coupling gain K, the oscillators synchronize.
In this section we demonstrate that the oscillators converge
exponentially to the mean natural frequency of the group. In
the Kuramoto model, all oscillators are connected via all −
to−all topology, i.e. every oscillator (or node) is connected
to every other oscillator (node). These nodes form a graph
and our results in this section use some algebraic properties
of the underlying graph. We provide a brief introduction of
the graph theory tools used in this section. A graph theoretic
approach to the Kuramoto Oscillator problem was used
recently in [3] and we adapt their concise introduction in this
section. The graph can be described by two matrices which
encode the topology of the interconnection. The incidence
matrix of an oriented graph Gα with N vertices and e edges
is the N×e matrix such that: Bij=1 if the edge is incoming
to vertex i, Bij = −1 is the edge j is outcoming from
the vertex i, and 0 otherwise. The symmetric N×N matrix
defined as: L = BBT is called the Laplacian of G and is
independent of the choice of orientation α. The Laplacian
has several important properties: L is always positive semi-
definite with a zero eigenvalue; the algebraic multiplicity
is equal to the connected components in the graph; the N
dimensional vector associated with the zero eigenvalue is the
vector of ones 1N . The spectrum of the Laplacian matrix of
the graph captures many topological properties of the graph.
It was shown by Fiedler that the first non-zero eigenvalue
λ2(L) (also referred to as the algebraic connectivity and the
Fielder eigenvalue) gives a measure of connectedness of the
graph. If we associate a positive number Wi to each edge
and we form the diagonal matrix We×e := diag(Wi), then
the matrix LW (G) = BWBT is a weighted Laplacian which
fulfills the aforementioned properties.
In the Kuramoto model, all nodes are connected to all
other nodes and hence the dynamics which were previously
described by (1) can be equivalently written down as

θ̇ = ω − K

N
Bsin(BT θ) (15)

where B is the incidence matrix of the unweighted graph, θ
and ω are N×1 vectors. It is also helpful to define the e×1
vector of the phase differences φ := BT θ.
Let us revisit Theorem (4.2), where it was shown that the
oscillators synchronize. The positive function S is given as

S =
1
2
θ̇T θ̇ (16)

The derivative of this function along trajectories of (15) can
be written as

Ṡ = −K

N
θ̇T Bdiag

(
cos(φ)

)
BT θ̇

= −K

N
θ̇T LK(G)θ̇ (17)

The matrix LK(G) = Bdiag
(
cos(φ)

)
BT ∈ N×N is the

weighted Laplacian and is described as follows

LW (G)ii =
N∑

k=1,k �=i

cos(θk − θi) ∀i = 1, . . . , N

LW (G)ij = −cos(θi − θj) ∀i, j = 1, . . . , N i �= j

Clearly, if all phase differences φ ∈ D, then the weighted
Laplacian matrix LK(G) is positive-semidefinite, and hence
the result of Theorem (4.2) follows. In the next theorem we
extend this result by developing an exponential bound on the
synchronization rate of the oscillators.

Theorem 5.1: Consider the dynamics of the system as
described by (15). If the phase differences given by φ ∈ D at
t = 0 and the coupling gain is selected such that K = Kinv ,
then the oscillators synchronize exponentially at a rate no
worse that

√
Ksin(2ε).

Proof: It follows from (14) that

Ω =
∑N

i=1 θ̇i

N
=

∑N
i=1 ωi

N

which implies that Ω is an invariant quantity. Following [7],
the vector θ̇ can be written down as

θ̇ = Ω1 + δ (18)

where 1 is the N dimensional vector of ones associated with
the zero eigenvalue of the weighted Laplacian LW (G), δ ∈
Rn satisfies

∑N
i=1 δ = 0 (as

∑N
i=1 θ̇i = NΩ). The vector δ is

orthogonal to 1 and was referred to as the group disagreement
vector in [7]. Substituting (18) in (16), we have that

d(δT δ)
dt

= −K

N
δT LW (G)δ (19)

where we have used the fact that Ω is an invariant quantity
and that 1T LW (G) = 0 as 1 is an eigenvector associated
with the zero eigenvalue of LW (G). It is easy to see from
the above equation and the positive definiteness of the matrix
LW (G) (in the projected space orthogonal to 1) that the
disagreement vector δ exponentially converges to the origin.
The exponential convergence of δ and (18) tells us that
the oscillators start moving with the mean frequency of the
group. As λ2(LK(G)) is the Fiedler eigenvalue (smallest
non-zero eigenvalue) of the weighted Laplacian λ2(LK(G)),
we have from (19) that

d(δT δ)
dt

≤ −K

N
δT λ2(LW (G))δ

≤ −K

N
δT λ2(Bdiag

(
cos(φ)

)
BT )δ

≤ −K

N
δT sin(2ε)λ2(BBT )δ

≤ −Ksin(2ε)δT δ

as min{cos(φ)} : ∀φ ∈ D = cos(π
2 − 2ε) = sin(2ε) and

for an all-to-all connected topology λ2(BBT ) = N . Thus
the exponential convergence rate for synchronization is no
worse that

√
Ksin(2ε).
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Fig. 1. The oscillators do not synchronize when KL < K < Kc.

VI. SIMULATIONS

In this section we simulate the Kuramoto oscillator model
with N = 3 oscillators. The oscillators are chosen such that
their natural frequency are as follows, ω1 = 10, ω2 = 30,
and ω3 = 70 (units are in rad/s). The mean frequency of
the group is then given by Ω = 36.67. The coupling gain
K = Kc which is necessary for the onset of synchronization
is given by (9), and as ωmax = 70, ωmin = 10, we have
that Kc = 51.13. Using (10), the necessary lower bound
provided in [3] equals KL = 45. To define the set in which
we want to confine our phase differences, choose ε = 0.5,
and thus the desired compact set D is given as

D = {θi, θj ∈ R | |θi − θj | ≤ π

2
− 2ε}

= {θi, θj ∈ R | |θi − θj | ≤ 0.5708}
The desired coupling gain is given by the formula K =
Kinv > N |ωmax−ωmin|

2cos(2ε) and thus substituting the relevant val-
ues, we select Kinv = 167. The simulations were performed
for three values of the coupling gain KL < K = 50 < Kc,
Kc < K = 53 < Kinv and K = Kinv . The initial phase
differences at t=0 were selected so that they were in D.
In the first simulation, when the coupling gain K satisfies
KL < K = 50 < Kc, the phase differences diverge and the
oscillators are unsynchronized as seen in Figure 1. In the
next simulation scenario, the coupling gain is chosen to be
Kc < K = 53 < Kinv = 53 and as seen in Figure 2, the
oscillators synchronize. On the other hand we see that the set
D is not able to attract the phase differences. Finally setting
the coupling gain K = Kinv , we find find that the oscillators
synchronize, and the phase differences are indeed invariant
with respect to the compact set D as seen in Figure 3. Also
the angular frequencies of all oscillators (θ̇i i = 1, 2, 3)
exponentially converge to the mean frequency Ω as seen in
Figure 4. The next simulation we perform is with the initial
phase differences outside the set D and with the coupling
gain K = Kinv . It turns out that the phase differences still
converge to the desired set D (Figure 5). This behavior seems
interesting and shall be a topic of our future research.

VII. CONCLUSIONS

In this paper we studied the phenomenon of synchro-
nization in the Kuramoto model with an arbitrary but finite
number of oscillators. A necessary condition in the form of a
lower bound on the coupling gain K = Kc was established
for the onset of synchronization in the Kuramoto model. A
lower bound on the coupling gain K = Kinv was developed
which is sufficient for oscillator synchronization within an
arbitrary compact set of (−π

2 , π
2 ), provided the oscillators

phases are contained in that compact set at t=0. Finally it
was shown that the oscillators synchronize exponentially.
In [3], exponential convergence was only demonstrated for
the case when the natural frequencies ωi are same for
all oscillators. In this paper we have extended this for the
case when the natural frequencies may be different for all
oscillators. Simulations were also presented to justify the
proposed results. Future work involves extending this work
to arbitrary switching topologies and for networks with time
delays.
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