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Abstract— Dimension reduction in molecular dynamics sim-
ulation is often realized through a principle component analysis
based upon a singular value decomposition (SVD) of the
trajectory. The left singular vectors of a truncated SVD provide
the reduced basis. In many biological molecules, such as HIV1
protease, reflective or rotational symmetry should be present in
the molecular configuration. Determining this symmetry allows
one to provide SVD major modes of motion that best describe
the symmetric movements of the protein. We present a method
to compute the plane of reflective symmetry or the axis of
rotational symmetry of a large set of points. Moreover, we
develop an SVD that best approximates the given set while
respecting the symmetry.

Interesting subproblems arise in the presence of noisy data
or in situations where most, but not all of the structure is
symmetric. An important part of the determination of the axis
of rotational symmetry or the plane of reflection symmetry
is an iterative re-weighting scheme. This scheme is rapidly
convergent in practice and seems to be very effective in ignoring
outliers (points that do not respect the symmetry).

I. INTRODUCTION

Determining symmetry within a collection of spatially ori-
ented points is a problem that occurs in many fields including
molecular biology, chemistry, and image processing. In these
applications, large amounts of data are generally collected
and knowing information about symmetry leads better mod-
eling of physical processes as well as more efficient storage
and computational schemes.

Given a dynamical system ẋ = f(x), x(0) = x0, there
are well known techniques for dimension reduction based
upon the Gramian of the trajectory {x(t), t ≥ 0}. The
technique is known as Proper Orthogonal Decomposition
(POD) in computational fluid dynamics and as Principle
Component Analysis (PCA) in molecular dynamics. For a
system with n-dimensional state vectors, the Gramian

P =

∫ ∞

o

x(τ)x(τ)T dτ

is an n × n symmetric positive (semi-)definite matrix (as-
suming it exists). The eigensystem of P

P = US2UT
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provides an orthogonal basis via the columns of V and in
this basis we have the representation

x(t) = USv(t)

with the components of w(t) being mutually orthogonal
L2(0,∞) functions. If the the diagonal elements of positive
semidefinite diagonal matrix S decay rapidly (assuming they
are in decreasing order) then a reduced basis representation
of the trajectory may be obtained by discarding the trailing
terms and considering the approximation xk = UkSkvk(t)
where the subscript k denotes the leading k columns and/or
components.

This is usually approximated using snapshots consisting
of values x(tj) of the trajectory at discrete time points and
forming the n × m matrix

X = [x(t1),x(t2), . . . ,x(tm)].

The singular value decomposition (SVD) of X provides

X = USVT ≈ UkSkV
T
k

where

UT U = VT V = In S = diag(σ1, σ2, · · · , σn)

with σ1 ≥ σ2 ≥ · · · ≥ σn. This is a direct approximation to
the continuous derivation if we consider

P ≈ 1

m
XXT =

1

m

∑
j

x(tj)x(tj)
T .

with the approximation to P given by a quadrature rule. Here
we are concerned with introducing symmetry constraints into
this approximation when appropriate. In molecular dynamics,
there is often a known spatial structural symmetry for the
state variables and the purpose of the constrained SVD
approximation developed here is to impose such symmetry
constraints on the approximate trajectory through a symmetry
preserving SVD.

We shall concentrate on determining two types of symme-
try: Rotational and Reflective. Computationally, this requires
construction of certain symmetric transformations in general
IRn space - reflection and rotation. For reflective symmetry,
we will look for the normal w to a hyperplane H for which S
can be split into two mirror image sets. While for rotational
symmetry, the axis q about which S can be rotated 2π/k
degrees and return to the same set will be determined. For
practical application, we must also consider noisy data sets
and construct a respective normal vector w or axis of rotation
q that diminishes the anomalies of the system. This requires
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an iterative re-weighting scheme that minimizes deviation
from symmetry in a weighted Frobenius norm. Finally, for
either type of symmetry, once the normal vector or axis of
rotation has been determined we provide a means to directly
compute the SVD of the best approximation to the given
data set that will also respect the prescribed symmetry. From
this symmetry preserving SVD, the best low rank symmetry
preserving approximation can be created. We also provide
a means to compute just the dominant portion (leading k
terms) of the symmetry preserving SVD that is well suited
to large scale computation. This computation only requires
matrix-vector products involving the point set (represented
as a matrix).

The ARPACK software [1] can be used in the large scale
case. The computation is no more expensive, than that of
finding the leading terms of the SVD of the full trajectory
without the symmetry constraint. Computational examples
involving the backbone of the HIV-1 protease molecule
are presented here. These examples provide trajectories that
result in matrices of dimension 9,000 by 10,000. The compu-
tations were performed on a parallel cluster using the parallel
P ARPACK version of ARPACK.

There has been considerable research in the area of
symmetry detection within other applications. Atallah [2]
constructs an order (n log n) algorithm that determines the
line of reflective symmetry of a planar object by reducing the
system to a combinatorial questions on words. Optimizing a
coefficient of symmetry is employed by Marola to determine
an axis of symmetry for planar images [3]. Zabrodsky, et. al
[4] employ a continuous symmetry measure and apply it to
finding 2D reflective and rotational symmetries in chemistry.
Kazhdan extends this idea to 3D objects by creating a
continuous 2D function that measures the invariance of an
object with respect to reflective symmetry about each plane
that goes through the object’s center of mass.

Many papers use the following fundamental properties
of symmetry, which can be found in [5], [6], to determine
reflective and rotational symmetry. In this literature, the term
principle axis (or principal components) refer to the eigen
vectors of the correlation matrix of the set of points (the
right singular vectors). The observation is that:

- Any plane of symmetry of a body is perpendicular
to a principal axis.
- Any axis of symmetry of a body is a principal
axis.

The principal axes are the eigenvectors of the covariance
matrix. Minovic, et. al. start with this idea and build an
octree representation to find symmetries of a 3D object.
Sun and Sherrah begin by looking at the extended Gaussian
image of an object. Then, they search along the principal
axes for the strongest symmetry measure. Colliot et. al [7]
determine the axes of reflective symmetry by starting with the
principal axes and optimizing a symmetry measure by using
the Nelder-Mead downhill simplex method. They apply this
method to object recognition and brain scan algorithms.

This paper is organized as follows. Section 2 defines
perfect reflective and rotational symmetry. Finding an op-

timal hyperplane of reflective symmetry for noisy data is
analyzed in section 3; while choosing the axes of rotational
symmetry for impure data is discussed in section 4. Finally,
section 5 develops a symmetry preserving SVD that best
approximates the given data set and provides an algorithm for
directly computing the best low rank symmetry preserving
approximation in a way that is suitable for large scale
computation. Computational results are presented in section
6.

Throughout the discussion, ‖ · ‖ shall denote the 2-norm
and ‖ · ‖F shall denote the Frobenius norm. All lemmas and
theorems are presented here without proof. The complete
details are available in our technical report [8].

II. PERFECT SYMMETRY

A. Reflective Symmetry

Recall that a hyperplane H is specified by a constant γ and
a vector w via H := {x : γ + wT x = 0}. The vector w is
called the normal to the plane. A set of points S ∈ IRn is said
to be reflectively symmetric with respect to the hyperplane H
if for every point s ∈ S, there exists a point ŝ ∈ S such that
ŝ = s + τw for some scalar τ with s + τ

2w ∈ H. We shall
assume that γ = 0 throughout this discussion so the plane of
symmetry, specifically the center c (defined below), passes
through the origin. This can always be attained in general by
a simple uniform translation of all the points of S and H by
a fixed multiple of w. For simplicity, we shall also assume
that no points of S lie in the plane of symmetry.

Lemma 2.1: A set S is reflectively symmetric with respect
to a hyperplane H with unit normal w if and only if

S = (I − 2wwT )S.
Lemma 2.2: If S is reflectively symmetric about H, then

the center c ∈ H where

c =
1

N

∑
s∈S

s,

and N is the number of elements of S.
If S is reflectively symmetric about H, we can arrange

the points of S into two sets represented as matrices X0 and
X1 such that

X0 = (I − 2wwT )X1.

Moreover, it is easily arranged that wTX0 > 0 and that
wT X1 < 0.

B. Rotational Symmetry

A set of points S ∈ IRn
⋂

q⊥ is said to be k-fold
rotationally symmetric about an axis q ∈ IRn if there exist
R(q) such that for every point s ∈ S, there exists k − 1
distinct points s1, s2, ..., sk−1 ∈ S such that R(q)is = si for
i = 1, 2, ...k − 1. We call q the rotational axis of symmetry
and R(q) the rotation matrix.

Lemma 2.3: A set S is k-fold rotationally symmetric with
respect to a rotational axis q if and only if for i = 1, 2, ..., k−
1

S = R(q)iS = (I − QGQT )iS.
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where [q Q] ∈ IRn×(n) is an orthogonal matrix, and I−G ∈
IR(n−1)×(n−1) rotates any X ∈ IR(n−1)×(n−1) by θ = 2π/k
degrees.
Note, (R(q))k = (I − QGQT )k = I.

If S is k-fold rotationally symmetric about q, we can
arrange the points of S into k sets represented as matrices
X0,X1, ...,Xk−1 such that

Xi = (I − QGQT )iX0

for i = 1, 2, ..., k− 1. Again, we will assume that the center
c of the data is at the origin. This can always be attained in
general by a simple uniform translation of all the points of
S.

III. OPTIMAL VALUE OF REFLECTIVE NORMAL w

Generally, in practice, the given set S is not exactly
symmetric with respect to any particular plane. However, we
may think of calculating a w that does the best possible job
of specifying a plane that separates S into two sets X0 and
X1 (again posed as matrices) that are “nearly” symmetric
with respect to the plane.

It is possible to find an initial separation of S into X0

and X1 that are paired to be nearly symmetric with respect
to a plane determined by a calculated w. Methods for this
are discussed in [5] However, for this discussion, we shall
assume that a partitioning of S into X0 and X1, is given such
that the columns of the two matrices are correctly paired with
respect to the desired reflective symmetry.

The specification of w may be expressed as an optimiza-
tion problem

min
‖w‖=1

{‖(X0 − WX1)D‖F : W = I− 2wwT }, (1)

where D is a diagonal weighting matrix. The weighting D

is introduced to provide a means to de-emphasize anomalies
and outliers in the supposed symmetry relation. If D is given,
then the minimization can be solved.

Lemma 3.1: The solution w of to the minimization prob-
lem (1) is the unit eigenvector corresponding to the smallest
eigenvalue of the symmetric indefinite matrix

M = X0D
2XT

1 + X1D
2XT

0 . (2)
We have devised an optimization method based upon

pattern search that enables the iterative construction of
such weights that do ultimately diminish the influence of
outliers in the final symmetric SVD approximation. The
basic idea is to weight the i-th column of X0 − WX1, i.e.
x

(0)
i − (I − 2wwT )x

(1)
i , by the norm of the reciprocal of

x
(0)
i − (I − 2zzT )x

(1)
i , where z is a unit vector. Therefore,

min
‖w‖=1

‖(X0 −WX1)D(z)‖2
F =

N∑
j=1

(
fj(w)

fj(z)

)2

= F (z,w)

(3)
where fj(z) = ‖x(0)

j − (I − 2zzT )x
(1)
j ‖ and D(z) =

diag
{
fj(z)

−1
}

. This allows points that are ’more’ symmet-
ric with respect to z to have higher weights than those that
are not. To find the optimal normal to this weighting, we

choose w as the point that minimizes ‖(X0−WX1)D(z)‖,
as described in Lemma 3.2. Therefore, the z which eliminates
the most anomalies is the solution to the following max-min
problem:

max
‖z‖=1

{
min

‖w‖=1
F (z,w)

}
. (4)

It turns out that whenever w = z solves min‖w‖=1 F (z,w)
then this provides a solution to the max-min problem and
provides the desired weighting D. Formally, this is expressed
in the following lemma.

Lemma 3.2: If w = z is a fixed point of (3), then w is a
solution to (4) and F (z,w) = F (z, z) = N .
The existence of a fixed point is in [8].

We can find the fixed point of (3) numerically by using
a modified pattern search method [9] on an equivalent
optimization problem:

min
‖z‖=1

φ(z) = ‖z− w‖ (5)

where, as before, w is the eigenvector associated to with the
smallest eigenvalue of (2) with D = diag(fj(z)

−1).

IV. OPTIMAL VALUE OF ROTATIONAL AXIS q

Recall for a perfectly rotationally symmetric set

Xi = (I − QGQT )iX0

where [q Q] is an orthogonal matrix. Therefore, we see that

qTXi = qT (I − QGQT )iX0 = qT X0

for all i = 1, 2, ..., k. However, in general we are not given
a perfectly symmetric data set S. Therefore, we need to
calculate a rotational axis q that best fits the data.

We shall assume a partitioning of S into X0,X1, ...,Xk

such that the columns of the matrices are correctly paired.
Therefore, we can now form an optimization problem

min
‖q‖=1

{‖qT [(k − 1)X0 −
k−1∑
i=1

Xi]‖} (6)

to find our rotational axis of symmetry q. It should be
noted that Minovic et. al [5], [6] suggest looking at the
principal axis of the inertia matrix associated with the distinct
eigenvalue for an initial guess to the rotational axis of
symmetry (perfect symmetry requires one distinct and two
equal eigenvalues in 3-D). However, this technique may fail
in the presence of noise, since a single distinct eigenvalue
may not exist.

Lemma 4.1: The solution q to the minimization problem
(6) is the unit eigenvector corresponding to the smallest
eigenvalue of MMT , where

M = (k − 1)X0 −
k−1∑
i=1

Xi. (7)

As in the reflective symmetry, we can introduce a weight-
ing scheme that minimizes the influence of outliers in the
supposed rotational symmetry relation.

min
‖q‖=1

{‖qT [(k − 1)X0 −
k−1∑
i=1

Xi]D‖} (8)
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where D is a diagonal weighting matrix.
Lemma 4.2: The solution to (8) is the unit eigenvector q

corresponding to the smallest eigenvalue of MD2MT , where
M is defined as in (7).

We created a search that diminishes the influence of
outliers in the final SVD approximation by weighting
the i-th column of M by gi(z)

−1, where gi(z) =

‖zT
[
(k − 1)x

(0)
i − ∑k

j=1 x
(j)
i

]
‖ and z is a unit vector.

Therefore,

min
‖q‖=1

{‖qT [(k − 1)X0 −
k−1∑
i=1

Xi]D(z)‖2}

=
N∑

i=1

(
gi(q)

gi(z)

)2

= G(z,q), (9)

which puts greater weight on points that are more symmetric
with respect to z than points that are not. Then, w is picked
to have the best normal with respect to the weighting as
described in Lemma 4.2. Hence, the optimal z is the solution
to the following max-min problem:

max
‖z‖=1

{
min
‖q‖=1

G(z,q)

}
. (10)

Again, a fixed point will provide a solution.
Lemma 4.3: If q = z is a fixed point of (9), then q is a

solution to (10) and G(z,q) = G(z, z) = N .
By using the modified compass search method on the

equivalent optimization problem:

min
‖z‖=1

φ(z) = ‖z− q‖ (11)

where q is the eigenvector associated with the smallest eigen-
value of (8) with D = diag(gj(z)

−1), we can numerically
find the fixed point to (9). The procedure for the modified
search is also used to solve this problem.

V. BEST SYMMETRIC APPROXIMATION TO A SET

To find the best reflective or rotational symmetric approx-
imation to a set we can take advantage of the following
theorem. For reflective symmetry R = W and W2 = I,
and in the case of rotational symmetry R = R(q) and
R(q)k = I.

Theorem 5.1: If

X = [X0;X1; ...;Xk−1]

where
Rk−iXi = X0 + Ei,

and Rk = I, then

min
X̂j+1=RX̂j

‖
⎛
⎝ X0

:
Xk−1

⎞
⎠ −

⎛
⎝ X̂0

:

X̂k−1

⎞
⎠ ‖2

=
1

k

k−1∑
i=0

‖Ei‖2,

and the SVD of this optimal solution is given by
⎛
⎝ X̂0

:

X̂k−1

⎞
⎠ = USVT ,

where

U =
1√
k

⎛
⎝ U0

:
Uk−1

⎞
⎠

S =
√

kS0

V = V0

and for i = 0, 1, 2, ..., k − 1,

Ui = RiU0,

with

U0S0V
T
0 =

1

k
(X0 + Rk−1X1 + Rk−2X2 + ... + RXk−1).

The proof of the theorem relies upon the following two
lemmas.

Lemma 5.2: Suppose that the set is perfectly symmetric
so that Ei = 0 for all i = 0, 1, 2, ..., k − 1 and let⎛

⎜⎜⎝
X0

X1

:
Xk−1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

U0

U1

:
Uk−1

⎞
⎟⎟⎠SVT

be the short form SVD of X. Then

Ui = RiU0

where i = 0, 1, ..., k − 1.
Lemma 5.3: Let Z0 = 1

k
(X0 + X̂1 + ... + X̂k−1). Then

Z = Z0 solves

min
Z

‖
⎛
⎝ X0

:

X̂k−1

⎞
⎠ −

⎛
⎝ Z

:
Z

⎞
⎠ ‖2

F

It is now possible to specify the best low rank approxima-
tion that preserves symmetry. If X is a noisy set, then

min
X̂0

‖

⎛
⎜⎜⎝

X0

Rk−1X1

:
RXk−1

⎞
⎟⎟⎠ −

⎛
⎜⎜⎝

X̂0

X̂0

:

X̂0

⎞
⎟⎟⎠ ‖2

F

=
1

k

k−1∑
i=0

‖Ei‖2
F ,

where Rk−iXi = X0 + Ei and X̂0 = 1
k

∑k−1
i=0 Rk−iXi.

Now, since ⎛
⎜⎜⎜⎝

I

R

. . .
Rk−1

⎞
⎟⎟⎟⎠
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is unitary, we have

min
X̂j=RjX̂0

‖
⎛
⎝ X0

:
Xk−1

⎞
⎠ −

⎛
⎝ X̂0

:

X̂k−1

⎞
⎠ ‖2

=
1

k

k−1∑
i=0

‖Ei‖2.

VI. ALGORITHMS AND COMPUTATIONAL RESULTS

The algorithmic structure for both the reflective and ro-
tationally symmetric SVD approximation is the same. It
consists of two major steps

1) Determine the normal w or the axis q for reflective or
rotational symmetry respectively.

2) Compute the standard SVD

U0S0V
T
0 =

1

k
(X0 + Rk−1X1 + Rk−2X2 + ... + RXk−1)

where R is a reflector determined by w or a rotation
about the axis determined by q.

We seek the dominant (largest) singular values and this
can be done in a straightforward manner using the ARPACK
software on a serial computer or P ARPACK on a parallel
system. Only the leading k terms (singular values) are
required. It is not necessary to compute all of the singular
values just to discard them. One may either specify k or
utilize a restarting scheme to adjust k until σk ≥ tol ∗ σ1 >
σk+1. The important computational point is the the only
requirement is to compute matrix-vector products of the form

u =
1

k
(X0 + Rk−1X1 + Rk−2X2 + ... + RXk−1)v

and this is essentially the same work one would require to
compute the corresponding standard SVD of X without the
symmetry constraint.

This method has been implemented using P ARPACK on
a Linux cluster with 6 dual-processor nodes consisting of
1600MHz AMD Athlon processors with 1GB RAM per node
and a 1GB/s Ethernet connection. The method was applied
to compute the leading 10 symmetric major modes for a
HIV-1 protease molecule. The molecule consists of 3120
atoms and hence the state has 9360 degrees of freedom. The
molecular dynamics trajectory consisted of 10000 time steps
(snapshots). This resulted in

1) The first 10 symmetric singular vectors took 131 secs.
This includes axis of rotation determination.

2) The first 10 standard singular vectors took 88 secs.

These computations were done for both reflective and
rotational symmetry with essentially the same computational
time. The computation of the reflective normal or the axis of
rotation was included in both symmetry preserving SVD’s.

As this axis determination is quite demanding, these compu-
tations indicate that obtaining the leading terms of the SVD
is comparable for both the symmetry preserving and standard
SVD cases. Moreover, both are well suited to the large scale
setting when P ARPACK is used.

It turns out that HIV-1 protease has a 2-fold rotational
symmetry and this aspect is preserved while providing
good approximations to the full trajectory. Visualizations are
available at the web site http://www.caam.rice.edu/ sorensen/
under “recent talks”.

VII. CONCLUSION

This paper has described a mathematical formulation of
a symmetry preserving SVD which has led to practical
(parallel) algorithms suitable for large scale computation.
Criteria and methods were given for the calculation of
reflective and rotational axis of symmetry of objects in IRn

that are able to overcome problems with noisy data and
outliers. The resulting technique is able to compute the best
low rank symmetry preserving approximation to a given set.
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