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Abstract— In this paper, we will show that a system on a
non-contractible manifold cannot be strongly asymptotically
stabilized in Filippov’s sense, even if discontinuous feedback
is used. The fact is well-known for C1 feedback case, and
we extend it to the discontinuous feedback case. To consider
the stabilization problem on a non-contractible manifold, the
assumption convexity or upper semicontinuity is restrictive.
We will propose a new type of differential inclusion without
upper semicontinuity by defining a function indicating a rate of
leaving from discontinuous set. By adopting the new differential
inclusion, stabilization problems on non-contractible manifolds
become possible for many cases.

I. INTRODUCTION

The smooth system on a non-contractible manifold is not
globally asymptotically stable. This fact means the control
system on a non-contractible manifold is not C1-stabilizable.
Many researchers have noticed this fact. For example, Sontag
wrote this theorem and its proof in his book[1]. Byrnes
and Isidori[2] also mentioned this fact briefly. The proof of
the theorem is performed by using a continuity of the one-
parameter group of transformation ϕt(x). We can guess that
Hopf might know this fact, because in the proof of Poincaré-
Hopf index theory a similar procedure as written above has
appeared.

On the other hand, it has been expected that this theorem
stands for discontinuous system cases also, because there
exist Filippov solutions[3] staying on the set of discontinuous
points. However, the one-parameter group of transformation
describing the flow does not exist for this case, so a similar
method of the smooth case is not applicable. In this paper,
we will prove the theorem for a discontinuous case by
constructing a Lyapunov function by the method of Clarke
et al.[4]. We will show that the sublevelsets of the Lyapunov
function are homeomorphic to a closed ball, which leads the
main theorem.

The main theorem show that the assumption convexity
or upper semicontinuity of the differential inclusion is re-
strictive for the stabilization problem on a non-contractible
manifold. We will show a new type of differential inclu-
sion without upper semicontinuity. By defining a function
indicating a rate of leaving from the set of discontinuous
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points, we can decide the existence of a solution outgoing the
discontinuous points. Under the new definition of differential
inclusion, there exists a solution of the initial value problem
for the positive direction of time.

II. DISCONTINUOUS SYSTEM AND
DIFFERENTIAL INCLUSIONS

In this paper, we consider a system

ẋ = f(x), x ∈ M, (1)

where M is an n-dimensional C∞-differential manifold that
is regular and second countable. From Urysohn’s metrization
theorem, the manifold M is metrizable, i.e. there exists
a distance function d(x1, x2) such that d(x1, x2) ≥ 0,
d(x1, x2) = d(x2, x1), d(x1, x2) = 0 ⇔ x1 = x2, and
d(x1, x2)+d(x2, x2) ≥ d(x1, x3). We do not assume that the
vector field f(x) is continuous. The existence and uniqueness
of the solution of (1) are not guaranteed without continuity
of f(x). Usually, a differential inclusion

ẋ ∈ F (x), x ∈ M (2)

is considered instead of the differential equation (1) in such
cases. A function x(t) ([t1, t2) → M ) is a solution of (2),
if (2) is satisfied for almost everywhere in [t1, t2). In this
paper, the followings are assumed for the multifunction F :

(H1) F (x) is a nonempty compact convex subset in �n

for every x ∈ M .
(H2) The multifunction F (x) is upper semicontinuous,

i.e., given x ∈ M , for ∀ε > 0, there exists δ > 0 such that

d(x, x′) < δ ⇒ F (x′) ⊆ F (x) + εB, (3)

where B denotes the open unit ball.
It is well known that under the assumptions (H1) and (H2)

a solution of (2) exists locally[5], that is, for every x0 ∈ M
there exists a solution of (2) such that x(0) = x0 in [0, T )
for some T > 0. Note that uniqueness of the solution does
not guaranteed even if (H1) and (H2) hold.

As a manner to generate the multifunction F (·) from the
vector field f(·), Filippov’s differential inclusion[3]

ẋ ∈ F (x) = ∩
δ>0

∩
meas(N )=0

cof(x + δB\N ) (4)

is often used. If the vector field f(·) is bounded on bounded
sets and is measurable, the assumption (H1) and (H2) are
satisfied, and a Filippov solution of (1) exists locally.

We assume that 0 ∈ F (0), where the origin x = 0 is a
point on M . This means that the origin is a stationary point
of (2). In this paper, stability of a system means a global
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stability of the origin. To precisely state the stability of the
system, norm of the state |x| must be defined as

|x| = d(x, 0). (5)

We define strong asymptotical stability of the differential
inclusion (2) as follows:

Definition 1 (Clarke et al.): The differential inclusion (2)
is strongly asymptotically stable iff no solution has finite-
escape time and the following hold:

(a) Uniform Attraction. For any r > 0, R > 0, there
exists T = T (r,R) such that for any solution x(·) of (2)
with |x(0)| ≤ R, one has

|x(t)| ≤ r, ∀t ≥ T. (6)

(b) Uniform Boundedness. There is a continuous
nonincreasing function m: (0,∞) → (0,∞) such that for
any solution x(·) of (2) with |x(0)| ≤ R one has

|x(t)| ≤ m(R), ∀t ≥ 0. (7)

(c) Lyapunov Stability.

lim
R↓0

m(R) = 0. (8)

�
This definition implies the classical Lyapunov stability

and the attractiveness x(t) → 0 (t → ∞). For the strong
asymptotical stable system, all solution of the system should
tend to the origin as t → ∞.

The purpose of this paper is to clarify the topological prop-
erties of M for a strongly asymptotically stable differential
inclusion.

III. MAIN THEOREM

For the smooth vector field f(·), the following theorem is
known:

Theorem 2: Suppose that f(·) is a smooth vector field.
Then, the domain of attraction of the origin is contractible.

�
A topological space X such that the identity map on X

is homotopic to a constant map is called contractible, i.e.
a contractible space can deform continuously to one point.
The precise proof of Theorem 2 is written in Sontag[1],
for example. Roughly saying, the one-parameter group of
transformation ϕt(x), describing the flow of (1), maps a point
of the domain of attraction to neighborhood of the origin
along the flow, which means the domain of attraction can be
deformed into a point. On the other hand, for a discontinuous
vector field, a one-parameter group of transformation may
not exist, because the solution of the differential inclusion is
not unique, and the multivalued semiflow x(t) = ϕt(x(0))
may not have some continuous properties.

Theorem 2 immediately derives the following theorem:
Theorem 3: Suppose that f(·) is a smooth vector field,

and that the origin of (1) is globally asymptotically stable.
Then, the manifold M is contractible. �

A contractible open manifold does not mean that the
manifold is homeomorphic to Euculidian space �n, though a

Euclidian space is always contractible. One of the counterex-
ample is ‘Whitehead link[6].’ The theorem can be restated
for control systems as the following corollary:

Corollary 4 (Sontag[1]): Consider the system

ẋ = f(x, u), x ∈ M (9)

with an input u, where f(·) is smooth. If the manifold M is
not contractible, the system is not C1 globally asymptotically
stabilizable. �

The above corollary can be extended to locally Lipschtz
case.

In this paper, we obtain the differential-inclusion version
of the theorem 3.

Theorem 5 (Main theorem): Suppose that the differential
inclusion (2) satisfies the assumptions (H1) and (H2), and
that (2) is strongly asymptotically stable. Then, the manifold
M is contractible. �

This theorem shows that it is impossible to stabilize the
system (9) in Filippov’s sense when M is not contractible,
even if discontinuous feedback is used.

Example 6: Consider the system:

θ̇ = u, (10)

where u is an input and θ is a state on a circle S1. To
stabilize the system locally, one can use a smooth feedback
u = − sin θ. Under this smooth feedback, its origin is
locally asymptotically stable, but the system is not globally
asymptotically stable because of the existence of an unstable
equilibrium at θ = ±π. To avoid this difficulty, a discontin-
uous feedback, for example

u = −θ, θ ∈ (−π, π], (11)

is useful. The feedback (11) is discontinuous at θ = ±π.
Such a discontinuous feedback works well practically. How-
ever, the closed system is not strongly asymptotically stable
in Filippov’s sense, because Filippov’s definition admits a
parasitic solution staying at θ = ±π. �

In the next section, we will prove the main theorem 5.

IV. PROOF OF MAIN THEOREM

In the discontinuous cases, the flow ϕt(x) does not exist in
general. Hence, to prove the main theorem (Theorem 5), the
topological structure must be generated by another method
without the flow. In this paper, we use a Lyapunov function
of the differential inclusion.

Definition 7: A pair of continuous functions (V, W ) on
M where V is C∞-function on M and W is C∞-function
on M\{0} is a C∞-smooth strong Lyapunov pair for the
differential inclusion (2), if the following conditions are
satisfied[4]:

(L1) Positive Definiteness. V (x) > 0 and W (x) > 0
for all x �= 0. In addition, V (0) = 0.

(L2) Properness. The sublevelsets

{x ∈ M : V (x) ≤ a} (12)

are bounded for every a ≥ 0.
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(L3) Strong Infinitesimal Decrease. For nonzero x,

max
v∈F (x)

〈dV (x), v〉 ≤ −W (x) (13)

is satisfied, where dV (x) = ∂V/∂x. �
When M is a Euclidian space, a converse Lyapunov

theorem has been given by Clarke at el.[4]:
Theorem 8 (Clarke at el.[4]): Suppose that M is a Eu-

clidian space, and let the multifunction F (·) satisfy hypothe-
ses (H1) and (H2). Then the differential inclusion (2) is
strongly asymptotically stable iff there exists a C∞-smooth
strong Lyapunov pair (V, W ). �

This Theorem shows that a smooth Lyapunov function
exists even if the system is discontinuous.

By tracing the proof by Clarke at el., one can find that
the above theorem holds without the assumption that M is
a Euclidian space.

Theorem 8’: Let the multifunction F (·) satisfy hypothe-
ses (H1) and (H2). Then the differential inclusion (2) is
strongly asymptotically stable iff there exists a C∞-smooth
strong Lyapunov pair (V, W ). �

We will show that the sublevelsets {x : V (x) ≤ a}
(a > 0) are homeomorphic to Bn, where Bn is the n-
dimensional closed unit ball. First of all, it will be proven
that a sublevelset {x : V (x) ≤ ε} is homeomorphic to
Bn, where the positive constant ε is small enough. If the
Lyapunov function is a Morse function, there exists a local
coordinate (x1, . . . , xn)T near the origin such that

V (x) = x2
1 + · · · + x2

n, (14)

where |x| is small enough. In this case, we obtain

{x : V (x) ≤ ε} = {x : x2
1 + · · · + x2

n ≤ ε} (15)

for a small ε, which means the sublevelset is homeomorphic
to Bn. However, in general, the Lyapunov function V (x)
may not be a Morse function, and its Hessian matrix may
degenerate at the origin.

Lemma 9: The sublevelset {x : V (x) ≤ ε} is homeo-
morphic to Bn for a small ε > 0, even if the Hessian matrix
of the Lyapunov function V (x) degenerates at the origin. �

Proof: Because M is a differential manifold, there
exists a local map z = Φ(x) that maps the neighborhood
U of the origin to Y , where Y is an open subset in �n.
Without loss of generality, we assume Φ(0) = 0. Let V̄ (z) be
V (Φ−1(z)). Obviously, V̄ (0) = 0, V̄ (z) > 0 (z ∈ Y, z �= 0).
As V̄ (z) is a positive definite function on a Euclidian space
locally, there exists a small ε (> 0) such that {z : V̄ (z) ≤ ε}
is homeomorphic to Bn and is included in Y . Therefore,
{x : V (x) ≤ ε} is homeomorphic to Bn also for the same
ε. See Milnor[7] also.

To show that all sublevelsets of the Lyapunov function are
homeomorphic to Bn, we use the following theorem:

Theorem 10: Let α(x) be a smooth function on a man-
ifold M , and suppose [a, b] ⊂ α(M). Moreover, assume
that there is no critical point of α(·) in α−1([a, b]). Then,
α−1((−∞, a]) is homeomorphic to α−1((−∞, b]). Further-
more, α(·) is a deformation retract from α−1(a) to α−1(b).
(See Fig. 1.) �

α
−1(b)

α
−1(a)

Fig. 1. Illustration of Theorem 10

Proof: See Milnor[8].
We must show that there is no critical point of V (x) except

the origin.
Lemma 11: Let (V, W ) be a C∞-smooth strong Lyapunov

pair for the strongly asymptotically stable differential inclu-
sion (2). Then there is no critical point of V (x) except the
origin. �

Proof: Assume that there is a critical point x0 of V (x)
such that x0 �= 0, i.e. dV (x0) = 0. Clearly

〈dV (x0), v〉 = 0 (16)

for any v. However, from the definition of the Lyapunov pair
(L3),

max
v∈F (x0)

〈dV (x0), v〉 ≤ −W (x0) < 0. (17)

It contradicts (16), so there is no critical point of V (x) except
the origin.

By using Lemma 9, Theorem 10, Lemma 11, and the
properness of V (x), we can show that all sublevelsets {x :
V (x) ≤ a} (a > 0) are compact and homeomorphic to
a closed ball Bn. Moreover, from Theorem 10, Lyapunov
function V (x) is a deformation retract from {x : V (x) = a}
for all a > 0 to the origin. This fact shows that the manifold
M is contractible. Hence, the main theorem 5 has been
proven.

We have made several assumptions for the manifold M , so
the following stronger result than the smooth case (Theorem
2) can also derived:

Theorem 12: If the differential inclusion (2) satisfies the
assumptions (H1) and (H2), and that (2) is strongly asymp-
totically stable, the manifold M is homeomorphic to Eu-
clidean space. �

Proof: Let Ua denote open set {x : V (x) < a}.
Since the sublevelsets {x : V (x) ≤ a} are compact and
homeomorphic to a closed ball, all sets Ua (a > 0) are
homeomorphic to a open ball Bn. Thus, we can obtain a
sequence of open sets that are homeomorphic to a open ball
Bn as follows:

U1 ⊂ U2 ⊂ U3 ⊂ · · · , (18)

where U1, U2,. . . are σ-covering of the metrizable manifold
M . By using the result of Brown[9], it can be shown that
M is homeomorphic to a Euclidean space.

5446



D

Fig. 2. Trajectories sliding on D (the case of R(x) ≤ 0).

V. DIFFERENTIAL INCLUSIONS WITHOUT
UPPER SEMICONTINUITY/CONVEXITY

The main theorem suggests that when the manifold M is
not contractible, the system (9) is not strongly asymptoti-
cally stabilizable in Filippov’s sense, even if discontinuous
feedback is used. However, in Example 6, the closed loop
system

θ̇ = −θ, θ ∈ (−π, π] (19)

has a unique solution in the classical sense to positive
direction of time, and the solution tends to the origin as
t → ∞. In this case, the solution staying at θ = ±π does
not exist practically.

Filippov’s multifunction F (x) has a convex set for each x,
which generates a practically nonexistent solution. When the
manifold M is not contractible, the assumption of convexity
or upper semicontinuity is too restrictive to consider the
stabilizing control. To avoid such a problem, the concept
of Euler solution[10] is often used, which is a definition of
the solution of a discontinuous differential equation without
differential inclusion. However, when a parasitic solution
exists, one can choose the value of f(x) such that the Euler
solution remains on the set of the discontinuous point, even
if a solution of the differential inclusion goes out of the set.
Actually, the choice of f(x) avoiding the parasitic solution
is not obtained explicitly. Moreover, in the continuous and
non-Lipschtz case, a Caratheodory’s solution may not be
an Euler solution. In addition to these, it is complicate
to check stability using Euler solution, while the stability
of the differential inclusion can be verified by Lyapunov
function. Therefore, in this paper we persist in using differ-
ential inclusion. For disallowing parasitic solutions, we must
remove vectors keeping the state on the set of discontinuous
points, from the multifunction. Such a modification of the
differential inclusion violates the assumption (H1) or (H2).
However, when all solutions in Filippov’s sense stay on
the set of discontinuous points (See Fig. 2), removing the
vector deprives the diffrential inclusion of the existence of
the solution. So, we must distinguish the cases of Fig. 2 from
the cases of Fig. 3.

In this section, we propose a method to construct a differ-
ential inclusion without upper semicontinuity or convexity.

The following example shows the difficulty:

D

D

Fig. 3. Trajectories outging from the set of discontinuous points.

-1 1 2

-1

1

2

3

(a)

-1 1 2

-3

-2

-1

1

(b)

Fig. 4. Zeno trajectories: (a) stable case and (b) unstable case.

Example 13: Consider the following two systems

ΣZ1 :

{
ẋ1 = −sgn(x1) − 4sgn(x2)
ẋ2 = 4sgn(x1) − sgn(x2),

(20)

ΣZ2 :

{
ẋ1 = sgn(x1) − 4sgn(x2)
ẋ2 = 4sgn(x1) + sgn(x2),

(21)

where ΣZ1 is stable, and ΣZ2 is unstable (See Fig. 4). In
ΣZ1, the state converges to the origin in finite time. For the
positive time direction, the Filippov solution of ΣZ1 starting
from the origin is unique and stays on the origin. Hence, the
differential inclusion for ΣZ1 must include zero at the origin
to assure the existence of the solution for the positive time
direction. On the other hand, in the system ΣZ2, for any z ∈
�2 there exists a solution reaching z from the origin in finite
time. One may want to remove the solution staying at the
origin, and may remove zero from the differential inclusion at
the origin. This modification of the differential inclusion does
not violate the existence of the solution for the positive time
direction. However, it is not easy to distinct these two cases
from the local information of vector fields. For example, in
the area {x : x1 > 0, x2 > 0}, ẋ1 < 0 and ẋ2 > 0 in
both cases. In this example, checking the local stability is
necessary for the determination of the differential inclusion,
which requires us to trace all trajectories. �

Let ẋ ∈ Ff (x) be the Filippov’s differential inclusion
derived from the differential equation (1). To eliminate kinks
of f(x), we use Ff (x) as the basis of the desired differential
inclusion rather than f(x). Let Φ(x0) denotes the set of
the Filippov solution starting from x0. We define a set of
discontinuous points of (1) as follows:

Definition 14: Let S be a set of points such that Ff (x)
contains only one value. The set D is defined as a comple-
mentary set of S. �

If D has a constant dimension near a point x ∈ D, x is
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called as a regular point of D.
To construct the differential inclusion eliminating para-

sitic solutions, tracing trajectories from x is necessary. Let
ΦR(x0) be the set of the solutions starting from x0 such that
leave from D, i.e.:

ΦR(x0) = {x(·) : x(·) ∈ Φ(x0),

x(t) ∈ S, for almost all t ∈ [0, ε], ∃ε > 0}. (22)

If ΦR(x0) is an empty set, each solution remains on D
locally. We propose a new non-convex differential inclusion
by using ΦR(x0). The multivalued function

Ft(x0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∩
ε>0

{
x(t) − x0

t
: t ∈ (0, ε], x(·) ∈ ΦR(x0)

}
(ΦR(x0) �= ∅)

Ff (x0) (ΦR(x0) = ∅)
(23)

derives a differential inclusion ẋ ∈ Ft(x) that may not satisfy
the assumption (H1). By definition, x(t) ∈ ΦR(x0) (x0 ∈ D)
is a solution of the new differential inclusion. Hence, the
existence of the solution is guaranteed for the differential
inclusion ẋ ∈ Ft(x).

The definition of the differential inclusion based on the
trajectories in Filippov’s sense, i.e. one must obtain all
Filippov’s solution locally to determine the new multivalued
function Ft(x). Therefore, we propose another differential
inclusion without solving Filippov’s differential inclusion.
The differential inclusion cannot remove parasite solutions
perfectly, e.g. the case of Example 13, but can be constructed
explicitly.

The rate leaving from D at x ∈ D with the vector Ff (x+
u) is defined as

γ(x, u) = 〈β(x, u), Ff (x + u)〉, x ∈ D, (24)

where

β(x, u) =⎧⎨
⎩

1
|u|

(
u + x − argmin

s∈D
|u + x − s|

)
, u �= 0

0, u = 0.

(25)

Note that β(x, u) = 0 if x + u ∈ D. Fig. 5 illustrates the
definition of β(·) and γ(·).

At first glance, it seems that the existence of the solution
leaving from D can be determined by checking the sign of

ζ(x) = lim
ε↓0

max
u∈εB

γ(x, u), x ∈ D, (26)

but it is incorrect. Fig. 6 shows the counter example. There
exists no solution leaving from x0, while ζ(x0) > 0. In this
case, the trajectory from a point on D near x0 enters D again
in a very short time. To avoid such a case, we must improve
this method.

Let U be an arbitrary neighborhood of x ∈ D. Because
M is a manifold, there exists a local coordinate for a small
U . Assume that there exists L > 0 such that∥∥∥∥∂Ff (x)

∂x

∥∥∥∥ < L, x ∈ U ∩ S, (27)

x

u

|u|β(x, u)

f(x + u)

D

|u| γ(x,u) / |x + u − s |

s

Fig. 5. Geometric understanding of β(·) and R(·).

x0

Fig. 6. Vector field such that ζ(x0) > 0 and no solution leaving from x0

exists.

where ‖ · ‖ denotes the spectral radius of a matrix. This
condition guarantees the direction of Ff does not change
quickly near x.

Let Λ(x + u) is a ray such that

Λ(x + u) = {x + u + kFf (x + u) : k ∈ �+}. (28)

We define a set

Q(x) = {u : Λ(x + u) ∩ D ∩ U = ∅}. (29)

For u /∈ Q(x), let r ∈ Λ(x + u) ∩ D ∩ U is a nearest point
to x + u.

As the value of the multivalued function at x ∈ D, we
will use a value of Ff (·) near x, if there exists a trajectory
that leaves D and remains in S for a finite period of
time. Otherwise, Ff (x) itself will be adopted. In order to
discriminate these two cases, the following is defined:

R =
{

x ∈ D :
(
ε′B ∩ Q(x) �= ∅, 0 < ∀ε′ < ∃εmax

)
or

[(
ε′B ∩ Q(x) = ∅, 0 < ∀ε′ < ∃εmax

)
and

(
lim
ε↓0

sup
u∈εB

|r − x| > 0
)]}

,

(30)
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i.e. if x ∈ R, there exists a trajectory leaving D and
remaining in S for a finite period of time. We have used
Λ(x+u) instead of the exact trajectory, which stands on the
expansion of the solution in S:

x(t) = x + u + Ff (x + u)t +
1
2!

∂Ff

∂x
(x(t′))Ff (x(t′))t2,

0 ≤ t′ ≤ t.
(31)

The second term of the expansion can be evaluated as∣∣∣∣ 1
2!

∂Ff

∂x
(x(t′))Ff (x(t′))

∣∣∣∣ t2

≤ L

2

(
max
x∈U

|Ff (x)|
)

t2 = O(t2),
(32)

where the coefficient of t2 is bounded owing to the as-
sumption (27). Therefore, using the Euler approximation
x(t) = x + u + Ff (x + u)t, we can check whether the
trajectory from x + u enters D for a small t or not.

Finally, we can get the following differential inclusion:

ẋ ∈ Fd(x) =

⎧⎨
⎩

Ff (x), x /∈ R

lim
ε↓0

Ff (x + u0(x, ε)), x ∈ R,
(33)

where

u0(x, ε) =

⎧⎪⎨
⎪⎩

argmax
u∈εB∩Q(x)

γ(x, u), εB ∩ Q(x) �= ∅

argmax
u∈εB

|r − x|, otherwise.
(34)

As the new definition of the multifunction Fd(·) does not
satisfy the assumption (H2), the existence of the solution of
the new differential inclusion does not guaranteed. Actually,
the backward (in time) solution may not exist for the new
definition. However, a solution for the initial value problem
always exists for the positive direction of time, because on
the trajectory sliding on D the multifunction has a same
set as the Filippov’s multifunction. The new differential
inclusion can remove parasitic solutions in many cases, but

it cannot purge all parasitic solutions perfectly, e.g. the case
of Example 13.

VI. CONCLUSIONS

In this paper, we have shown that a system on a non-
contractible manifold cannot be strongly asymptotically sta-
bilized in Filippov’s sense, even if discontinuous feedback
is used. To consider the stabilization problem on a non-
contractible manifold, the assumption (H1) or (H2) is restric-
tive, so we have proposed new types of differential inclusions
without upper semicontinuity or convexity.
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