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Abstract— In this contribution a fault accommodation strat-
egy is suggested for LTI systems. The faults and perturbations
are considered as additive signals that modify the output
measurement. The accommodation scheme is based on the
generalized internal model control architecture recently pro-
posed [17] for fault tolerant control. In order to improve
the performance after a fault, the compensation is considered
in two steps according with a fault detection and isolation
algorithm. After a fault scenario is detected a general fault
compensator is activated. Finally, once the fault is isolated a
specific compensator is introduced. In this setup, multiple faults
could be simultaneously treated since their effect is assumed to
be additive.

I. INTRODUCTION

In the early stages of control applications, the achievement
of good closed-loop performance was the main objective.
To achieve this goal, the implementation of these feedback
configurations involve sensors, actuators, electronic instru-
mentation, and digital signal processors. However during
a normal operation, these parts could fail in some degree,
and the resulting performance of the closed-loop will be
largely deteriorated or even unstability can be observed.
But in some processes besides performance, safety is also a
necessary and important objective. Therefore, it is desirable
to detect these malfunctions to take proper action in order
to avoid a dangerous situation. Nowadays, the advances
in the electronics has made possible to have digital signal
processors as microcontrollers, DSP’s and FPGA boards
that can perform in real time very complex algorithms.
Hence this extra processing capacity could be applied to
perform in parallel fault diagnosis algorithms to the nominal
control schemes. The problem of fault diagnosis is indeed
a challenging one, and its importance in applications has
attracted the attention of the research community in control
theory and signal processing [4], [6], [13].

In any process, the faults can be classified in two sets:
unrecoverable and recoverable. The unrecoverable faults
represent all the faults that cannot be compensated or re-
paired while the system is running. On the other hand, the
recoverable faults comprise any fault whose outcome can
still be compensated safely by the control algorithm with a
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possible deterioration of performance, but still allowing the
necessary conditions to maintain closed-loop stability. Ob-
viously, this classification depends on the problem at hand,
and requires knowledge about the operation of the system.
From a control point of view, the focus is on the recoverable
faults, where a degree of robustness or reconfigurability in
the control scheme is desirable to accommodate these faults
and still preserve closed-loop performance. These ideas have
triggered a research line called Fault Tolerant Control (FTC)
[1], [2], [3], [12], [14].

FTC can be approached from two perspectives: passive
and active. In the passive approach, the faults are treated as
disturbances into the closed-loop system. As a result, a single
controller is designed to achieve stability and performance
against all the faults analyzed. The main drawback of this
scheme is the conservativeness that can be incorporated,
however no extra complexity in the control implementation
is carried out. In LTI systems, the passive approach can
be treated as a simultaneous stabilization or robust H∞
design [14], and for nonlinear systems, a variable structure
control (sliding mode) methodology can be applied [8]. On
the other hand, the active approach of FTC requires a fault
diagnosis stage, followed by a controller reconfiguration
or accommodation [2]. Compared to the passive approach,
the active one requires more computational power during
implementations, since it relies on a fault diagnosis stage,
but it can provides less conservative results and overall better
closed-loop performance after faults. Applications of the
active idea have been suggested for LTI [3], [12], [15], [17],
and nonlinear systems [7], [16].

In this work, an active FTC scheme is proposed for LTI
systems under an additive faults scenario. Design strate-
gies are proposed for the diagnosis and accommodation
schemes based on general optimization criteria. The paper
is structured as follows. Section 2 describes the problem
formulation. The FTC scheme is presented in Section 3.
First, the general methodology is introduced, and the design
criteria for the diagnostic, isolation and accommodation are
detailed. Section 4 analyzes the effect of model uncertainty
in the FTC scheme. Finally, Section 5 gives some concluding
remarks.

II. PROBLEM FORMULATION

The problem addressed in this paper is fault accommoda-
tion for LTI systems under additive faults and perturbations.
In this way, consider a system P (s) affected by disturbances
d ∈ Rr and possible faults f ∈ Rl, see Figure 1, described
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Fig. 1. Problem Formulation for Control.

by

ẋ = Ax + Bu + F1f + E1d

y = Cx + Du + F2f + E2d (1)

where x ∈ Rn represents the vector of state, u ∈ Rm the
vector of input, and y ∈ Rp the vector of output. Thus, the
matrix F1 ∈ Rn×l stands for the distribution matrix of the
actuator faults and F2 ∈ Rp×l for the sensor faults. Denote
as F i

1 ∈ Rn and F i
2 ∈ Rp with i = 1, . . . , l the columns of

the fault signature matrices F1 and F2 respectively, i.e.

F1 =
[

F 1
1 · · · F l

1

]
(2)

F2 =
[

F 1
2 · · · F l

2

]
(3)

Thus, the matrices (F i
1, F

i
2) will be represent the signature of

the i-th component in the fault vector f . The nominal system
(A,B, C,D) is considered controllable and observable. On
the other hand, the system response y can be analyzed in a
transfer matrix form (frequency domain):

y(s) = Puyu(s) + Pfyf(s) + Pdyd(s) (4)

where

Puy = C(sI − A)−1B + D

Pdy = C(sI − A)−1E1 + E2 (6)

Pfy = C(sI − A)−1F1 + F2

A left coprime factorization for each transfer matrix can be
derived by finding a matrix L ∈ Rn×p such that Re{λi(A+
LC)} < 0 [18] as in (5). Consequently, the plants in (6) can
be written as

Puy = M̃−1Ñ , Pdy = M̃−1Ñd, Pfy = M̃−1Ñf (7)

where M̃, Ñ , Ñd, Ñf ∈ RH∞. An initial question about the
fault diagnosis and isolation process relies on the necessary
conditions to achieve this objective, hence the relations
presented in [13] are assumed:

1) For isolation of the fault vector f

rank(
[

F1

F2

]
) = l (8)

2) For the simultaneous isolation of the faults while
having perturbations

normrank(
[
Ñd Ñf

]
) ≥ normrank(Ñd) + l (9)

where normrank stands for the normal rank of the
corresponding transfer matrix [18].

Now, it is assumed that a nominal controller K stabilizes
the nominal plant Puy , and it provides a desired closed-loop
performance. The controller K is considered observable, and
consequently, it can also be expressed by a left coprime
factorization, i.e. K = Ṽ −1Ũ where Ũ , Ṽ ∈ RH∞. The
nominal controller can be synthesized following classical
techniques or optimal control: Lead/lag compensator, PID,
LQG/H2, H∞ loop shaping design, etc. Consequently, the
control objective is presented as: Design an integrated fault-
tolerant scheme such that it detects the occurrence of a
fault in the closed-loop system, and provides an appropriate
compensation signal q to the controller in order to maintain
closed-loop performance, see Figure 1.

III. FAULT TOLERANT CONTROL SCHEME

The algorithm for Fault-Tolerant Control (FTC) presented
in this paper is the so-called active [2],[3]. Therefore, the
FTC scheme relies on a fault diagnosis and isolation (FDI)
algorithm, followed by a fault accommodation into the
nominal controller. For LTI systems, several FTC control
structures have been suggested [10], [11], [17] departing
from the Youla parameterization of all stabilizing controllers
[18]. In this configuration, a free parameter Q ∈ RH∞
is selected to achieve the fault compensation, with the
assurance that closed-loop stability is achieved after the fault
accommodation.

The accommodation scheme is derived from robust control
theory [18], where a new implementation of the Youla
parameterization called Generalized Internal Model Control
(GIMC) is used [3],[17]. In this configuration, the nominal
controller K is represented by its left coprime factorization,
i.e. K = Ṽ −1Ũ . In addition, the GIMC configuration allows
to perform the FDI process and accommodation in the same
structure, where these two processes are carried out by
selecting two design parameters Q,H ∈ RH∞ (see Figure
2). Consequently, the residual r is generated by selecting
H , and the accommodation signal q by the compensator Q,
using the filtered signal fe with the following criteria:

1) H(s): the fault detection filter must diminish the effect
of the disturbances or uncertainty into the residual
signal, and maximize the effect of the faults.

2) Q(s): the robustification controller must provide ro-
bustness into the closed-loop system in order to main-
tain acceptable performance against faults.

A. Fault Detection and Isolation

Note that from Figure 2, it can be observed that fe ∈ Rp

contains the information of the perturbations d and faults f :

fe(s) = −Ñd d(s) − Ñff(s) (10)

Hence a residual r is naturally constructed by using the
information of the coprime factorization of the nominal plant
[4]:

r(s) = −Hfe(s) = H
[
Ñd d(s) + Ñff(s)

]
(11)
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[ Ñ M̃ Ñd Ñf ] =
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Fig. 2. GIMC with Additive Perturbations and Faults.

The filter H is then designed to isolate the fault vector f
and decouple the perturbations d, i.e.

• HÑd(s) ≈ 0,
• HÑf (s) ≈ T

where T ∈ RH∞ is a diagonal transfer matrix. This transfer
matriz T is a design parameter, and it should be chosen
according with the frequency dynamics of Ñf , in order to
achieve the decoupling objective. The design criterion can
be then proposed by combining both objectives measured by
a systems norm j = 1, 2,∞:

min
H∈RH∞

∥∥∥[T 0] − H[Ñf Ñd]
∥∥∥

j
= min

H∈RH∞
‖Fl(GH ,H)‖j

(12)
where the optimization can be posted using a lower linear
fractional transformation (LFT) Fl(·, ·) [18], and GH repre-
sents the generalized plant (see Figure 3) given by

GH =
[

0 T −I

Ñd Ñf 0

]
(13)

G

H

d
f e

w z

H

f

Fig. 3. LFT Formulation for Compensator H.

Remark 1: The assumptions (8) and (9) about the rank
properties of the perturbations and faults transfer matrices

guarantee that the optimal performance obtained by (12) will
provide a good fault isolation property of the residual.

In order to detect a fault, the following residual evaluation
criteria can be followed:

‖r‖ = ‖r‖2,t,To
=

√∫ t

t−To

r∗(τ)r(τ)dτ (14)

‖r‖ = ‖r‖∞,t,To
= sup

t−To≤τ≤t
‖r‖2 (15)

where To is the window length or horizon of evaluation.
Hence to avoid a false alarm in the evaluation due to
perturbations, a threshold value is selected such that

Jth = sup
f=0,∀d

‖r‖ (16)

In the case of the windowed two norm, an assuming that the
perturbations satisfy ‖d‖2,t,To

< γ, then a threshold can be
calculated as

Jth = γ‖HÑd‖∞ (17)

B. Fault Accommodation

In order to derive the fault accommodation scheme, the
effect of the compensation signal q in the GIMC structure of
Figure 2 is analyzed. Define the nominal closed-loop transfer
matrices:

• Input sensitivity Si = (I + KPuy)−1,
• Output sensitivity So = (I + PuyK)−1,
• Complementary output sensitivity To = I − So = (I +

PuyK)−1PuyK.

The next lemma characterize the dynamic behavior of the
compensated control input u, and output y of the closed-
loop system.

Lemma 1: In the GIMC configuration of Figure 2 consid-
ering additive faults, the resulting closed-loop characteristics
for the control signal u and output y are given by

u(s) = SiK ref(s) − (18)

SiṼ
−1

(
ŨM̃−1 + Q

)(
Ñd d(s) + Ñf f(s)

)
y(s) = To ref(s) + (19)

SoM̃
−1

(
I − Ñ Ṽ −1Q

)(
Ñd d(s) + Ñf f(s)

)
The resulting closed-loop system is stable provided that
Q ∈ RH∞ and since the nominal controller K internally
stabilizes the nominal plant Puy .

�
From equations (18) and (19), two well-known results can
be concluded by considering the complete decoupling of the
perturbations d, and faults f from the control input u and
output y of the system.

Lemma 2: If the nominal plant Puy ∈ RH∞ then M̃−1 ∈
RH∞, and complete disturbance and fault decoupling can be
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achieved at the control signal u by letting Q = −ŨM̃−1 ∈
RH∞ and consequently

u(s) = SiK ref(s) (20)

y(s) = To ref(s) + M̃−1
(
Ñd d(s) + Ñf f(s)

)
(21)

�
Therefore, if the nominal plant Puy is stable by properly
choosing the compensator Q, the control signal is not af-
fected by faults and perturbations. Moreover, if Puy has
also a stable inverse, a complete output decoupling can be
achieved.

Lemma 3: If the nominal plant satisfies Puy, P−1
uy ∈

RH∞ then Ñ−1 ∈ RH∞, and with Q = Ṽ Ñ−1 ∈ RH∞ the
resulting output is decoupled perfectly from the perturbations
and faults, i.e.

u(s) = SiK ref(s) − Ñ−1
(
Ñd d(s) + Ñf f(s)

)
(22)

y(s) = To ref(s) (23)

�
In just particular cases is possible to achieve the perfect
decoupling condition, and in general the nominal plant is not
stable. Therefore, it is proposed to design the compensator
Q looking to reduce the effect of the perturbations and faults
at the output, i.e.

min
Q∈RH∞

∥∥∥SoM̃
−1

(
I − Ñ Ṽ −1Q

) [
Ñd Ñf

]∥∥∥
j

= (24)

min
Q∈RH∞

‖Fl(GQ, Q)‖j

where GQ represents the generalized plant (see Figure 4)
given by

GQ =
[

SoM̃
−1Ñd SoM̃

−1Ñf SoM̃
−1Ñ Ṽ −1

Ñd Ñf 0

]
(25)

and j can represent the L1, H2 or H∞ norms [18].

G

Q

d
f y

w z

Q

Fig. 4. LFT Formulation for Compensator Q.

Remark 2: The optimization criterion for Q in (24) can be
interpreted as a normalization process of Ñ Ṽ −1 by Q, with
a frequency post-weighting given by the output sensitivity of
the nominal plant and controller, and a pre-weighting by the
frequency content of the perturbations and faults.

Remark 3: Note that the compensator Q designed by the
criterion in (24) can be conservative, since it is required to
attenuate the effect of all types of faults analyzed in (1).

To improve the performance after faults, it is then proposed
to design specific compensators Qi ∈ RH∞ for i = 1, . . . , l
for every fault studied

min
Qi∈RH∞

∥∥∥SoM̃
−1

(
I − Ñ Ṽ −1Q

) [
Ñd Ñ i

f

]∥∥∥
j

(26)

where

Ñ i
f =

[
A + LC F i

1 + LF i
2

C F i
2

]
(27)

In this way, the fault accommodation scheme of Figure 5
is proposed, and the overall FTC algorithm consists on three
scenarios described next :

1) In the fault-free case, just the nominal control loop is
active.

2) After a fault is detected into the system, the general
compensator Q designed by (24) is now activated.

3) Finally, after the fault is isolated, the specific compen-
sator Qi designed by (26) is selected.

Remark 4: Since the fault accommodation is based on the
Youla parameterization, and since the faults are additive, the
closed-loop stability after each reconfiguration is guaranteed
provided that Q,Qi ∈ RH∞.

Remark 5: In the proposed configuration, multiple and
intermittent faults could be handled. Once they are identified
by the FDI scheme, the corresponding compensator should
be activated to perform its accommodation. However, if
FDI algorithm detects that fault is no longer present, the
compensation is removed.

IV. FAULT TOLERANT APPROACH UNDER ADDITIVE

MODEL UNCERTAINTY

During the implementation of any control strategy, there is
always some model uncertainty in the mathematical descrip-
tion used for design. If the description of this uncertainty
could be obtained during the problem formulation, this
information could be used at the design stage to improve the
closed-loop performance, and understand also the practical
limitations faced. In this paper, additive model uncertainty
is considered [5], [18], as shown in Figure 6, i.e. the actual
nominal plant P̂uy is given by

P̂uy = Puy + Δuy Δuy � W2ΔW1 (28)

where W1,W2 ∈ RH∞ represent pre and post-uncertainty
weighting functions, and Δ ∈ RH∞ a normalized uncertain
transfer matrix ‖Δ‖∞ < 1. The consideration of model
uncertainty will produce that the signal fe in the GIMC
configuration is no longer decoupled from the control signal
u (see Figure 2). The results are summarized in the following
lemma.

Lemma 4: Considering additive model uncertainty in the
GIMC configuration of Figure 2, the resulting closed-loop
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Fig. 5. GIMC Accommodation Setup.

characteristics are given by

fe(s) = M̃Δuyu(s) − Ñd d(s) − Ñf f(s) (29)

u(s) = W−1
u [K ref(s)−

Ṽ −1
(
ŨM̃−1 + Q

) (
Ñd d(s) + Ñf f(s)

)]
(30)

y(s) = (Puy + Δuy) W−1
u K ref(s) +[

(Puy + Δuy)W−1
u Ṽ −1

(
ŨM̃−1 + Q

)
− M̃−1

]
(
Ñd d(s) + Ñf f(s)

)
(31)

where

Wu = I + K (Puy + Δuy) + Ṽ −1QM̃Δuy (32)

= I + KPuy + Ṽ −1
(
Ũ + QM̃

)
Δuy (33)

�

d

V
~ -1

N
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M
~

U
~

Q

-H
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e
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~-1

W Δ W1 2

Fig. 6. GIMC with Additive Perturbations, Faults, and Model Uncertainty.

A. Robust Fault Isolation

Note that by including the additive uncertainty descrip-
tion, an extra requirement is evident, the detection filter H
should cancel the effect of the uncertainty at the output
of the residual r for a robust detection and isolation, i.e.
HM̃Δuy ≈ 0. Since the description of the uncertainty is
posed in terms of the ∞-norm, the optimization problem for
H is also proposed in terms of this norm. As a result, the
following robust performance criterion is adopted

min
H∈RH∞

∥∥Fl

(
Fu(GΔ

H , Δ),H
)∥∥

∞ ‖Δ‖∞ < 1 (34)

where Fu(·, ·) stands for an upper LFT [18], and the respec-
tive generalized plant GΔ

H is given by

GΔ
H =

⎡
⎣ 0 W1 0 0 0

0 0 0 T −I

M̃W2 0 Ñd Ñf 0

⎤
⎦ (35)

The optimization problem in (34) can then be solved by
using μ-synthesis design or LMI’s [5], [18]. On the other
hand, at the residual evaluation, it is observed that the
uncertainty Δuy is affected by the control signal u at (29),
then an adaptive threshold can be used in order to reduce the
conservativeness in the fault detection process introduced by
the uncertain term:

Jth(t) = ‖HM̃W1W2‖∞‖u‖2,t,To + γ‖HÑd‖∞ (36)

where γ is the bound on the energy of the perturbations.

B. Robust Fault Accommodation

In general no guarantee of the closed-loop stability is
granted, although Q ∈ RH∞ as in the uncertainty free case.
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GΔ
Q =

−W1SiKW2 −W1SiKM̃−1Ñd −W1SiKM̃−1Ñf W1SiṼ
−1

SoW2 SoM̃−1Ñd SoM̃−1Ñf SoM̃−1ÑṼ −1

−W2 −Ñd −Ñf 0

(37)

From the results in Lemma 4, it can be seen that for a special
case (stable nominal plant), the uncertainty can be decoupled
from the control signal as in Lemma 2, and closed-loop
stability can be deduced if the nominal controller internally
stabilizes the nominal plant.

Lemma 5: If the nominal plant Puy ∈ RH∞ then com-
plete disturbance, fault and uncertainty decoupling can be
achieved at the control signal u by letting Q = −ŨM̃−1

and consequently:

u(s) = SiK ref(s) (38)

y(s) = (Puy + Δuy)SiK ref(s) +

M̃−1
(
Ñd d(s) + Ñf f(s)

)
(39)

Moreover, the closed-loop is stable.
�

For a general design case, a robust criteria (performance and
stability) should be targeted, i.e.

min
Q∈RH∞

∥∥Fl

(
Fu(GΔ

Q, Δ), Q
)∥∥

∞ ‖Δ‖∞ < 1 (40)

where the generalized plant GΔ
Q including uncertainty infor-

mation is given by (37).
The robust stability condition is very important, since it is

needed that the fault accommodation scheme will preserve
closed-loop stability after the compensation despite model
uncertainty. However, the size of the uncertainty and its
frequency content will dictate the degree of conservativeness
introduced.

Once more in order to improve the closed-loop perfor-
mance after the fault has been isolated, a specific compen-
sator Qi ∈ RH∞ can be designed using the same criteria
as in (40), just replacing from the generalized plant GΔ

Q in
(37), Ñf by the information of the analyzed fault Ñ i

f for
i = 1, . . . , l.

V. CONCLUSIONS

In this paper, a control methodology for fault accommo-
dation in LTI systems has been detailed. The FTC scheme is
based on the GIMC configuration [17] which extends the use
of the Youla parameterization to FTC. Design strategies were
presented for the FDI process and accommodation. Multiple
and intermittent faults can be treated in FTC scheme. Closed-
loop stability is always guaranteed after each configuration.
Moreover, the analysis of the design scheme under model
uncertainty was carried out. A fixed threshold is suggested
for the nominal case in the detection process, and an adaptive
one is considered when model uncertainty affects the output
measurement.
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