
Analysis of Arbitrarily Large Networks of Discrete-Event Systems

J.G. Thistle and S. Nazari

Abstract— Many engineering systems can be usefully mod-
elled as networks of interacting, isomorphic, finite-state
discrete-event systems. Examples include communication and
transportation networks. For practical purposes, the number
of subsystems is often arbitrary. In such cases, key problems of
analysis are generally undecidable; however, inductive semide-
cision procedures can be formulated for checking whether
networks of arbitrary size are equivalent to networks of
bounded size. The appropriate notion of equivalence may vary,
depending on the properties being analyzed. We examine a
range of possible equivalences, identify system properties that
they preserve, and show that semidecision procedures exist
for checking these equivalences. On the other hand, we show
that equivalence of networks to networks of bounded size is
undecidable for a broad range of process equivalences, even
for the simple network topologies of rings and line segments.

I. INTRODUCTION

Many practical systems can be reasonably modelled as col-

lections of interacting, isomorphic, finite-state systems. Ex-

amples include communication networks, such as telephone

or “sensor networks,” and transportation networks, made up

of automated subway trains or other guided vehicles. The

number of subsystems may, for all practical purposes, be

arbitrarily large. In this paper, we examine analysis problems

posed by such systems.

These constitute a class of parameterized systems. A

parameterized system is actually a family of finite-state

systems indexed by the respective values of one or more

system parameters: in the present instance, the parameter in

question is the number of interacting subsystems; in a model

of a manufacturing system, parameters might include buffer

capacities. For many realistic examples, it seems reasonable

to expect that the logic used to design or analyze systems

should be, in its essence, independent of specific parameter

values. This paper represents a step in the direction of

identifying and studying such examples.

Specific motivation is provided by a study of the devel-

opment of call-processing services for telephone networks

[1]. Typically developed in modular fashion, perhaps even

by different vendors, such services or their component

features sometimes interact in unforeseen and undesirable

ways. A framework for formulating and addressing this

problem within a DES control context was presented in [1],

where the telephone network was viewed as the “plant,”

and individual services as distributed controllers. Feature

interactions were formally characterized as the blocking of

Research partially supported by grant number RGPIN-155594-01 of the
Natural Sciences and Engineering Research Council of Canada.

The authors are with the Department of Electrical and Computer En-
gineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
{jthistle|snazari}@kingcong.uwaterloo.ca

one system component from its marked subset by the rest

of the system. To allow practical modelling and analysis,

the network was assumed to be made up of only a few

subscribers; indeed, in industrial practice, new services are

also tested and evaluated on testbench networks of small size.

The implicit assumption is that problems that may occur in

real networks are reproducible, and therefore detectable, in

small networks. This paper attempts to formulate ways of

testing such assumptions formally.

A more general problem, that of model-checking any

parameterized computer program, was shown to be unde-

cidable in [2]. Other studies have considered the model-

checking of parameterized networks of similar subsystems

– like the systems examined here. But our work is inspired

by modular control synthesis, which entails the testing of

specific properties of blocking or deadlock.

Our approach was initially outlined in [3], where it was

shown that the problem of checking for blocking of one com-

ponent subsystem by the rest of the network was undecid-

able, even when all subsystems are isomorphic. However, if

every network is, from the perspective of a given subsystem,

weakly bisimilar to a network of bounded size, then blocking

can be checked for arbitrary networks. Such bisimilarity is

semidecidable.

In this paper we propose the use of other kinds of process

equivalences, such as weak possible-futures equivalence for

the analysis of blocking, and weak failures equivalence

for the testing of deadlock. These equivalences also admit

semidecision procedures. We then prove undecidability re-

sults that apply to all equivalences that refine weak trace

equivalence and are coarser than weak bisimulation – in

other words, that apply to the weak versions of all of the

equivalences in the so-called “linear time – branching time

spectrum” [4]. We conclude with a discussion of related work

and future research.

II. PRELIMINARIES

A. Networks of isomorphic subsystems

We shall assume that all component subsystems are iso-

morphic to a “template” generator

G = (Σ, Q, δ, q0, Qm) ,

where, as usual, Σ is a finite alphabet, Q is a finite state set,

δ : Σ × Q −→ 2Q is a transition function (2Q denoting the

power set of Q), q0 ∈ Q is an initial state, and Qm ⊆ Q is a

subset of marked states. (The transition function extends to

strings in the standard fashion.)

For the sake of formal simplicity, we restrict attention to

networks with the topology of a ring; this is sufficient for

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

TuC01.1

0-7803-9568-9/05/$20.00 ©2005 IEEE 3468

βn+1αn+1

q1 q2

q0

αn

βn

Fig. 1. Example template generator.

the establishment of negative, undecidability results, while

the positive results developed within this framework can be

extended to more general topologies.

It is therefore convenient to define a notation for sequences

of “instances” of the template G, where each instance shares

event symbols only with its immediate neighbors in the

sequence. We suppose that each symbol in Σ carries a

subscript which is an expression – either n or n + 1 – in

an indeterminate n. (See figure 1.) Given any σ ∈ Σ and

i ∈ N, σ|n=i is the symbol σ with its subscript evaluated to

a numerical value by setting n = i; For any i ∈ N, define

the alphabet Σi := {σ|n=i : σ ∈ Σ}. Individual subsystems

are modelled as generators Gi over the respective alphabets

Σi:

Gi = (Σi, Q, δi, q0, Qm) ,

where δi : Σi × Q −→ 2Q is defined so that δi(σ|n=i, q) =
δ(σ, q), for all σ ∈ Σ and q ∈ Q.

We can now create a linear network by simply taking the

standard synchronous product of an initial subsequence:

PN := ΠN−1
i=0 Gi .

To “close the loop” and create a ring network, we define

Gi(mod N), for i,N ∈ N, exactly like Gi, but with sub-

scripts of event symbols evaluated using mod N arithmetic

(so that n+1 evaluates to 0 when n = N −1). Then we can

create a ring of N template instances by taking the following

synchronous product:

RN := ΠN−1
i=0 (Gi(mod N))

= ΠN−2
i=0 Gi × GN−1(mod N)

Denote the alphabet of Gi(mod N) by Σi(mod N).

B. Process-algebra notation

It will be useful to have a means of hiding events, in the

style of process algebra. Let H = (∆, X, ξ, x0, Xm) be a

generator and let ∆′ ⊆ ∆. Then

H ↓ ∆′ := (∆′ ∪ {τ}, X, ξ′, x0, Xm) ,

where

ξ′ : (σ, x) �→ ξ(σ, x) ∀σ ∈ ∆′, x ∈ X
ξ′ : (τ, x) �→ ⋃

σ∈∆\∆′ ξ(σ, x) ∀x ∈ X

Thus, the hiding of all event symbols not belonging to the

subalphabet ∆′ relabels the corresponding transitions with

the special symbol τ .

This special symbol will play the same role as in process

algebra: in synchronous products of generators, it is not

treated as a shared event, even if it belongs to the alphabets

of both component generators. Given the above generator H ,

a string s ∈ ∆∗ and states x, x′ ∈ X , we write

x
s→ x′

to mean that x′ ∈ ξ(s, x); namely, there is a path from x to

x′ labelled by s. If ε is the empty string over ∆, σ ∈ ∆\{τ},

and, again, s ∈ (∆ \ {τ})∗, we write

x
ε⇒ x′ if x′ ∈ ξ(τ∗, x) ;

x
σ⇒ x′ if (∃x1, x2 ∈ X)[x ε⇒ x1, x1

σ→ x2 & x2
ε⇒ x′] ;

x
sσ⇒ x′ if (∃x1 ∈ X)[x s⇒ x1 & x1

σ⇒ x′]

That is, x
s⇒ x′ if there exists a path from x to x′ labelled

by some interleaving of the symbols of s with τ symbols.

We write x
s→ (resp. x

s⇒ if there exists x′ ∈ X such that

x
s→ x′ (resp. x

s⇒ x′).

C. Blocking in networks

Inspired by the example of the telephone networks

of [1], we say that, given two generators H1 =
(∆1, X1, ξ1, x01, Xm1),H2 = (∆2, X2, ξ2, x02, Xm2), the

synchronous product H1×H2 blocks the component genera-

tor H1 (resp. H2) if there exist a string s ∈ (∆1∪∆2)∗, and

some state (x11, x12) such that in the product (x01, x02)
s→

(x11, x12), and for all s′ ∈ (∆1 ∪∆2)∗ and states (x21, x22)
such that (x11, x12)

s′
→ (x21, x22), the H1 (resp. H2) state

component x21 (resp. x22) is unmarked. In other words, the

product blocks H1 if H1 may become unable to reach its

marked state subset.

An approach to the analysis of blocking in ring networks

was outlined in [3]. The next section presents an improved

procedure.

III. ANALYSIS VIA PROCESS CONGRUENCES

The blocking of one component subsystem in a ring

network can be studied by examining the behaviour of the

rest of the network from the perspective of that subsystem.

We shall therefore analyze blocking in RN by considering

the linear segment made up of all subsystems other than G0,

with events outside of Σ0 hidden:

SN := (ΠN−2
i=1 Gi × GN−1(modN)) ↓ Σ0

Proposition 1 ([3]): The ring network RN blocks G0 if

and only if G0 × SN = RN ↓ Σ0 blocks G0.

Proof: (The hiding of events outside of Σ0 is irrelevant

to the blocking of G0.)

Thus, checking blocking of G0 by RN is equivalent to

checking blocking of G0 by G0 × SN = RN ↓ Σ0. The

3469

latter could be done for arbitrary network size N if it could

be established that every network segment SN is equivalent,

as far as blocking of G0 is concerned, to some SM , where the

value of M is uniformly bounded. This raises the question

of the definition of an adequate notion of equivalence. Such

a property is furnished by possible futures equivalence.

Definition 1: Let H = (∆, X, ξ, x0, Xm) be a generator.

The set of weak possible futures of H is given by

PF (H) := {(s, L) ∈ ∆∗ × 2∆∗
:

(∃x1 ∈ X)[x0
s⇒ x1 & {s′ : x1

s′
⇒} = L]}

Two generators H1 and H2 are weakly possible-futures
equivalent if PF (H1) = PF (H2).

Like other process equivalences, weak possible-futures

equivalence has a stronger version obtained by replacing

the double arrows in the definition with single arrows. A

possible future of a generator thus consists of a string that

labels a path from the initial state to some successor state,

and of a language that labels all paths from the successor

state. Generators are possible-futures equivalent if they share

the same possible futures. As do other process equivalences,

possible-futures equivalence reduces to trace equivalence

(see below) for deterministic generators.

Proposition 2: Weak possible-futures equivalence is a

congruence for synchronous product and for event hiding:

let H11,H12, H21 and H22 be generators; then if

PF (H11) = PF (H21) and PF (H12) = PF (H22), we have

PF (H11 × H12) = PF (H21 × H22) ;

and for any subalphabet ∆, we have

PF (H11 ↓ ∆) = PF (H21 ↓ ∆)

Moreover, it is also a congruence for event renaming.

Proposition 3: Let H1,H2 and H3 be generators. If

PF (H1) = PF (H2), then H1 × H3 blocks H3 if and only

if H2 × H3 blocks H3.

Proposition 2 implies the existence of a semidecision

procedure for the existence of a bound such that every linear

segments SN is weakly possible-futures equivalent to some

linear segments with bounded SM where M is bounded by a

constant. By Proposition 3, the existence of a bound allows

one to check for blocking in networks of arbitrary size.

The semidecision procedure is as follows. Construct linear

segments SN , and after appropriate renaming of events,

check each against the previous ones for weak possible-

futures equivalence. If SL is equivalent to SK , for K < L,

then, by Proposition 2, SK+1 is equivalent to SL+1, and so

forth. Hence, every segment SN is weakly possible-futures

equivalent to some SM , where M < L; in particular, if

L = K + 1, SN is equivalent to SK for all N ≥ K. For

instance, this happens for K = 3 in the case of the “toy”

example of Figure 1.

Suppose that this semidecision procedure establishes such

a bound. Then by Propositions 1 and 3, blocking in networks

of arbitrary size can be checked, by considering only ring

networks of bounded size.

As a means of checking blocking, this improves on the

procedure of [3], which was based on weak bisimilarity.

Definition 2: Two generators H1 and H2 with initial states

x01 and x02, respectively, are weakly bisimilar if there exists

a binary relation B ⊆ X1×X2 such that for all σ ∈ (∆\τ)∗,

1) (x01, x02) ∈ B,

2) (x11, x12) ∈ B and x11
σ⇒ x21 together imply

(∃x22 ∈ X2)[x12
σ⇒ x22] & B(x21, x22)], and

3) (x11, x12) ∈ B and x12
σ⇒ x22 together imply

(∃x21 ∈ X1)[x11
σ⇒ x21] & B(x21, x22)] .

Intuitively, so long as two generators are in weakly bisimi-

lar states, each can duplicate any external actions of the other

in such a way as to preserve the weak bisimilarity of their

states. Weak bisimilarity shares the congruence properties

of possible-futures equivalence, and is a finer equivalence

relation. It therefore leads to a semidecision procedure which,

if it terminates, allows checking for blocking. But because

it is a finer equivalence relation, the semidecision procedure

need not terminate whenever that based on weak possible

futures does; and when it does terminate, it need not do so

as quickly.

Indeed, weak bisimilarity is a relatively strong equivalence

relation. It preserves the satisfaction of all formulas of

observable modal logic [5], and in an extensive catalogue

of strong process equivalences [4], bisimilarity is the most

refined. There also exists a least refined equivalence in this

so-called “linear time – branching time spectrum” – namely,

weak trace equivalence.

Definition 3: Two generators H1 and H2, with initial

states x01 and x02, respectively, are weakly trace equivalent
if, for all s ∈ (∆1 ∪ ∆2 \ τ)∗, x01

s⇒ in H1 if and only if

x02
s⇒ in H2.

Thus, two generators are weakly trace-equivalent if they

generate the same substrings of non-τ events. It is not hard

to see that, owing to potential preemption by the “internal

event” τ , trace equivalence is in fact too coarse a relation to

preserve blocking properties.

Intermediate in coarseness between weak trace equiva-

lence and weak bisimilarity are many equivalences which

may in principle be of use in the analysis of networks [4].

For example, weak failures equivalence preserves deadlock

properties. In the next section, we prove, for all such

equivalences, that equivalence of networks to networks of

bounded size is undecidable. These results serve not merely

to establish the fact of undecidability, but to provide an

indication of the kinds of structure that would have to be

introduced to yield decidability – any suitable sufficient

conditions would have to exclude the constructions used in

the proofs.

IV. UNDECIDABILITY RESULTS

We begin by extending a result that was proved for weak

bisimilarity in [3]:

Theorem 1: Consider any equivalence that refines weak

trace equivalence and is coarser than weak bisimilarity. There

is no algorithm that determines whether all generators RN ↓
Σ0, N ∈ N fall into a finite number of equivalence classes,

3470

and if so, computes a bound on the size of the smallest

members of all equivalence classes. In other words, it is

impossible to decide whether all ring networks are equivalent

to rings of bounded size, and, if this is so, to compute a

corresponding bound.

Proof: In [3], a construction was given that produced,

for an arbitrary Turing machine, a finite-state “template” with

the property that, if the Turing machine halted on the empty

input, all RN ↓ Σ0 were weakly bisimilar, for sufficiently

large N .

On the other hand, if all RN ↓ Σ0, N ∈ N are trace-

equivalent to rings of size smaller than a known bound, then

by the construction, it can be determined whether or not the

Turing machine halts on the empty input. It follows that if

all RN ↓ Σ0 are equivalent to rings of size smaller than a

known bound, for any given one of our equivalences, halting

can be checked.

Suppose then that there exists an algorithm of the sort

described in the statement of the result. Apply it. If the

networks are not all equivalent to networks of bounded size,

the Turing machine does not halt. On the other hand, if

networks are all equivalent to networks smaller than a given

bound, halting can be checked. It follows that the halting

problem is decidable, a contradiction.

The above result thus shows that no algorithm tests for

equivalence of networks of arbitrary size to networks of

bounded size, and computes a suitable bound if one exists.

But our semidecision procedures work not with the RN ↓ Σ0

themselves, but with the “linear segments” SN . We now

show that equivalence of linear segments of arbitrary size to

segments of bounded size is undecidable, as is equivalence

of all sufficiently long linear segments. This holds for any

equivalence that refines weak trace equivalence or is coarser

than weak bisimulation.

The proof is by reduction from the Turing machine mortal-
ity problem – or, equivalently, from the problem of deciding

whether a Turing machine is uniformly mortal. Consider a

Turing machine with a two-way infinite tape. Let the (finite)

tape alphabet be Σ and let the possible states of the control

unit be labelled with elements of a finite alphabet Q. The

configuration, or full state, of the Turing machine can be

encoded as a two-way infinite string lqr ∈ ΣωQΣω, where

l, r ∈ Σω are infinite strings of tape symbols and q ∈ Q is

a control-state symbol, supposing, for example, that the tape

symbol under the read/write head is the leftmost symbol in

r. Such a Turing machine is said to be mortal if all of its

computations, regardless of the configuration in which they

begin, eventually halt. Call the problem of deciding whether

an arbitrary Turing machine is mortal the mortality problem.

Theorem 2 (Hooper [6]): The mortality problem is unde-

cidable.

Note the differences between the mortality problem and

the halting problem: in the former case, the “input” to the

Turing machine is a two-way infinite string; and the initial

state of the finite-state control is arbitrary. This second

feature is important for our application. We also need the

following result. Call a Turing machine uniformly mortal if,

whatever its initial configuration, it halts after a number of

computation steps that is bounded by a constant. It turns out

that this condition is equivalent to mortality:

Theorem 3 (Hillebrand, Kannelakis et al [7]): A Turing

machine is mortal if and only if it is uniformly mortal.

Theorems 2 and 3 show that the problem of determining

whether an arbitrary Turing machine is uniformly mortal

is undecidable. We shall use a recursive reduction from

this problem to show that it is undecidable whether, for an

arbitrary finite-state template, linear network segments fall

into a finite number of equivalence classes, or whether all

sufficiently long segments are equivalent, and this, for any

equivalence that is stronger than weak trace equivalence and

weaker than weak bisimulation.

Before stating the result, we describe the construction used

in the reduction. Suppose that an arbitrary Turing machine

M is given. It is convenient to assume that the tape alphabet

Σ and the set of labels Q of states of the control unit are

disjoint.

It is also convenient to modify the scheme proposed above

for encoding Turing machine configurations. Strings of the

form

. . . l3l2l1qr1r2r3 . . .

will instead be written as one-way infinite strings

qr1l1r2l2r3l3 . . .

The idea is to design a finite state machine into which

a string of the latter form can be fed as a sequence of

“inputs,” encoding a configuration of the Turing machine,

so that the state machine can “output” a string of the same

form that encodes the successor configuration. Naturally, the

finite state machine will have to perform this function using

only a bounded amount of storage. We shall describe the

machine using notation of the following sort:

q r1 l1 r2 l2 r3 l3 . . .
q′ r′1 l′1 r′2 l′2 r′3 l′3 . . .

The string above the line represents a sequence of inputs

to the machine, while that below the line denotes a cor-

responding output sequence, both temporally ordered from

left to right. (The machine will only accept input strings

in QΣ∗.) The alignment of the two strings describes the

temporal interleaving of input and output events: an event

in the output sequence occurs immediately after the input

event that is written directly above it. The above example

therefore means that after the first two input events, q and

r1, occur, the output event q′ takes place; after the next input

event, l1, the output r′1 is generated; and so forth.

We shall construct the machine so as to simulate the

transition relation of the Turing machine. Thus, if the input

string encodes a configuration, the output string is to encode

that configuration’s successor. This can be achieved with

a finite-state template: the state machine’s logic need only

incorporate copies of the Turing machine’s state transition

function, and the table governing head motion and the writing

of tape symbols, together with sufficient memory to store a

3471

bounded number of past input symbols. The machine will be

designed so that it admits only input strings that do encode

Turing machine configurations: the initial input event must

be a state symbol, and subsequent input events must be tape

symbols.

It is convenient to assume, without loss of generality, that

the Turing machine has a single halting state. We can then

prescribe an input-output function according to the following

rules:

1) If q represents a nonhalting-state symbol and r1 a tape

symbol such that, when it reads r1 while in state q
the Turing machine moves to state q′, writes a symbol

r′1 on the tape, and does not move its read/write head,

then
q r1 l1 r2 l2 r3 l3 . . .

q′ r′1 l1 r2 l2 . . .

2) If q represents a nonhalting-state symbol and r1 a tape

symbol such that, when it reads r1 while in state q the

Turing machine goes to state q′, writes a symbol r′1
on the tape, and moves its read/write head to the right,

then

q r1 l1 r2 l2 r3 l3 r4 l4 . . .
q′ r2 r′1 r3 l1 . . .

3) If q represents a nonhalting-state symbol and r1 a tape

symbol such that, when it reads r1 while in state q the

Turing machine moves its read/write head to the left,

goes to state q′ and writes a symbol r′1 on the tape,

then

q r1 l1 r2 l2 r3 l3 r4 l4 . . .
q′ l1 l2 r′1 l3 r2 l4 . . .

4) If qh represents the halting state, then

qh . . .
qh

The first three rules require the state machine to simulate

nonhalting moves of the Turing machine, in the sense that the

input string represents an encoding of a nonhalting Turing

machine configuration, and the output string encodes that

configuration’s successor. Note that implementation of these

rules entails only the storage of a bounded number of past

symbols. The fourth rule covers the case of a halting input

configuration: note that this rule allows the halting state to

appear at the state-machine output as soon as it has appeared

at the input.

Consider a cascade of machines satisfying these rules.

Strings can be “inputted” to the first machine, and a resulting

output string will be generated by the last. If the input string

encodes the initial configuration of the Turing machine, then

the input to the second machine will encode the Turing

machine’s second configuration, that of the third machine the

third configuration, and so forth. If ever a string that encodes

a halting configuration is generated, by any of the machines,

it immediately becomes possible for the halting-state symbol

to be passed to the output of the last machine.

Theorem 4: It is undecidable whether there exists a finite

number of equivalence classes of linear network segments

SN for an arbitrary finite state template G and any process

equivalence relation that is stronger than weak trace equiva-

lence and weaker than weak bisimulation.

Proof: Suppose that an arbitrary Turing machine is

given. A finite-state template can be constructed that suitably

simulates the finite-state machine constructed above.

We shall first show that, if there exist linear network

segments based on this template that are weakly trace-

equivalent, then the mortality of the Turing machine can

be established or disproved. First note that the existence of

weakly trace-equivalent segments implies that all segments

are weakly trace-equivalent to segments of bounded size, and

that a suitable bound can be therefore be computed. But

suppose that it is known that all segments are weakly trace-

equivalent to segments of length l or smaller. Then by our

construction, the Turing machine can pass through at most

l + 1 distinct configurations on any computation, regardless

of its initial configuration. It can therefore read at most l+1
distinct tape cells, so it in effect has a tape of length 2l + 1.

Hence, it can be determined whether it is mortal or not.

On the other hand, if the Turing machine is uniformly

mortal, then sufficiently long segments of instances of our

template are weakly bisimilar. Indeed, suppose that, regard-

less of its initial configuration, the Turing machine halts after

at most c computation steps. For any two segments of length

greater than c one can define a binary relation R on their

state sets that holds precisely when the first c instances of one

segment are in the same states as their respective counterparts

in the other instance, and when the last instances of both

segments are in the same state. This is a weak bisimulation

between the two segments, for given the same inputs, the

initial segments of c instances can make exactly the same

transitions; and the last machines in the two segments can

only do nothing or else output one halting-state symbol, and

they can do the latter if and only if one of the first c instances

has outputted the halting-state symbol.

Now suppose that the theorem does not hold for one of

the equivalences that it covers. Then there exists a decision

procedure for that equivalence relation. For an arbitrary

Turing machine, apply the decision procedure to the template

produced by our construction. If the number of equivalence

classes is finite, there must exist two segments that are

weakly trace-equivalent. But then we can determine whether

or not the Turing machine is mortal, as shown above. On the

other hand, if the number of equivalence classes is infinite,

then so is the number of weak-bisimulation equivalence

classes. It follows that the Turing machine must not be

mortal. Thus, the mortality problem is decidable, which is a

contradiction.

V. CONCLUSION

We have considered the analysis of a class of parameter-

ized discrete-event systems – namely, networks of arbitrary

size, composed of isomorphic subsystems. The analysis of

blocking and other properties is generally undecidable, but

3472

process equivalences such as weak possible futures admit

semidecision procedures for the equivalence of arbitrary

networks to networks of bounded size. Because such equiva-

lences preserve important system properties, they allow their

effective checking when semidecision procedures terminate.

Our approach was first outlined in [3], for the particular case

of weak bisimulation equivalence.

A considerable amount of related work is reported in the

model-checking literature. Among the earliest is a study

that proposes a special bisimulation relation, which must

be constructed by ad hoc means, and an associated logic

Indexed CTL* [8], [9]. The modification of the definition of

bisimulation and the specialized logic are necessitated by an

interest in checking properties of the behavior of the network

as a whole, rather than viewing it from the perspective

of one node, as we have here. Without the modifications,

the bisimulation relation and logic would be capable of

distinguishing networks of different sizes. Unfortunately,

the modification of bisimulation destroys its congruence

property, which in turn requires the ad hoc construction

of a process closure. To address the drawbacks of these

approaches, induction schemes were proposed in [10], [11]

to show that networks “implemented” a specification, or were

related to it by language containment, or some other process-

algebra preorder. These approaches sometimes require the

replacement of the specification with a “network invariant,”

constructed in ad hoc fashion. Because we are concerned not

with equivalences for entire networks but for the segments

SN obtained by hiding events outside Σ0, we are able to use

standard process equivalences.

Future work will seek to identify simpler sufficient con-

ditions reducing analysis to the case of bounded networks.

These will of course have to rule out the constructions

of our undecidability proofs. Some such conditions have

been identified in the literature, but they represent severe

restrictions on communication among subsystems. Some

require that subsystems be not only isomorphic, but identical,

so that no two are distinguishable from the perspective of a

third [12], [13]; others limit communication to the passing

of unary tokens [14].

REFERENCES

[1] J. G. Thistle, R. P. Malhamé, H.-H. Hoang, and S. L. Lafortune,
“Feature interaction modelling, detection and resolution: A supervi-
sory control approach,” in Feature Interactions in Telecommunication
Networks, P. Dini, R. Boutaba, and L. Logrippo, Eds. IOS Press,
1997, pp. 13–22.

[2] K. R. Apt and D. C. Kozen, “Limits for automatic verification of finite-
state concurrent systems,” Information Processing Letters, vol. 22, pp.
307–309, 1986.

[3] J. G. Thistle and S. Nazari, “Model reduction in distributed supervi-
sion,” in 16th International Symposium on Mathematical Theory of
Networks and Systems, 2004.

[4] R. J. van Glabbeek, “The linear time – branching time spectrum II; the
semantics of sequential processes with silent moves,” in Proceedings
CONCUR ’93 LNCIS No. 715. Springer-Verlag, 1993, pp. 66–81.

[5] C. Stirling, Modal and Temporal Properties of Processes, ser. Texts
in Computer Science. Springer-Verlag, 2001.

[6] P. K. Hooper, “The undecidability of the Turing machine immortality
problem,” Journal of Symbolic Logic, vol. 31, no. 2, pp. 219–234, June
1966.

[7] G. G. Hillebrand, P. C. Kanellakis, H. G. Mairson, and M. Y. Vardi,
“Undecidable boundedness problems for datalog programs,” Journal
of Logic Programming, vol. 25, no. 2, pp. 163–190, 1995.

[8] E. M. Clarke, O. Grümberg, and M. C. Browne, “Reasoning about
networks with many identical finite-state processes,” Carnegie-Mellon
University, Department of Computer Science CMU-CS-86-155, Oct.
1986.

[9] E. M. Clarke and O. Grümberg, “Avoiding the state explosion problem
in temporal logic model-checking algorithms,” in Proceedings of the
6th ACM Symposium on Principles of Distributed Computing, 1987,
pp. 294–303.

[10] P. Wolper and V. Lovinfosse, “Verifying properties of large sets of
processes with network invariants,” in Proceedings of the international
workshop on Automatic verification methods for finite state systems.
Springer-Verlag New York, Inc., 1990, pp. 68–80.

[11] R. Kurshan and K. McMillan, “A structural induction theorem for
processes,” Information and Computation, vol. 117, pp. 1–11, 1995.

[12] S. M. German and A. P. Sistla, “Reasoning about systems with many
processes,” Journal of the Association for Computing Machinery,
vol. 39, no. 3, pp. 675–735, July 1992.

[13] E. A. Emerson and V. Kahlon, “Reducing model checking of the many
to the few,” in Conference on Automated Deduction, 2000, pp. 236–
254. [Online]. Available: citeseer.nj.nec.com/emerson00reducing.html

[14] E. A. Emerson and K. S. Namjoshi, “Reasoning about rings,” in
Conference Record of POPL ’95: 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 1995, pp. 85–
94.

3473

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

