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Abstract— The optimal switching of a multi-mode distributed
time delay system is considered. The class of multi-mode systems
consists of systems where the control variables are the switching
times in a sequence of fixed vector fields. We assume that the
systems considered all have a refractory period. Necessary con-
ditions for a stationary solution are derived and shown to extend
those reported for systems with a single or commensurate delays
[5]. A method based on excision and regularization to determine
the optimal mode sequence is presented.

I. INTRODUCTION

The switching control problem for a finite dimensional
multi-mode system involves control actions at discrete in-
stants. The control variables are the switching times between
the fixed systems ẋ = fi(x, t), where i ∈ {1, . . . ,m} = Ξ.
We assume that at the switching times, the state is carried
over from one mode to the next in a continuous fashion.

In general, also the particular sequence of vector fields
needs to be optimized. Such a global control is then param-
eterizable by the number of switches, N − 1, a “word” of
length N with alphabet, Ξ, and the sequence of switching
times {T1, . . . , TN−1}. This global problem involves com-
parison of N(N − 1)m−1 individual time optimized strate-
gies, (itself manifestly leading to an obvious combinatorial
explosion). Optimal sequencing can also be obtained by the
excision method [5].

The objective of this work is to derive the necessary
conditions for optimality for modes modelled by functional
differential equations. It is assumed that the systems con-
sidered have a refractory period, in the sense that once an
action is taken, it takes a non-infinitesimal amount of time
before a subsequent action can be taken. Refractory periods
are ubiquitous, not only in physiological systems but also in
many technological systems, (e.g., time required to recharge
a capacitor). A refractory time provides a safeguard towards
unwanted high frequency switching. The paper extends the
results of [5] to systems with distributed delays. We believe
the derivation of the optimality conditions via a classical vari-
ational approach [1] to be somewhat more straightforward
than the one carried out in [2] for the finite dimensional
case. However, the presence of delays adds a nontrivial twist
to the original problem posed in [9]. It should also be noted
that the optimal switching problem bears some relation to
the optimal impulsive control problem in [6].
Necessary conditions for the optimal switching policy with

fixed mode sequence are determined in Section 2. In Section
3, a regularization method is presented to determine the
optimal mode sequence as well.

II. VARIATIONAL APPROACH TO OPTIMAL SWITCHING

Consider a distributed delay system with a maximal delay,
τ . As usual, xt denotes the data {x(t + θ) | − τ ≤ θ ≤ 0 }
[3]. First we investigate a fixed sequence of vector fields:
fi(xt); i = 1, . . . , N , satisfying the usual Lipschitz condi-
tions to guarantee well-posedness of the problem. The state
space for this multi-mode delay system is C([−τ, 0], IRn),
and the instants of switching are the sole control variables.
As in the delay free problem, we assume that the entire state
xt is carried over from one mode to the next at the switch,
thus preserving the continuity.

The vector x(t) ∈ IRn is called the partial state at t.
Obviously, continuity of x implies continuity of the state
xt. The problem is to minimize the performance index

J =
∫ T

0

L(x, ξ) dt + Φ(x(T )) (1)

for a fixed terminal time T by an optimal choice of the
switching times. Here, ξ(t) is a discrete state, taking values
in the finite set, Ξ, and denotes the operating mode at
time t. If ξ(t) = a, then the dynamical system at t is the
autonomous system ẋ(t) = f (a)(xt). Denote the nominal
switching times by Ti; i = 1, . . . , N − 1, and define T0 = 0
and TN = T (assumed fixed). For simplicity, of notation,
set L(x, ξ(t)) = Li(x) and f (ξ(t)) = fi in the interval
(Ti−1, Ti). The performance index (1) expands to

N∑
i=1

∫ Ti

Ti−1

Li(x) dt + Φ(x(T )), with ẋ = fi(xt) (2)

for Ti−1 ≤ t ≤ Ti. Consider now arbitrary, independent
perturbations of the nominal Ti with scale parameter, ε,
which we will let eventually tend to zero, i.e., Ti → Ti +εθi.
Adjoining the dynamical constraints with different Lagrange
multipliers, defined in each appropriate subinterval, will not
alter the value of J . Assume further that optimal values Ti

exist, giving the nominal performance index, J0, equal to

N∑
i=1

∫ Ti

Ti−1

[Li(x) + λ′
i(fi(xt) − ẋ)] dt + Φ(x(T )) (3)
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It is very important to remark that due to the requisite
continuity of the state, a change in Tj say will have an effect
on all the modes i > j. This happens because the change
from Tj to Tj + εθj (keeping everything else the same) now
changes the final (partial) state in the j-th mode from x(Tj)
to (θj > 0 is assumed, the other case being similar)

x(Tj + εθj) = x(Tj) + ẋ(T−
j ) εθj .

Note that the left derivative is taken with mode j, and this is

ẋ(T−
j ) = fj(xTj

).

If however, no perturbation were made to Tj , then the value
of the partial state x(Tj + εθj) would have been

x(Tj + εθj) = x(Tj) + ẋ(T+
j ) εθj .

This gives a difference in the state at the beginning of the
j + 1-st mode of

∆Tj
x = [fj(xTj

) − fj+1(xTj
)] εθj . (4)

As each subsequent switch will add such a term, it
is clear that the effects of all such perturbations will
accumulate in subsequent modes. Keeping track of all these
effects will complicate the derivation requiring the explicit
computation of perturbations as done in [2]. In keeping
with the philosophy of calculus of variations, we shall avoid
having to keep track of these by introducing a sequence of
induced variations, {ηj}, in the same way as we introduced
independent Lagrange multipliers λj for each mode, i.e., in
each subinterval. Equivalently, we may model the induced
partial state variation η(t) as a possibly discontinuous
function with discontinuities at the switching times. The
same also holds for the costates λ(t). These costates can
then be chosen in a very convenient way in order to avoid
computation of the induced variations.

Defining the Hamiltonian functionals,

Hi(xt, λ) = Li(x) + λ′
ifi(xt), (5)

we find for a neighboring solution (with η possibly discon-
tinuous)

Jε = Φ(x(T ) + εη(T ))+

+
N∑

i=1

∫ Ti+εθi

Ti−1+εθi−1

[Hi(xt + εηt) − λ′
i(ẋ + εη̇)] dt

= Φ(x(T )) +
N∑

i=1

∫ Ti

Ti−1

[Hi(x) − λ′
iẋ] dt +

+ε
N∑

i=1

∫ Ti

Ti−1

[DxHi(xt, λi; ηt) − λ′
iη̇] dt +

+ε
∂Φ
∂x

∣∣∣∣
T

η(T ) +
N∑

i=1

∫ Ti+εθi

Ti

[Hi − λ′
iẋ] dt +

−
N∑

i=1

∫ Ti−1+εθi−1

Ti−1

[Hi − λ′
iẋ] dt. (6)

In the above, Dx is the Fréchet derivative defined by

DxHi(xt, λ, ; ηt) = lim
ε→0

Hi(xt+εηt, λ) − Hi(xt, λ)
ε

. (7)

Note that actually θ0 = θN = 0, since initial and final time
were considered fixed.

A. Progressively Distributed Delay Mode Systems

We shall leave the full generality of the problem behind
and consider from now on only systems having progressive
distributed delay dynamics, by which we mean system modes
representable by the functional differential equations

ẋ(t) =
∫ τ+

0−
Gi(x(t − σ), σ) dBi(σ). (8)

Here the Gi are smooth differentiable maps IRn×[0, τ ] �→ IRn

and Bi(·) has bounded variation. The integration boundaries
0− and τ+ indicate that possible crisp (or point-) delays
for σ = 0 (the no-delay term) and σ = τ are included.
However, the form (8) excludes correlations such as the
product x(t)x(t−τ). This class includes the separable mode
systems (with crisp point delays) [5]. At this point we remark
that the above restriction is only made for notational purposes
in what is to follow. Full generality can be achieved since as
we shall see it suffices to apply the perturbation to the linear
variational problem. Thus, the Hamiltonians, Hi(xt, λi) and
final cost adjoined with the state continuity constraints are
respectively defined by

Li(x(t)) + λ′
i(t)

[∫ τ

0

Gi(x(t − σ), σ) dBi(σ)
]

(9)

Ψ(x, µ) = Φ(x) +
N∑

i=1

µ′
i[x(T+

i ) − x(T−
i )]. (10)

B. Delay effect of a single switch

We shall say that a function y is Ck at t0, if the k-th
derivative of y is continuous at t0, but the (k + 1)-st is not.
Obviously, this implies that the derivatives of order i are all
continuous at t0 for i ≤ k.

Assume that a single controlled switch occurs at time T ,
switching from mode i to i+1. This makes ẋ discontinuous
at T . Consequently, x has a ‘kink’ (i.e., is non-differentiable)
at T . From the continuity assumption, x is C0 at T . But
then

∫ τ

0
G(x(t − σ), σ)dB(σ) is C0 at t = T + τ if

B(θ) = bδ(θ − τ) (see [5]), and C1 if B is smooth. In turn
this implies that ẋ is at least C0 at T + τ , inducing again at
least C1 behavior in x at T + τ and at least C2 behavior in∫

GdB at time T + τ , and so on. We summarize the chain
of events (where ⊆ Ck means “at least Ck”):
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Lemma 1: A controlled switch at time T induces the follow-
ing behavior in the delay system (8)

T T + τ T + 2τ . . . T + kτ
ẋ(t) jump ⊇ C0 ⊇ C1 ⊇ Ck−1

x(t) C0 ⊇ C1 ⊇ C2 ⊇ Ck∫ τ

0
G(xt)dB ⊇ C1 ⊇ C2 ⊇ Ck

C. Effect of variation in a single switching time

Let us first recall a simple result:
Lemma 2: If y is Ck at t0, then the variation of y in an
interval of length θ about t0 is of order k + 1 in θ.
Consider now for smooth functions G a functional of the
form

I(T ) =
∫ T+kτ

0

∫ τ

0

q(x(t − σ), σ) dB(σ) dt (11)

where x satisfies the dynamics (8) with a single switch at
time T . Observe (by Lemma 1) that this induces C0 behavior
at T , C1 behavior at T + τ ,. . . ,Cm behavior at T + mτ in
x(t).

Partition the integral as

I(T ) =
∫ T

0

y(t) dt +
k∑

i=1

∫ T+iτ

T+(i−1)τ

y(t) dt.

where

y(t) =
∫ τ

0

q(x(t − σ), σ) dB(σ).

If the switch occurred ε time units later than T , then I(T )
becomes I(T + ε), given by∫ T+ε

0

y(t) dt +
k∑

i=1

∫ T+iτ+ε

T+(i−1)τ+ε

[y(t) + εηi(t)] dt.

The induced variation in the integral is I(T + ε) − I(T )
and (assuming first ε > 0) after some regrouping of terrms,
reduces to∫ T+ε

T

[y−(t) − y+(t)] dt +

+
k−1∑
i=1

∫ T+iτ+ε

T+iτ

[y−(t) + εηi − y+(t) − εηi+1] dt +

+
∫ T+kτ+ε

T+kτ

[y−(t) + εηk(t)] dt +

+
k∑

i=1

∫ T+iτ

T+(i−1)τ

εDηi
[y(t)] dt. (12)

The subscript ± reminds us that the integrand needs to
be computed on the left (−) and right(+) hand side of the
point. The analysis for ε < 0 is analogous.

The first integral,
∫ T+ε

T
[y−(t)− y+(t)] dt, is of order 2 in

ε. Indeed, y−(T ) =
∫ τ

0
q(x(T − σ), σ)dB(σ), and involves

the dynamics present before the switch. Likewise y+(T )

must be computed with the dynamics reigning after the
switch. The integral near T + τ contributes a perturbation
proportional to at least second degree in ε. Likewise, the
induced perturbations at T + iτ are of order at least i + 1 in
ε. All these terms will be neglected.

This leaves the Dx[y(t)] - integrals, where Dx denotes the
Fréchet derivative. Hence

DI(T ) =
k∑

i=1

∫ T+iτ

T+(i−1)τ

Dx[y(t)] dt. (13)

This was the situation if there is only a single switch. If
another switch occurs, say at T1, then for some k, T +kτ <
T1 < T + (k + 1)τ , and the G-term would induce another ε
perturbation. Therefore the bookkeeping of all perturbation
terms will be quite complicated, especially in view of the fact
that that all possibilities (of relative positions of switching
instants) need to be taken into account.

D. Refractory period

Let us now assume the existence of a refractory period.
In particular, we consider the case where this refractory time
exceeds the delay time, τ . In this case, the problem greatly
simplifies, and the aforementioned complexity disappears, as
only two adjacent intervals need to be considered [5]. Indeed,
the delayed effect of the k-th switch hits before the k + 1-st
switch. This yields a situation which is akin to the case with
a single switch in the previous section.

As in (11), with the Hamiltonian functionals defined in
(9), we express the first variation in the performance index
as the limit for ε → 0 of

δJ = lim
ε→0

Jε − J

ε
.

We start with (3) for the progressively distributed mode
systems mode form

N∑
i=1

∫ Ti

Ti−1

[
Li(x) + λ′

i

(∫ τ+

0−
Gi(x(t−σ), σ) dBi(σ) − ẋ

)]
dt

+ Φ(x(T )) +
N∑

i=1

µ′
i[x(T+

i ) − x(T−
i )], (14)

in which we separate the delayed terms

J =
N∑

i=1

∫ Ti

Ti−1

[
Li(x) − λ′

iẋ
]
dt

+
N∑

i=1

∫ Ti

Ti−1

λ′
i

(∫ τ+

0−
Gi(x) dBi

)
dt

+ Φ(x(T )) +
N∑

i=1

µ′
i[x(T+

i ) − x(T−
i )] (15)
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The integrals of the delayed terms in (15) may be rearranged
by permuting the order of integration as follows:

∫ Ti

Ti−1

λ′
i(t)

(∫ τ+

0−
Gi(x(t − σ), σ) dBi(σ)

)
dt

=
∫ Ti−1

Ti−2

χ[Ti−1−τ,Ti−1]

(∫ τ

Ti−1−t

(λτ
i )′ dBi

)
Gi(x(t)) dt +

+
∫ Ti

Ti−1

χ(Ti−1,Ti−τ)

(∫ τ

0

(λτ
i )′ dBi

)
Gi(x(t)) dt +

+
∫ Ti

Ti−1

χ[Ti−τ,Ti]

(∫ Ti−t

0

(λτ
i )′ dBi

)
Gi(x(t)) dt.

In these expressions, χI is the indicator function of the
interval I, and the advanced term λ(t+σ) is denoted by
λτ .

Hence, by rearranging terms the expression (15) reduces
to (for simplicity, we also denoted χ+

i+1 = χ(Ti,Ti+1−τ) and
χ−

i+1 = χ[Ti−τ,Ti])

J =
N∑

i=1

∫ Ti

Ti−1

[
Li(x) − λ′

iẋ
]
dt+

+
∫ 0

−τ

(∫ τ

−t

(λτ
1)′dB1

)
G1(x) dt +

+
N−1∑
i=1

∫ Ti

Ti−1

χ−
i+1

(∫ τ

Ti−t

(λτ
i+1)

′dBi+1

)
Gi+1(x) dt+

+
N∑

i=1

∫ Ti

Ti−1

χ+
i

(∫ τ

0

(λτ
i )′dBi

)
Gi(x) dt +

+
N∑

i=1

∫ Ti

Ti−1

χ−
i+1

(∫ Ti−τ

0

(λτ
i )′dBi

)
Gi(x) dt +

+Φ(x(T )) +
N∑

i=1

µ′
i[x(T+

i ) − x(T−
i )]. (16)

By adding λN+1(t) = 0 for t > TN , the sum from i = 0
to N −1, may be changed to the sum from i = 0 to N , thus,

J =
∫ 0

−τ

(∫ τ

−t

(λτ
1)′dB1

)
G1 dt +

+
N∑

i=1

∫ Ti

Ti−1

[
Li(x) + Mi(x) − λ′

iẋ
]
dt +

+Φ(x(T )) +
N∑

i=1

µ′
i[x(T+

i ) − x(T−
i )], (17)

where

Mi(x) =
[
χ+I(1)

i + χ−
i+1(I(2)

i + I(3)
i )

]
,

and

I(1)
i (x) =

(∫ τ+

0−
(λτ

i )′dBi

)
Gi(x) (18)

I(2)
i (x) =

(∫ Ti−τ

0

(λτ
i )′dBi

)
Gi(x) (19)

I(3)
i (x) =

(∫ τ

Ti−t

(λτ
i+1)

′dBi+1

)
Gi+1(x) (20)

The integrals in (16) involve expressions of the form

K =
N∑

i=1

∫ Ti

Ti−1

[
Ki(x) − λ′

iẋ
]
dt, (21)

for which we now consider independent perturbations of the
switching times. To that effect introduce the variables {θi}
and a scale parameter ε and the induced perturbations ηi:

Kε =
N∑

i=1

∫ Ti+εθi

Ti−1+εθi−1

[
Ki(x + εηi) − λ′

i(ẋ + εη̇i)
]
dt

=
N∑

i=1

∫ Ti

Ti−1

[
Ki(x) − λ′

iẋ
]
dt +

+
N∑

i=1

(∫ Ti+εθi

Ti

[
Ki(x) − λ′

iẋ
]
− dt+

−
∫ Ti−1+εθi−1

Ti−1

[
Ki(x) − λ′

iẋ
]
+

dt

)

+
N∑

i=1

∫ Ti

Ti−1

(
∂Ki

∂x
+ λ̇′

i

)
εηi dt.

+ε
N∑

i=1

[−λ′
i(T

−
i )ηi(T−

i ) + λ′
i(T

+
i−1)ηi(T+

i−1)
]
,

where as usual, we integrated by parts. Subtracting the
nominal value, dividing by ε and taking the limit gives the
induced variation δK

δK =
N∑

i=1

∫ Ti

Ti−1

(
∂Ki

∂x
+ λ̇′

i(t)
)

η(t) dt+

+
N∑

i=1

θi[Ki − λ′
iẋ]T−

i
−

N−1∑
i=0

θi[Ki+1 − λ′
i+1ẋ]T+

i

−
N∑

i=1

λ′
i(T

−
i )ηi(T−

i ) +
N−1∑
i=0

λ′
i+1(T

+
i )ηi+1(T+

i ) (22)

Note that for i = 0, θ0 = 0 and for i = N , θN = 0, since
initial and final time were fixed.

The {θi}-induced perturbation of the non-integral term in
(16), Ψ(x, µ) = Φ(x) +

∑
µ′

i∆Ti
x, follows from (4),

δΨ =
∂Φ
∂x

ηN (T ) +
N−1∑
i=1

µ′
i

[
(ẋ(T−

i ) − ẋ(T+
i ))θi+

+ ηi(T−
i ) − ηi+1(T+

i )
]
. (23)
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Combine the two perturbations δK and δΨ and choose λi in
the intervals [Ti−1, Ti] to solve

λ̇i = −
(

∂Ki

∂x

)′
. (24)

This yields δK + δΨ in the form

N−1∑
i=1

[
Aiθi + B′

iη(T+
i ) + C ′

iη(T−
i )

]
+ (25)

+λ1(0+)η1(0+) +
(

∂Φ
∂x

− λ′
N (T−

N )
)

η(T−
N ),

where

Ai = Li(x(T−
i )) − Li+1(x(T+

i )) +
+µ′

i [ẋ(T−
i ) − ẋ(T+

i )] (26)

Bi = −µi + λi+1(T+
i ) (27)

Ci = µi − λi(T−
i ) (28)

With the initial data given η(0+) must be zero. Computation
of the requisite perturbations {ηi} is avoided if one chooses

λi(T−
i ) = µi = λi+1(T+

i ), (29)

with final condition

λN (T−
N ) =

(
∂Φ
∂x

)T

, (30)

thus specifying the boundary conditions for the differential
equations (24). This implies that we can choose the costates
λi in [Ti−1, Ti] to concatenate to a continuous functions in
[0, T ].

It follows that the first order variation of J reduces to

δJ =
N−1∑
i=1

Aiθi. (31)

E. Main Result

The above derivations are now put together to obtain
necessary conditions for the general progressively distributed
delay system Since the θi are independent, necessary condi-
tions for optimality are the vanishing of the Ai in (31). In
view of the choice (29) of the. multipliers µi and boundary
conditions, it gives for i = 1 to N − 1

Hi(xTi
, λ(Ti)) = Hi+1(xTi

, λ(Ti)). (32)

Simply stated, it means the continuity of the Hamiltonian
functional H at the switching times.

In formulating our main theorem below, we will assume
that the vector fields Gi(x(t−σ), σ) as well as the functions
Li(x) are smooth, and we let N − 1 be the total number of
switches, with T0 = 0 and TN = tf being fixed.

Theorem 3:
The separable mode switched system in equation (8), with

fixed mode sequence, minimizes the performance index J in
(1) if the switching times Ti are chosen as follows:
Euler-Lagrange Equations:

λ̇i = −
(

∂Li

∂x

)T

−
(

∂Gi

∂x

)T(
χ+

i IT
1 + χ−

i+1IT
2

)
+

−
(

∂Gi+1

∂x

)T

χ−
i+1IT

3 (33)

where the I1 and I2, defined in (20) depend on λτ
i ,and I3

on λτ
i+1. Also, Ti−1 < t < Ti, i = 1, . . . , N − 1, with

χ+
i (t) = 1 if t ∈ [Ti−1, Ti−τ ] and 0 otherwise, χ−

i+1(t) = 1
if t ∈ [Ti − τ, Ti] and 0 otherwise, and λτ

i = λi(t + τ).
Moreover,

λ̇N = −
(

∂LN

∂x

)T

−
(

∂GN

∂x

)T(
χ+

i IT
1 + χ−

i+1IT
2

)
(34)

Boundary Conditions:

λN (TN ) =
(

∂Φ
∂x

)T

(35)

λi(T−
i ) = λi+1(T+

i ) (36)

Optimality Conditions:

Hi(xTi
, λi(Ti)) = Hi+1(xTi

, λi+1(Ti)). (37)

Proof: All one has to do is to recall what the function K
was and realize that both indicator functions in its definition
evaluate to 1 at the switching point Ti.

F. Point delay systems

The separable mode case discussed in [5] is retrieved by
taking the Bi(θ) to be step functions. For systems with a
single delay, let

∫ τ+

0−
Gi(x(t−σ), σ) dBi(σ) = fi(x(t)+ gi(x(t− τ)). (38)

Systems with multiple delays are treated by multi-level step
functions Bi, whereas a system with commensurate delays
can be recast as a system with a simple delay using state
augmentation (see [5]).

III. OPTIMAL SEQUENCING

So far, it was assumed that the sequence of modes was
fixed. If m modes are available, then with N − 1 switches,
N(N − 1)m−1 possible mode sequences exist, and their
optimized performance needs to be evaluated and compared
in order to find the global optimal switched control. Instead
we refine an alternative method, first presented in [5].
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A. Excision

In the absence of a refractory period, consider the fixed
mode sequence by cycling the modes: 1→2→ . . .→m →
1→2→ . . . →m→1→2→. . ., and optimize their switching
times. If it is found that the optimal switching time sequence
has Ti−1 = Ti for some i, it means that mode i only occurs
for duration 0, and therefore should be excised. Performing
all such excisions will leave the optimal mode sequence
associated with at most N −1 switches. Thus by formulating
first the optimal control problem for a fixed mode sequence,
no generality is lost in the global optimal control problem if
an upper bound on the number of switches is imposed.

B. Regularization of the refractory period

With a refractory period, the time between switches is
bounded below and the excision method is not applicable.
There is however a way around this. First the problem in
Section 2 can be generalized by adding a switching cost term
to the performance index. Thus let (1) be replaced by

J =
∫ T

0

L(x, ξ) dt +
N∑

i=1

Φi(x(Ti), {Tj}N
j=1) (39)

which leads to a more general set of boundary and optimality
conditions in Theorem 3 (see [7] for the case of impulsive
control.) Consider a switching cost function of the form

Φi((x(Ti), {Tj}N
j=1) = φ(Ti − Ti−1).

The existence of a true refractory period, τ , is then equivalent
to φ = φr with φr(θ) = 0 for θ > τ , and φr(θ) = ∞
for θ < τ . It follows that one can regularize the refractory
period phenomenon by considering instead of the above φ
a more general smooth cost function: Examples are (with
φ0 > 0 and ω > 0) φb(t) = φ0[1 + ωt2]−1 (butterworth),
φe(t) = φ0 exp(−ωt) (exponential), φf (t) = φ0[1+exp(ωt)]
(fermi), φg(t) = φ0 exp(−t2/2ω2) (gaussian), φi(t) =
φ0t

−ω (inverse). Note that only the latter has a n infinite cost
associated with θ = 0. More generally, let ψn(θ) > 0 be such
that limn→∞ ψn = φr, the relaxed optimal switching control
{T (n)

i }N
i=1 is expected to approach the optimal sequence

{Ti}N
i=1 for the control with the refractory period constraint.

If for a given n, one or more of the constraints T
(n)
i −T

(n)
i−1 > τ

do not hold, increase n and start over.
Once this is understood, it is clear that a slight variation

from this scheme can actually allow the case Ti −Ti−1 = 0,
so that the excision method can be used to determine the
optimal mode sequence as well. All one has to do is to
adapt the sequence of regularizing cost functions to smooth
functions ψn > 0 with a notch near zero, e.g., let ψn(t) <
ε1/n for t < ε2/n, ψn < ε3/n for t > τ + ε4/n and
ψn > n/ε5 if ε6/n < t < τ − ε7/n. Now the optimal
interval between switchings will either fall to the right of the
hump (i.e., exceed the refractory period), or to the left of it,
nudging it closer and closer to zero as n increases. In this

case, it means that the corresponding mode in the interval
(T (n)

i−1, T
(n)
i ) should be excised. Such a regularization lets

one solve for the optimal sequence with refractory period.
There remains one caveat: The refractory period may have
been brought in to avoid high frequency switching. With the
above regularization this safeguard would be lost. A remedy
is to associate a nonzero but small cost, γ, with a switch
close to zero. Note that one never should excise more than
m adjacent intervals (since then the mode has returned to the
one before the first switch). Hence, excising a (redundant)
cycle 1→ . . .→m is associated with a cost mγ, whereas
sustaining the present mode incurs no additional cost in the
same (infinitesimal) interval.

IV. CONCLUSIONS

We derived necessary conditions for stationarity of the
performance index of a multi-mode distributed delay sys-
tem controlled by switchings between a prespecified mode
sequence. This is a first step in the complete optimal control
of a multi-mode system, where also the optimal sequence
of the modes needs to be found. To avoid a combinatorial
search, we proposed an adaptation of the excision method,
first presented in [5] for systems without refractory period
constraints, via regularization of an equivalent cost function.
Alternatively, a regularization method as for instance pre-
sented in [4] could be invoked to obtain a first approximation.
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